

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f65k90t-i-mrrsl

Email: info@E-XFL.COM

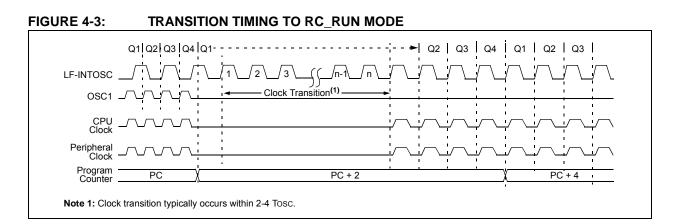
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Special Microcontroller Features:

- Operating Voltage Range: 1.8V to 5.5V
- On-Chip 3.3V Regulator
- Operating Speed up to 64 MHz
- Up to 128 Kbytes On-Chip Flash Program Memory
- Data EEPROM of 1,024 Bytes
- 4K x 8 General Purpose Registers (SRAM)
- 10,000 Erase/Write Cycle Flash Program Memory, Minimum
- 1,000,000 Erase/write Cycle Data EEPROM Memory, Typical
- Flash Retention 40 Years, Minimum
- Three Internal Oscillators: LF-INTRC (31 kHz), MF-INTOSC (500 kHz) and HF-INTOSC (16 MHz)
- Self-Programmable under Software Control

- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
- Programmable period from 4 ms to 4,194s (about 70 minutes)
- In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
- · In-Circuit Debug via Two Pins
- Programmable:
 - BOR
 - LVD
- Two Enhanced Addressable USART modules:
 - LIN/J2602 support
 - Auto-Baud Detect (ABD)
- 12-Bit A/D Converter with up to 24 Channels:
 - Auto-acquisition and Sleep operation
 - Differential Input mode of operation

Pin Name	Pin Number	Pin	Buffer	Description
Fill Name	TQFP	Туре	Туре	Description
				PORTC is a bidirectional I/O port.
RC0/SOSCO/SCKLI RC0 SOSCO SCKLI	36	I/O O I	ST — ST	Digital I/O. SOSC oscillator output. Digital SOSC input.
RC1/SOSCI/ECCP2/ SEG32/P2A RC1 SOSCI ECCP2 ⁽¹⁾ SEG32 P2A	35	I/O I I/O O	ST CMOS ST Analog —	Digital I/O. SOSC oscillator input. Capture 2 input/Compare 2 output/PWM2 output. SEG32 output for LCD. Enhanced PWM2 Output A.
RC2/ECCP1/P1A/SEG13 RC2 ECCP1 P1A SEG13	43	I/O I/O O	ST ST — Analog	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. Enhanced PWM1 Output A. SEG13 output for LCD.
RC3/SCK1/SCL1/SEG17 RC3 SCK1 SCL1 SEG17	44	I/O I/O I/O O	ST ST ST Analog	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode. SEG17 output for LCD.
RC4/SDI1/SDA1/SEG16 RC4 SDI1 SDA1 SEG16	45	I/O I I/O O	ST ST ST Analog	Digital I/O. SPI data in. I ² C data I/O. SEG16 output for LCD.
RC5/SDO1/SEG12 RC5 SDO1 SEG12	46	I/O O O	ST Analog	Digital I/O. SPI data out. SEG12 output for LCD.
RC6/TX1/CK1/SEG27 RC6 TX1 CK1 SEG27	37	I/O O I/O O	ST — ST Analog	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX1/DT1). SEG27 output for LCD.
RC7/RX1/DT1/SEG28 RC7 RX1 DT1 SEG28	38	I/O I I/O O	ST ST ST Analog	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX1/CK1). SEG28 output for LCD.
Legend: TTL = TTL cc ST = Schmit I = Input P = Power $I^2C^{TM} = I^2C/SM$	t Trigger input	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)


TABLE 1-4: PIC18F8XK90 PINOUT I/O DESCRIPTIONS (CONTINUED)


Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

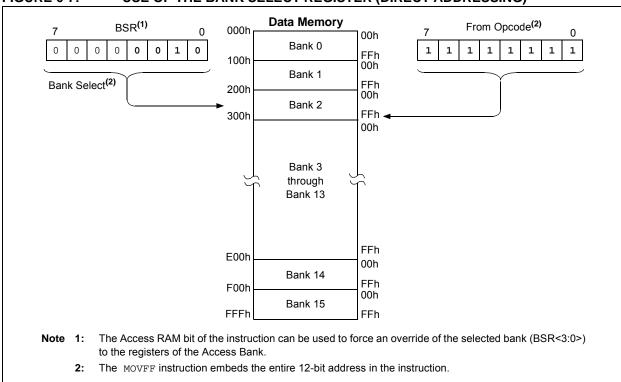
2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K90 and PIC18F85K90 devices.

4: The CCP6, CCP7, CCP8 and CCP9 pin placement depends on the ECCPMX Configuration bit setting.

TABLE 5-2:	: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)					
Register	Applicable Devices	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets, CM Resets	Wake-up via WDT or Interrupt		
INDF2	PIC18F6XK90 PIC18F8XK	90 N/A	N/A	N/A		
POSTINC2	PIC18F6XK90 PIC18F8XK	90 N/A	N/A	N/A		
POSTDEC2	PIC18F6XK90 PIC18F8XK	90 N/A	N/A	N/A		
PREINC2	PIC18F6XK90 PIC18F8XK	90 N/A	N/A	N/A		
PLUSW2	PIC18F6XK90 PIC18F8XK	90 N/A	N/A	N/A		
FSR2H	PIC18F6XK90 PIC18F8XK	90 0000	0000	uuuu		
FSR2L	PIC18F6XK90 PIC18F8XK	90 xxxx xxxx	uuuu uuuu	uuuu uuuu		
STATUS ⁽⁴⁾	PIC18F6XK90 PIC18F8XK	90x xxxx	u uuuu	u uuuu		
TMR0H	PIC18F6XK90 PIC18F8XK	90 0000 0000	uuuu uuuu	uuuu uuuu		
TMR0L	PIC18F6XK90 PIC18F8XK	90 xxxx xxxx	uuuu uuuu	uuuu uuuu		
TOCON	PIC18F6XK90 PIC18F8XK	90 1111 1111	1111 1111	uuuu uuuu		
SPBRGH1	PIC18F6XK90 PIC18F8XK	90 0000 0000	0000 0000	uuuu uuuu		
OSCCON	PIC18F6XK90 PIC18F8XK	90 0110 q000	0110 q000	uuuu quuu		
IPR5	PIC18F6XK90 PIC18F8XK	90 1111 1111	1111 1111	uuuu uuuu		
WDTCON	PIC18F6XK90 PIC18F8XK	90 0-x0 -000	0-x0 -000	u-uu -uuu		
RCON	PIC18F6XK90 PIC18F8XK	90 0111 11qq	0uqq qquu	uuuu qquu		
TMR1H	PIC18F6XK90 PIC18F8XK	90 xxxx xxxx	uuuu uuuu	uuuu uuuu		
TMR1L	PIC18F6XK90 PIC18F8XK	90 xxxx xxxx	uuuu uuuu	uuuu uuuu		
T1CON	PIC18F6XK90 PIC18F8XK	90 0000 0000	uuuu uuuu	uuuu uuuu		
TMR2	PIC18F6XK90 PIC18F8XK	90 0000 0000	0000 0000	uuuu uuuu		
PR2	PIC18F6XK90 PIC18F8XK	90 1111 1111	1111 1111	uuuu uuuu		
T2CON	PIC18F6XK90 PIC18F8XK	90 -000 0000	-000 0000	-uuu uuuu		
SSP1BUF	PIC18F6XK90 PIC18F8XK	90 xxxx xxxx	uuuu uuuu	uuuu uuuu		
SSP1ADD	PIC18F6XK90 PIC18F8XK	90 0000 0000	0000 0000	uuuu uuuu		
SSP1STAT	PIC18F6XK90 PIC18F8XK	90 0000 0000	0000 0000	uuuu uuuu		
SSP1CON1	PIC18F6XK90 PIC18F8XK	90 0000 0000	0000 0000	uuuu uuuu		
SSP1CON2	PIC18F6XK90 PIC18F8XK	90 0000 0000	0000 0000	uuuu uuuu		
ADRESH	PIC18F6XK90 PIC18F8XK	90 xxxx xxxx	սսսս սսսս	uuuu uuuu		
ADRESL	PIC18F6XK90 PIC18F8XK	90 xxxx xxxx	սսսս սսսս	uuuu uuuu		
ADCON0	PIC18F6XK90 PIC18F8XK	90 -000 0000	-000 0000	-uuu uuuu		
ADCON1	PIC18F6XK90 PIC18F8XK	90 0000 0000	0000 0000	uuuu uuuu		
ADCON2	PIC18F6XK90 PIC18F8XK	90 0-00 0000	0-00 0000	u-uu uuuu		
ECCP1AS	PIC18F6XK90 PIC18F8XK	90 0000 0000	0000 0000	uuuu uuuu		

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)


Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt, and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

4: See Table 5-1 for the Reset value for a specific condition.

FIGURE 6-7: USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)

6.3.2 ACCESS BANK

While the use of the BSR, with an embedded 8-bit address, allows users to address the entire range of data memory, it also means that the user must ensure that the correct bank is selected. If not, data may be read from, or written to, the wrong location. This can be disastrous if a GPR is the intended target of an operation, but an SFR is written to instead. But verifying and/or changing the BSR for each read or write to data memory can become very inefficient.

To streamline access for the most commonly used data memory locations, the data memory is configured with an Access Bank, which allows users to access a mapped block of memory without specifying a BSR. The Access Bank consists of the first 96 bytes of memory (00h-5Fh) in Bank 0 and the last 160 bytes of memory (60h-FFh) in Bank 15. The lower half is known as the "Access RAM" and is composed of GPRs. The upper half is where the device's SFRs are mapped. These two areas are mapped contiguously in the Access Bank and can be addressed in a linear fashion by an 8-bit address (Figure 6-6).

The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the 'a' parameter in the instruction). When 'a' is equal to '1', the instruction uses the BSR and the 8-bit address included in the opcode for the data memory address. When 'a' is '0', however, the instruction is forced to use the Access Bank address map. In that case, the current value of the BSR is ignored entirely.

Using this "forced" addressing allows the instruction to operate on a data address in a single cycle without updating the BSR first. For 8-bit addresses of 60h and above, this means that users can evaluate and operate on SFRs more efficiently. The Access RAM below 60h is a good place for data values that the user might need to access rapidly, such as immediate computational results or common program variables.

Access RAM also allows for faster and more code efficient context saving and switching of variables.

The mapping of the Access Bank is slightly different when the extended instruction set is enabled (XINST Configuration bit = 1). This is discussed in more detail in Section 6.6.3 "Mapping the Access Bank in Indexed Literal Offset Mode".

6.3.3 GENERAL PURPOSE REGISTER FILE

PIC18 devices may have banked memory in the GPR area. This is data RAM which is available for use by all instructions. GPRs start at the bottom of Bank 0 (address 000h) and grow upwards towards the bottom of the SFR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets.

REGISTER 10-7: PIR4: PERIPHERAL INTERRUPT FLAG REGISTER 4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP10IF ⁽¹⁾	CCP9IF ⁽¹⁾	CCP8IF	CCP7IF	CCP6IF	CCP5IF	CCP4IF	CCP3IF
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-1 bit 0	$\frac{Capture Mode}{1 = A TMR re}$ $1 = A TMR re$ $0 = No TMR re$ $1 = A TMR re$ $0 = No TMR r$ $0 = No TMR r$ $1 = A TMR re$ $1 = A TMR re$	egister capture register captur egister compar- register compar- WM mode. CP3 Interrupt F egister capture register captur egister compar- register compar-	occurred (mu e occurred e match occur re match occu ag bits occurred (mu e occurred e match occur	st be cleared in rred (must be c urred st be cleared in rred (must be c	leared in softwa		

Note 1: Unimplemented in devices with a program memory of 32 Kbytes (PIC18FX5K90).

REGISTER 10-9: PIR6: PERIPHERAL INTERRUPT FLAG REGISTER 6

U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	EEIF	—	CMP3IF	CMP2IF	CMP1IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	Unimplemented: Read as '0'
bit 4	EEIF: Data EEDATA/Flash Write Operation Interrupt Flag bit
	 1 = The write operation is complete (must be cleared in software) 0 = The write operation is not complete, or has not been started
bit 3	Unimplemented: Read as '0'
bit 2	CMP3IF: CMP3 Interrupt Flag bit
	1 = CMP3 interrupt occurred (must be cleared in software)0 = No CMP3 interrupt occurred
bit 1	CMP2IF: CMP2 Interrupt Flag bit
	 1 = CMP2 interrupt occurred (must be cleared in software) 0 = No CMP2 interrupt occurred
bit 0	CMP1IF: CM1 Interrupt Flag bit
	1 = CMP1 interrupt occurred (must be cleared in software)0 = No CMP1 interrupt occurred

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TMR5GIE	LCDIE ⁽¹⁾	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE
bit 7							bit 0
Legend:							
R = Readable		W = Writable		U = Unimplem			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7		mer5 Gate Inter	rupt Enable bit	t			
	1 = Enabled 0 = Disabled						
bit 6	LCDIE: LCD I	Interrupt Enable	e bit ⁽¹⁾				
	1 = Enabled						
	0 = Disabled						
bit 5		ART Receive In	terrupt Enable	bit			
	1 = Enabled 0 = Disabled						
bit 4		RT Transmit Ir	terrupt Enable	e bit			
	1 = Enabled 0 = Disabled		·				
bit 3	CTMUIE: CTI	MU Interrupt Er	nable bit				
	1 = Enabled 0 = Disabled						
bit 2	CCP2IE: ECO	CP2 Interrupt E	nable bit				
	1 = Enabled 0 = Disabled						
bit 1	CCP1IE: ECCP1 Interrupt Enable bit						
	1 = Enabled 0 = Disabled						
bit 0	RTCCIE: RTC	CC Interrupt En	able bit				
	1 = Enabled 0 = Disabled						

REGISTER 10-12: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

Note 1: This bit is valid when the Type-B waveform with Non-Static mode is selected.

REGISTER 10-13: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP10IE ⁽¹⁾	CCP9IE ⁽¹⁾	CCP8IE	CCP7IE	CCP6IE	CCP5IE	CCP4IE	CCP3IE
bit 7				•		•	bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		
<u>-</u>							

bit 7-0

CCP10IE:CCP3IE: CCP<10:3> Interrupt Enable bits⁽¹⁾

1 = Enabled

0 = Disabled

Note 1: CCP10IE and CCP9IE are unimplemented in devices with a program memory of 32 Kbytes (PIC18FX5K90).

15.0 TIMER3/5/7 MODULES

The Timer3/5/7 timer/counter modules incorporate these features:

- Software-selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMRxH and TMRxL)
- Selectable clock source (internal or external) with device clock or SOSC oscillator internal options
- Interrupt-on-overflow
- · Module Reset on ECCP Special Event Trigger

Timer7 is unimplemented for devices with a program memory of 32 Kbytes (PIC18FX5K90).

Note: Throughout this section, generic references are used for register and bit names that are the same, except for an 'x' variable that indicates the item's association with the Timer3, Timer5 or Timer7 module. For example, the control register is named TxCON and refers to T3CON, T5CON and T7CON.

A simplified block diagram of the Timer3/5/7 module is shown in Figure 15-1.

The Timer3/5/7 module is controlled through the TxCON register (Register 15-1). It also selects the clock source options for the ECCP modules. (For more information, see **Section 19.1.1 "ECCP Module and Timer Resources"**.)

The Fosc clock source should not be used with the ECCP capture/compare features. If the timer will be used with the capture or compare features, always select one of the other timer clocking options.

REGISTER 17-11: HOUR: HOUR VALUE REGISTER⁽¹⁾

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 17-12: MINUTE: MINUTE VALUE REGISTER

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-4	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits Contains a value from 0 to 5.
bit 3-0	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits Contains a value from 0 to 9.

REGISTER 17-13: SECOND: SECOND VALUE REGISTER

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits Contains a value from 0 to 9.

© 2009-2011 Microchip Technology Inc.

The LCDSE5:LCDSE0 registers configure the functions of the port pins. Setting the segment enable bit for a particular segment configures that pin as an LCD driver. There are six LCD Segment Enable registers, as shown in Table 20-1. The prototype LCDSEx register is shown in Register 20-5.

TABLE 20-1:LCDSE REGISTERS AND
ASSOCIATED SEGMENTS

Register	Segments
LCDSE0	7:0 (RD<7:0>)
LCDSE1	15:8 (RA<5:4>, RC2, RC5, RB<4:1>)
LCDSE2	23:16 (RF<5:1>, RA1, RC<4:3>)
LCDSE3	31:24 (RE7, RB0, RB5, RC<7:6>, RG4, RF<7:6>)
LCDSE4	39:32 (RJ<4:7>, RJ<3:1>, RC1)
LCDSE5	47:40 (RH<0:3>, RH<7:4>)

Note:	The LCDSE5:LCDSE4 registers are not
	implemented in PIC18F6XK90 devices.

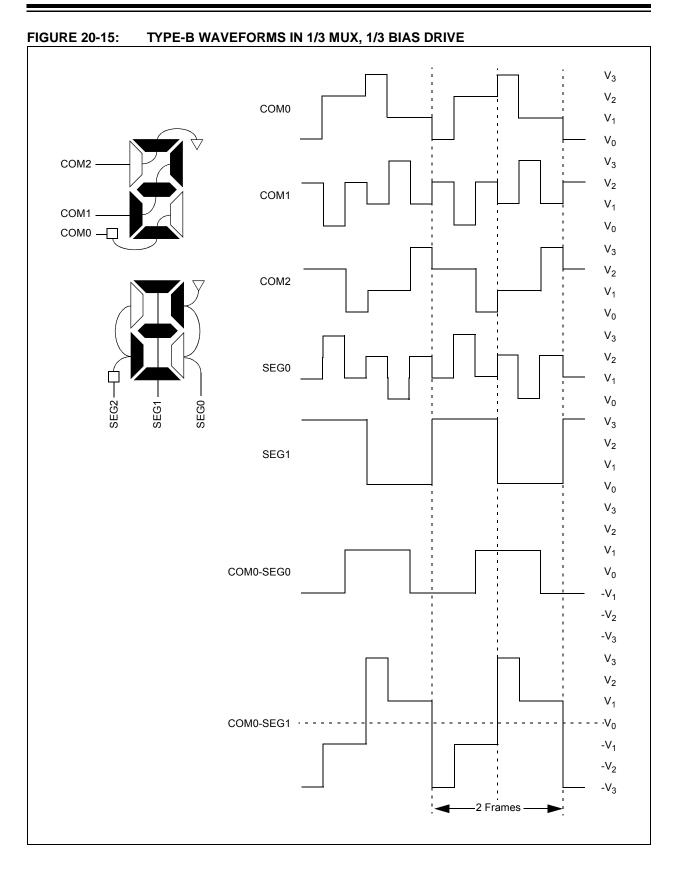
Once the module is initialized for the LCD panel, the individual bits of the LCDDATA23:LCDDATA0 registers are cleared or set to represent a clear or dark pixel, respectively.

Specific sets of LCDDATA registers are used with specific segments and common signals. Each bit represents a unique combination of a specific segment connected to a specific common.

Individual LCDDATA bits are named by the convention, "SxxCy", with "xx" as the segment number and "y" as the common number. The relationship is summarized in Table 20-2. The prototype LCDDATAx register is shown in Register 20-6.

Note:	In PIC18F6XK90 devices, writing into the
	registers, LCDDATA4, LCDDATA5,
	LCDDATA10, LCDDATA11, LCDDATA16,
	LCDDATA17, LCDDATA22 and
	LCDDATA23, will not affect the status of
	any pixel. These registers can be used as
	general purpose registers.

REGISTER 20-5: LCDSEx: LCD SEGMENTx ENABLE REGISTER


R/W-0	R/W-0						
SE(n + 7)	SE(n + 6)	SE(n + 5)	SE(n + 4)	SE(n + 3)	SE(n + 2)	SE(n + 1)	SE(n)
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

SE(n + 7):SE(n): Segment Enable bits
For LCDSE0: $n = 0$
For LCDSE1: n = 8
<u>For LCDSE2: n = 16</u>
For LCDSE3: n = 24
For LCDSE4: n = 32
<u>For LCDSE5: n = 40</u>

1 = Segment function of the pin is enabled, digital I/O is disabled

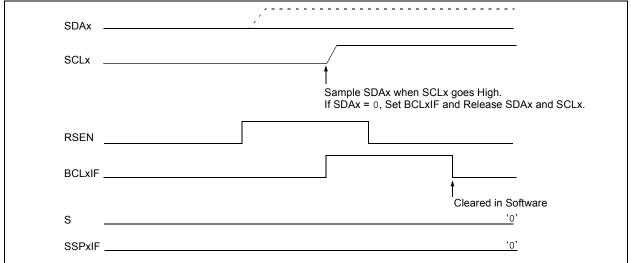
0 = I/O function of the pin is enabled

© 2009-2011 Microchip Technology Inc.

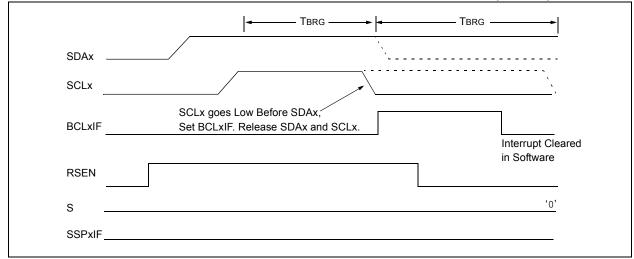
21.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDAx when SCLx goes from a low level to a high level.
- b) SCLx goes low before SDAx is asserted low, indicating that another master is attempting to transmit a data '1'.


When the user deasserts SDAx and the pin is allowed to float high, the BRG is loaded with SSPxADD<6:0> and counts down to 0. The SCLx pin is then deasserted and when sampled high, the SDAx pin is sampled.

If SDAx is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 21-31). If SDAx is sampled high, the BRG is reloaded and begins counting. If SDAx goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDAx at exactly the same time.


If SCLx goes from high-to-low before the BRG times out and SDAx has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (see Figure 21-32).

If, at the end of the BRG time-out, both SCLx and SDAx are still high, the SDAx pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCLx pin, the SCLx pin is driven low and the Repeated Start condition is complete.

FIGURE 21-31: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 21-32: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

22.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up due to activity on the RXx/DTx line while the EUSART is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCONx<1>). Once set, the typical receive sequence on RXx/DTx is disabled and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RXx/DTx line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN/J2602 protocol.)

Following a wake-up event, the module generates an RCxIF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 22-8) and asynchronously if the device is in Sleep mode (Figure 22-9). The interrupt condition is cleared by reading the RCREGx register.

The WUE bit is automatically cleared once a low-to-high transition is observed on the RXx line following the wake-up event. At this point, the EUSART module is in Idle mode and returns to normal operation. This signals to the user that the Sync Break event is over.

22.2.4.1 Special Considerations Using Auto-Wake-up

Since auto-wake-up functions by sensing rising edge transitions on RXx/DTx, information with any state changes before the Stop bit may signal a false End-of-Character (EOC) and cause data or framing errors. To work properly, therefore, the initial character in the transmission must be all '0's. This can be 00h (8 bits) for standard RS-232 devices or 000h (12 bits) for LIN/J2602 bus.

Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., HS or HSPLL mode). The Sync Break (or Wake-up Signal) character must be of sufficient length and be followed by a sufficient interval to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

26.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

26.7 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0	77
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	75
PIR2	OSCFIF	_	SSP2IF	BLC2IF	BCL1IF	HLVDIF	TMR3IF	TMR3GIF	77
PIE2	OSCFIE	—	SSP2IE	BLC2IE	BCL1IE	HLVDIE	TMR3IE	TMR3GIE	77
IPR2	OSCFIP	_	SSP2IP	BLC2IP	BCL1IP	HLVDIP	TMR3IP	TMR3GIP	77
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	78

TABLE 26-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

Note 1: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

27.1 CTMU Registers

The control registers for the CTMU are:

- CTMUCONH
- CTMUCONL
- CTMUICON

The CTMUCONH and CTMUCONL registers (Register 27-1 and Register 27-2) contain control bits for configuring the CTMU module edge source selection, edge source polarity selection, edge sequencing, A/D trigger, analog circuit capacitor discharge and enables. The CTMUICON register (Register 27-3) has bits for selecting the current source range and current source trim.

REGISTER 27-1: CTMUCONH: CTMU CONTROL HIGH REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	CTMUEN: CTMU Enable bit
	1 = Module is enabled0 = Module is disabled
bit 6	Unimplemented: Read as '0'
bit 5	CTMUSIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode0 = Continue module operation in Idle mode
bit 4	TGEN: Time Generation Enable bit
	1 = Enables edge delay generation0 = Disables edge delay generation
bit 3	EDGEN: Edge Enable bit
	1 = Edges are not blocked
	0 = Edges are blocked
bit 2	EDGSEQEN: Edge Sequence Enable bit
	 1 = Edge 1 event must occur before Edge 2 event can occur 0 = No edge sequence is needed
bit 1	IDISSEN: Analog Current Source Control bit
	1 = Analog current source output is grounded0 = Analog current source output is not grounded
bit 0	CTTRIG: Trigger Control bit 1 = Trigger output is enabled 0 = Trigger output is disabled

REGISTER 28-14: DEVID1: DEVICE ID REGISTER 1 FOR THE PIC18F87K90 FAMILY

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	DEV<2:0>: Device ID bits
	Devices with DEV<10:3> of 0101 0010 (see DEVID2):
	010 = PIC18F65K90
	000 = PIC18F66K90
	101 = PIC18F85K90
	011 = PIC18F86K90
	Devices with DEV<10:3> of 0101 0001:
	000 = PIC18F67K90
	010 = PIC18F87K90
bit 4-0	REV<4:0>: Revision ID bits
	These bits are used to indicate the device revision.

REGISTER 28-15: DEVID2: DEVICE ID REGISTER 2 FOR THE PIC18F87K90 FAMILY

R	R	R	R	R	R	R	R
DEV10 ⁽¹⁾	DEV9 ⁽¹⁾	DEV8 ⁽¹⁾	DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾	DEV3 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							

DEV<10:3>: Device ID bits(1) bit 7-0 These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number. 0101 0010 = PIC18F65K90, PIC18F66K90, PIC18F85K90 and PIC18F86K90 0101 0001 = PIC18F67K90 and PIC18F87K90

Note 1: These values for DEV<10:3> may be shared with other devices. The specific device is always identified by using the entire DEV<10:0> bit sequence.

RETURN Return from Subroutine										
Synta	ax:	RETURN	RETURN {s}							
Oper	ands:	$s \in [0,1]$								
Oper	ation:	$(TOS) \rightarrow PC;$ if s = 1, $(WS) \rightarrow W,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged								
Statu	s Affected:	None								
Enco	ding:	0000	0000	0001	001s					
Desc	ription:	Return from popped and is loaded in 's'= 1, the c registers W loaded into registers W 's' = 0, no u occurs.	the top to the Pr ontents S, STATU their cor , STATU	of the s ogram (of the sl USS and respond S and B	ttack (TOS) Counter. If hadow d BSRS are ding 3SR. If					
Word	ls:	1								
Cycle	es:	2								
QC	ycle Activity:									
	Q1	Q2	Q3	3	Q4					
	Decode	No operation	Proce Data		POP PC from stack					
	No operation	No operation	No operat		No operation					
<u>Exan</u>	nple:	RETURN								

After Instruction: PC = TOS

RLCF Rotate Left f through Carry								
Syntax:	RLCF f {	,d {,a}}						
Operands:	$0 \le f \le 255$ $d \in [0, 1]$ $a \in [0, 1]$							
Operation:	$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow C,$ $(C) \rightarrow dest < 0 >$							
Status Affected:	C, N, Z							
Encoding:	0011	01da	ffff	ffff				
Description:	The content one bit to the If 'd' is '0', th is '1', the res 'f'.	e left thro ne result i	ugh the C s placed i	arry flag. n W. If 'd'				
	lf 'a' is '0', th lf 'a' is '1', th GPR bank.							
	If 'a' is '0' ar set is enable in Indexed L mode whene Section 29. Bit-Orientee Literal Offs	ed, this in iteral Offe ever f ≤ 9 2.3 "Byte d Instruc	struction of set Addre 5 (5Fh). S s-Oriente tions in I	operates ssing See d and ndexed				
	C	- re	gister f					
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read register 'f'	Proce: Data		Vrite to stination				
Example:	RLCF	REG	, 0, 0					
Before Instruc	ction							
REG	= 1110 = 0	0110						
REG	= 0	0110						
REG C After Instructio REG	= 0 on = 1110	0110						
REG C After Instruction	= 0 on = 1110							
REG C After Instructio REG W	= 0 on = 1110 = 1100	0110						
REG C After Instructio REG W	= 0 on = 1110 = 1100	0110						

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K90 Family (Industrial/Extended) (Continued)

PIC18F87K90 Family		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Device		Typ Max Units Condition				าร		
	Supply Current (IDD) Cont	(2,3)							
	All devices		5.5	μA	-40°C				
		2.1	5.7	μA	+25°C	VDD = 1.8V ⁽⁴⁾			
		2.2	6.0	μA	+85°C	Regulator Disabled			
		10	20	μA	+125°C				
	All devices	3.7	7.5	μA	-40°C				
		3.9	7.8	μA	+25°C	VDD = 3.3V ⁽⁴⁾	Fosc = 31 kHz		
		3.9	8.5	μA	+85°C	Regulator Disabled	(RC_IDLE mode, LF-INTOSC)		
		12	24	μA	+125°C				
	All devices	70	180	μA	-40°C				
		80	190	μA	+25°C	VDD = 5V ⁽⁵⁾			
		80	200	μA	+85°C	Regulator Enabled			
		200	420	μA	+125°C				
	All devices	330	650	μA	-40°C				
		330	640	μA	+25°C	VDD = 1.8V ⁽⁴⁾			
		330	630	μA	+85°C	Regulator Disabled			
		500	850	μA	+125°C				
	All devices	520	850	μA	-40°C		Fosc = 1 MHz (RC_IDLE mode, HF-INTOSC)		
		520	900	μA	+25°C	VDD = 3.3V ⁽⁴⁾			
		520	850	μA	+85°C	Regulator Disabled			
		800	1200	μA	+125°C				
	All devices	590	940	μA	-40°C				
		600	960	μA	+25°C	VDD = 5V ⁽⁵⁾			
		620	990	μA	+85°C	Regulator Enabled			
		1000	1400	μA	+125°C				
	All devices	470	770	μA	-40°C				
		470	770	μA	+25°C	VDD = 1.8V ⁽⁴⁾			
		460	760	μA	+85°C	Regulator Disabled			
		700	1000	μA	+125°C				
	All devices	800	1400	μA	-40°C		Fosc = 4 MHz		
		800	1350	μA	+25°C	VDD = 3.3V ⁽⁴⁾	(RC_IDLE mode,		
		790	1300	μA	+85°C	Regulator Disabled	internal HF-INTOSC)		
		1100	1400	μA	+125°C				
	All devices	880	1600	μA	-40°C				
		890	1700	μA	+25°C	VDD = 5V ⁽⁵⁾			
		910	1800	μA	+85°C	Regulator Enabled			
		1200	2200	μA	+125°C				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).

5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).

- 6: LCD glass is not connected; resistor current is not included.
- **7:** 48 MHz maximum frequency at 125°C.

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K90 Family (Industrial/Extended) (Continued)

PIC18F87K90 Family		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Device	Typ Max Units				Conditions			
	Supply Current (IDD) Cont	(2,3)							
	All devices	3.3	5.6	mA	-40°C				
		3.3	5.5	mA	+25°C	VDD = 3.3V ⁽⁴⁾			
		3.3	5.5	mA	+85°C	Regulator Disabled			
		3.6	6.0	mA	+125°C		Fosc = 16 MHz, (PRI_RUN mode, 4 MHz		
	All devices	3.5	5.9	mA	-40°C		EC oscillator with PLL)		
		3.5	5.8	mA	+25°C	VDD = 5V ⁽⁵⁾			
		3.5	5.8	mA	+85°C	Regulator Enabled			
		3.8	7.0	mA	+125°C				
	All devices	12	18	mA	-40°C				
		12	18	mA	+25°C	VDD = 3.3V ⁽⁴⁾			
		12	18	mA	+85°C	Regulator Disabled			
		13	22	mA	+125°C ⁽⁷⁾		Fosc = 64 MHz, (PRI_RUN mode, 16 MHz		
	All devices	13	20	mA	-40°C		EC oscillator with PLL)		
		13	20	mA	+25°C	VDD = 5V ⁽⁵⁾			
		13	20	mA	+85°C	Regulator Enabled			
		14	24	mA	+125°C ⁽⁷⁾				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).
- 6: LCD glass is not connected; resistor current is not included.
- 7: 48 MHz maximum frequency at 125°C.