

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f65k90t-i-ptrsl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Special Microcontroller Features:

- Operating Voltage Range: 1.8V to 5.5V
- On-Chip 3.3V Regulator
- Operating Speed up to 64 MHz
- Up to 128 Kbytes On-Chip Flash Program Memory
- Data EEPROM of 1,024 Bytes
- 4K x 8 General Purpose Registers (SRAM)
- 10,000 Erase/Write Cycle Flash Program Memory, Minimum
- 1,000,000 Erase/write Cycle Data EEPROM Memory, Typical
- Flash Retention 40 Years, Minimum
- Three Internal Oscillators: LF-INTRC (31 kHz), MF-INTOSC (500 kHz) and HF-INTOSC (16 MHz)
- Self-Programmable under Software Control

- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
- Programmable period from 4 ms to 4,194s (about 70 minutes)
- In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
- · In-Circuit Debug via Two Pins
- Programmable:
 - BOR
 - LVD
- Two Enhanced Addressable USART modules:
 - LIN/J2602 support
 - Auto-Baud Detect (ABD)
- 12-Bit A/D Converter with up to 24 Channels:
 - Auto-acquisition and Sleep operation
 - Differential Input mode of operation

Din Nama	Pin Number	Pin	Buffer	Description
Fill Name	TQFP	Туре	Туре	Description
				PORTA is a bidirectional I/O port.
RA0/AN0/ULPWU RA0 AN0 ULPWU	30	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 0. Ultra low-power wake-up input.
RA1/AN1/SEG18 RA1 AN1 SEG18	29	I/O I O	TTL Analog Analog	Digital I/O. Analog Input 1. SEG18 output for LCD.
RA2/AN2/VREF- RA2 AN2 VREF-	28	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 2. A/D reference voltage (low) input.
RA3/AN3/VREF+ RA3 AN3 VREF+	27	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 3. A/D reference voltage (high) input.
RA4/T0CKI/SEG14 RA4 T0CKI SEG14	34	I/O I O	ST ST Analog	Digital I/O. Timer0 external clock input. SEG14 output for LCD.
RA5/AN4/SEG15/T1CKI/ T3G/HLVDIN RA5 AN4 SEG15 T1CKI T3G HLVDIN	33	I/O I O I I	TTL Analog Analog ST ST Analog	Digital I/O. Analog Input 4. SEG15 output for LCD. Timer1 clock input. Timer3 external clock gate input. High/Low-Voltage Detect (HLVD) input.
RA6				See the OSC2/CLKO/RA6 pin.
RA7				See the OSC1/CLKI/RA7 pin.
Legend: TTL = TTL cc ST = Schmit I = Input P = Power $I^2C^{TM} = I^2C/SN$	ompatible input tt Trigger input	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

TABLE 1-4.	PIC18F8XK90 PINOUT I/O DESCRIPTIONS (CONTINUED)	1
$I \land D \sqcup \sqcup I \neg T$.			1

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K90 and PIC18F85K90 devices.

4: The CCP6, CCP7, CCP8 and CCP9 pin placement depends on the ECCPMX Configuration bit setting.

Dia Mari	Pin Number	Pin	Buffer	
Pin Name	TQFP	Туре	Туре	Description
				PORTH is a bidirectional I/O port.
RH0/SEG47/AN23 RH0 SEG47 AN23	79	I/O O I	ST Analog Analog	Digital I/O. SEG47 output for LCD. Analog Input 23.
RH1/SEG46/AN22 RH1 SEG46 AN22	80	I/O O I	ST Analog Analog	Digital I/O. SEG46 output for LCD. Analog Input 22.
RH2/SEG45/AN21 RH2 SEG45 AN21	1	I/O O I	ST Analog Analog	Digital I/O. SEG45 output for LCD. Analog Input 21.
RH3/SEG44/AN20 RH3 SEG44 AN20	2	I/O O I	ST Analog Analog	Digital I/O. SEG44 output for LCD. Analog Input 20.
RH4/SEG40/CCP9/P3C/ AN12/C2INC RH4 SEG40 CCP9 ^(3,4) P3C AN12 C2INC	22	I/O O I/O O I	ST Analog ST — Analog Analog	Digital I/O. SEG40 output for LCD. Capture 9 input/Compare 9 output/PWM9 output. ECCP3 PWM Output C. Analog Input 12. Comparator 2 Input C.
RH5/SEG41/CCP8/P3B/ AN13/C2IND RH5 SEG41 CCP8 ⁽⁴⁾ P3B AN13 C2IND RH6/SEC42/CCP7/P1C/	21	I/O O I/O I I	ST Analog ST Analog Analog	Digital I/O. SEG41 output for LCD. Capture 8 input/Compare 8 output/PWM8 output. ECCP3 PWM Output B. Analog Input 13. Comparator 1 Input D.
AN14/C1INC RH6 SEG42 CCP7 ⁽⁴⁾ P1C AN14 C1INC	20	I/O O I/O I I	ST Analog ST — Analog Analog	Digital I/O. SEG42 output for LCD. Capture 7 input/Compare 7 output/PWM7 output. ECCP1 PWM Output C. Analog Input 14. Comparator 1 Input C.
Legend: TTL = TTL cc ST = Schmit I = Input P = Power $I^2C^{TM} = I^2C/SM$	ompatible input tt Trigger input IBus	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

TABLE 1-4: PIC18F8XK90 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K90 and PIC18F85K90 devices.

4: The CCP6, CCP7, CCP8 and CCP9 pin placement depends on the ECCPMX Configuration bit setting.

6.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit Program Counter that is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

The entire PIC18F87K90 family offers a range of on-chip Flash program memory sizes, from 32 Kbytes (up to 16,384 single-word instructions) to 128 Kbytes (65,536 single-word instructions).

- PIC18F65K90 and PIC18F85K90 32 Kbytes of Flash memory, storing up to 16,384 single-word instructions
- PIC18F66K90 and PIC18F86K90 64 Kbytes of Flash memory, storing up to 32,768 single-word instructions
- PIC18F67K90 and PIC18F87K90 128 Kbytes of Flash memory, storing up to 65,536 single-word instructions

The program memory maps for individual family members are shown in Figure 6-1.

6.1.1 HARD MEMORY VECTORS

All PIC18 devices have a total of three hard-coded return vectors in their program memory space. The Reset vector address is the default value to which the Program Counter returns on all device Resets; it is located at 0000h.

PIC18 devices also have two interrupt vector addresses for handling high-priority and low-priority interrupts. The high-priority interrupt vector is located at 0008h and the low-priority interrupt vector is at 0018h. The locations of these vectors are shown, in relation to the program memory map, in Figure 6-2.

FIGURE 6-2: HARD VECTOR FOR PIC18F87K90 FAMILY DEVICES

	Reset Vector	0000h						
	High-Priority Interrupt Vector	0008h						
	Low-Priority Interrupt Vector	0018h						
	On-Chip Program Memory							
	Read '0'	166666h						
Legenc	 (Top of Memory) represents upper boundary of on-chip program memory space (see Figure 6-1 for device-specific values). Shaded area represents unimplemented memory. Areas are not shown to scale. 							

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RC7/RX1/DT1/	RC7	0	0	DIG	LATC<7> data output.
SEG28		1	Ι	ST	PORTC<7> data input.
	RX1	1	Ι	ST	Asynchronous serial receive data input (EUSART module).
	DT1	1	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.
		1	Ι	ST	Synchronous serial data input (EUSART module); user must configure as an input.
	SEG28	1	0	ANA	LCD Segment 28 output; disables all other pin functions.

TABLE 11-5: PORTC FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, TTL = TTL Buffer Input, $I^2C = I^2C$ Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

TABLE 11-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	78
LATC	LATC7	LATBC6	LATC5	LATCB4	LATC3	LATC2	LATC1	LATC0	78
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	78
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE09	SE08	83
LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	83
LCDSE3	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24	83
LCDSE4	SE39 ⁽¹⁾	SE38 ⁽¹⁾	SE37 ⁽¹⁾	SE36 ⁽¹⁾	SE35 ⁽¹⁾	SE34 ⁽¹⁾	SE33 ⁽¹⁾	SE32	83
ODCON1	SSP10D	CCP2OD	CCP10D	_	_	_	_	SSP2OD	81

Legend: Shaded cells are not used by PORTC.

Note 1: This bit is unimplemented in PIC18F6XK90 devices, read as '0'.

Pin Name	Function	TRIS Setting	1/0	l/O Type	Description
RH6/SEG42/	RH6	0	0	DIG	LATH<6> data output.
CCP7/P1C/		1	I	ST	PORTH<6> data input.
AN 14/C TINC	SEG42	1	0	ANA	LCD Segment 42 output; disables all other pin functions.
	CCP7	0	0	DIG	CCP7 compare/PWM output; takes priority over port data.
	CCP7 capture input.				
	P1C	0	0	—	ECCP1 PWM Output C. May be configured for tri-state during Enhanced PWM.
AN14 1 I ANA					A/D Input Channel 14. Default input configuration on POR; does not affect digital input.
	C1INC	x	I	ANA	Comparator 1 Input C.
RH7/SEG43/	RH7	0	0	DIG	LATH<7> data output.
CCP6/P1B/		1	I	ST	PORTH<7> data input.
ANTS	SEG43	1	0	ANA	LCD Segment 43 output; disables all other pin functions.
	CCP6	0	0	DIG	CCP6 compare/PWM output; takes priority over port data.
		1	I	ST	CCP6 capture input.
	P1B	0	0	_	ECCP1 PWM Output B. May be configured for tri-state during Enhanced PWM.
	AN15	1	I	ANA	A/D Input Channel 15. Default input configuration on POR; does not affect digital input.

TABLE 11-16: PORTH FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

TABLE 11-17: SUMMARY OF REGISTERS ASSOCIATED WITH PORTH

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTH	RH7	RH6	RH5	RH4	RH3	RH2	RH1	RH0	78
LATH	LATH7	LATH6	LATH5	LATH4	LATH3	LATH2	LATH1	LATH0	78
TRISH	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0	78
LCDSE5	SE47	SE46	SE45	SE44	SE43	SE42	SE41	SE40	83
ANCON1	ANSEL15	ANSEL14	ANSEL13	ANSEL12	ANSEL11	ANSEL10	ANSEL9	ANSEL8	81
ANCON2	ANSEL23	ANSEL22	ANSEL21	ANSEL20	ANSEL19	ANSEL18	ANSEL17	ANSEL16	81
ODCON2	CCP100D ⁽¹⁾	CCP9OD ⁽¹⁾	CCP8OD	CCP7OD	CCP6OD	CCP5OD	CCP4OD	CCP3OD	81

Note 1: Unimplemented in devices with a program memory of 32 Kbytes (PIC18FX5K90).

NOTES:

REGISTER 15-3: OSCCON2: OSCILLATOR CONTROL REGISTER 2

U-0	R-0	U-0	U-0	R/W-0	U-0	R-x	R/W-0				
	SOSCRUN	_	—	SOSCGO		MFIOFS	MFIOSEL				
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7 Unimplemented: Read as '0'											
bit 6	t 6 SOSCRUN: SOSC Run Status bit										
	1 = System c	lock comes fro	m a secondary	SOSC							
	0 = System c	lock comes fro	m an oscillator	other than SO	SC						
bit 5-4	Unimplemen	ted: Read as '0)'								
bit 3	SOSCGO: Os	scillator Start Co	ontrol bit								
	1 = Oscillator	is running eve	n if no other so	ources are requ	lesting it						
	0 = Oscillator	is shut off if no	o other sources er than an exte	s are requesting ernal crystal_th	g it (When the is bit has no ef	SOSC is select fect)	ted to run from				
bit 2	Unimplemen	ted: Read as ')'								
bit 1	MFIOFS: MF-	INTOSC Frequ	iencv Stable bi	t							
	1 = MF-INTO	SC is stable		•							
	0 = MF-INTO	SC is not stabl	e								
bit 0	MFIOSEL: MI	F-INTOSC Sele	ect bit								
	1 = MF-INTO	SC is used in p	lace of HF-IN	TOSC frequence	ies of 500 kHz	, 250 kHz and	31.25 kHz				
	0 = MF-INTO	SC is not used		·							

15.5.5 TIMER3/5/7 GATE VALUE STATUS

When Timer3/5/7 gate value status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the TxGVAL bit (TxGCON<2>). The TxGVAL bit is valid even when the Timer3/5/7 gate is not enabled (TMRxGE bit is cleared).

15.5.6 TIMER3/5/7 GATE EVENT INTERRUPT

When the Timer3/5/7 gate event interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of TxGVAL occurs, the TMRxGIF flag bit in the PIRx register will be set. If the TMRxGIE bit in the PIEx register is set, then an interrupt will be recognized.

The TMRxGIF flag bit operates even when the Timer3/ 5/7 gate is not enabled (TMRxGE bit is cleared).

17.6 Register Maps

Table 17-5, Table 17-6 and Table 17-7 summarize the registers associated with the RTCC module.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets on Page:
RTCCFG	RTCEN	—	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	80
RTCCAL	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	80
PADCFG1	RDPU	REPU	RJPU ⁽¹⁾	_	-	RTSECSEL1	RTSECSEL0	_	80
ALRMCFG	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	80
ALRMRPT	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	80

TABLE 17-5:RTCC CONTROL REGISTERS

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 80-pin devices.

Note 1: Not available on 64-pin devices.

TABLE 17-6: RTCC VALUE REGISTERS

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets on Page:	
RTCVALH	RTCC Value High Register Window Based on RTCPTR<1:0>									
RTCVALL	RTCC Value	RTCC Value Low Register Window Based on RTCPTR<1:0>								

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 80-pin devices.

TABLE 17-7: ALARM VALUE REGISTERS

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets on Page:
ALRMVALH	Alarm Value High Register Window Based on ALRMPTR<1:0>								80
ALRMVALL	Alarm Value L	Alarm Value Low Register Window Based on ALRMPTR<1:0>							

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 80-pin devices.

21.3.6 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCKx. The master determines when the slave (Processor 1, Figure 21-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDOx output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDIx pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode.

The clock polarity is selected by appropriately programming the CKP bit (SSPxCON1<4>). This, then, would give waveforms for SPI communication as

shown in Figure 21-3, Figure 21-5 and Figure 21-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user-programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 21-3 shows the waveforms for Master mode. When the CKE bit is set, the SDOx data is valid before there is a clock edge on SCKx. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

21.4.10 I²C[™] MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address, is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDAx pin after the falling edge of SCLx is asserted (see data hold time specification Parameter 106). SCLx is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCLx is released high (see data setup time specification Parameter 107). When the SCLx pin is released high, it is held that way for TBRG. The data on the SDAx pin must remain stable for that duration and some hold time after the next falling edge of SCLx. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDAx. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared; if not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCLx low and SDAx unchanged (Figure 21-23).

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCLx until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will deassert the SDAx pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDAx pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPxCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPxIF flag is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCLx low and allowing SDAx to float.

21.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPxSTAT<0>) is set when the CPU writes to SSPxBUF and is cleared when all 8 bits are shifted out.

21.4.10.2 WCOL Status Flag

If the user writes the SSPxBUF when a transmit is already in progress (i.e., SSPxSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur) after 2 TCY after the SSPxBUF write. If SSPxBUF is rewritten within 2 TCY, the WCOL bit is set and SSPxBUF is updated. This may result in a corrupted transfer.

The user should verify that the WCOL bit is clear after each write to SSPxBUF to ensure the transfer is correct. In all cases, WCOL must be cleared in software.

21.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPxCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$ and is set when the slave does not Acknowledge $(\overline{ACK} = 1)$. A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

21.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN (SSPxCON2<3>).

Note: The MSSP module must be in an inactive state before the RCEN bit is set or the RCEN bit will be disregarded.

The Baud Rate Generator begins counting, and on each rollover, the state of the SCLx pin changes (high-to-low/low-to-high) and data is shifted into the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCLx low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable bit, ACKEN (SSPxCON2<4>).

21.4.11.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.

21.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.

21.4.11.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

The module is enabled by setting the HLVDEN bit (HLVDCON<4>). Each time the HLVD module is enabled, the circuitry requires some time to stabilize. The IRVST bit (HLVDCON<5>) is a read-only bit used to indicate when the circuit is stable. The module can only generate an interrupt after the circuit is stable and IRVST is set.

The VDIRMAG bit (HLVDCON<7>) determines the overall operation of the module. When VDIRMAG is cleared, the module monitors for drops in VDD below a predetermined set point. When the bit is set, the module monitors for rises in VDD above the set point.

26.1 Operation

When the HLVD module is enabled, a comparator uses an internally generated reference voltage as the set point. The set point is compared with the trip point, where each node in the resistor divider represents a trip point voltage. The "trip point" voltage is the voltage level at which the device detects a high or low-voltage event, depending on the configuration of the module.

When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array is equal to the internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal by setting the HLVDIF bit.

The trip point voltage is software programmable to any of 16 values. The trip point is selected by programming the HLVDL<3:0> bits (HLVDCON<3:0>).

The HLVD module has an additional feature that allows the user to supply the trip voltage to the module from an external source. This mode is enabled when bits, HLVDL<3:0>, are set to '1111'. In this state, the comparator input is multiplexed from the external input pin, HLVDIN. This gives users the flexibility of configuring the High/Low-Voltage Detect interrupt to occur at any voltage in the valid operating range.

FIGURE 26-1: HLVD MODULE BLOCK DIAGRAM (WITH EXTERNAL INPUT)

ADDWFC	ADD W and	ADD W and Carry bit to f						
Syntax:	ADDWFC	f {,d {,a}}						
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$							
Operation:	(W) + (f) +	$(C) \rightarrow dest$						
Status Affected:	N,OV, C, D	N,OV, C, DC, Z						
Encoding:	0010	00da f	fff ffff					
Description:	Add W, the location 'f'. placed in W placed in da	Add W, the Carry flag and data memory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.						
	If 'a' is '0', t If 'a' is '1', t GPR bank.	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.						
	If 'a' is '0' a set is enabl in Indexed mode wher Section 29 Bit-Oriente Literal Offs	nd the exter ed, this instr Literal Offse never $f \le 95$ (c) .2.3 "Byte-C ed Instructions the set Mode" for set Mode" for	ded instruction uction operates t Addressing (5Fh). See Driented and Dris in Indexed or details.					
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read register 'f'	Process Data	Write to destination					
Example:	ADDWFC	REG, 0,	1					
Before Instruc Carry bit REG W After Instructio Carry bit REG W	tion = 1 = 02h = 4Dh on = 0 = 02h = 50h							

ANDLW	AND Liter	al with W	1		
Syntax:	ANDLW	k			
Operands:	$0 \le k \le 255$	5			
Operation:	(W) .AND.	$k \rightarrow W$			
Status Affected:	N, Z				
Encoding:	0000	1011	kkk	k	kkkk
Description:	The conter 8-bit literal	nts of W a 'k'. The r	are AN esult i	Ded s pla	with the aced in W.
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	8		Q4
Decode	Read literal 'k'	Proce Data	ess a	V	/rite to W
Example:	ANDLW	05Fh			
Before Instruc W After Instructio	tion = A3h on				
W	= 03h				

BNO	v							
Synta	Syntax: BNOV n							
Oper	ands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$					
Oper	ation:	if Overflow (PC) + 2 + 2	if Overflow bit is '0', (PC) + 2 + 2n \rightarrow PC					
Statu	s Affected:	None	None					
Enco	ding:	1110	0101 nni	nn	nnnn			
Description:		If the Overfl program wil	If the Overflow bit is '0', then the program will branch.					
		The 2's con added to the incremented instruction, PC + 2 + 2r two-cycle in	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.					
Word	ls:	1	1					
Cycle	es:	1(2)	1(2)					
Q C If Ju	ycle Activity: mp:	00	00					
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n'	Process Data	N	/rite to PC			
	No	No	No		No			
IC NI.	operation	operation	operation	ор	eration			
IT INC	o Jump:	00	02		04			
	QT	Q2 Road literal	Q3 Brocoss		Q4			
	Decoue	'n'	Data	ор	eration			
<u>Exan</u>	nple:	HERE	BNOV Jump	P				
	Before Instruc	tion						
	PC After Instruction	= ad	dress (HERE)				
	Aiter Instructio	on w = ∩:						
	PC	= ade	dress (Jump)				
	If Overflo PC	w = 1; = ade	dress (HERE	+ 2)			

BNZ		Branch if N	lot Zero					
Synta	ax:	BNZ n						
Oper	ands:	-128 ≤ n ≤ ′	$-128 \le n \le 127$					
Oper	ation:	if Zero bit is (PC) + 2 + 2	if Zero bit is '0', (PC) + 2 + 2n \rightarrow PC					
Statu	is Affected:	None	None					
Enco	oding:	1110	0001 nn	nn nnnn				
Desc	cription:	If the Zero I will branch.	If the Zero bit is '0', then the program will branch.					
		The 2's con added to the incremente instruction, PC + 2 + 2r two-cycle ir	added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.					
Word	ls:	1	1					
Cycle	es:	1(2)						
Q C If Ju	ycle Activity: Imp:							
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	Write to PC				
	No	No	No	No				
	operation	operation	operation	operation				
lf No	o Jump:							
	Q1	Q2	Q3	Q4				
	Decode	Read literal	Process	No				
		'n'	Data	operation				
<u>Exan</u>	nple: Refere Instruc	HERE	BNZ Jump)				
	Derore instruc							

PC	=	address (HERE)
After Instruction		
If Zero	=	0;
PC	=	address (Jump)
If Zero	=	1;
PC	=	address (HERE + 2)

BZ Branch if Zero								
Synta	ax:	BZ n	BZ n					
Oper	ands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$					
Oper	ation:	if Zero bit is (PC) + 2 + 2	if Zero bit is '1', (PC) + 2 + 2n \rightarrow PC					
Statu	s Affected:	None						
Enco	ding:	1110	0000 nn	nn nnnn				
Desc	ription:	If the Zero b will branch.	oit is '1', then t	he program				
		The 2's con added to the incremented instruction, PC + 2 + 2r two-cycle in	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.					
Word	ls:	1	1					
Cycle	es:	1(2)	1(2)					
Q C If Ju	ycle Activity: mp:							
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	Write to PC				
	No	No	No	No				
	operation	operation	operation	operation				
If No	o Jump:		~~	.				
	Q1	Q2	Q3	Q4				
	Decode	read literal	Process Data	NO				
			Dula	oporation				
Exan	<u>nple:</u>	HERE	BZ Jump					
	Before Instruc PC After Instructio	tion = ado on	dress (here)				
	If Zero PC	= 1; = ade	dress (Jump))				
	If Zero	= 0;	droop (UTTTT					
	PU	- ao	UICSS (HERE	+ Z)				

	Subroutin	e Call						
Syntax:	CALL k {,	CALL k {,s}						
Operands:	$0 \le k \le 104$ $s \in [0, 1]$	8575						
Operation:	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Status Affected:	None							
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111	110s k ₁₉ kkk	k ₇ k} kkk	ck kkki k kkki	ko ka			
(PC+ 4) is pushed onto the return address (PC+ 4) is pushed onto the return star If 's' = 1, the W, STATUS and BSR registers are also pushed into their respective shadow registers, WS, STATUSS and BSRS. If 's' = 0, no update occurs. Then, the 20-bit value is loaded into PC<20:1>. CALL is a					ıck e 'ł			
Words:	2							
Cycles:	2							
Q Cvcle Activity:								
Q1	Q2	Q3	i	Q4				
	Read literal	Push P	C to	Des el l'Ass				
Decode	'k'<7:0>,	stac	k	'k'<19:8> Write to F	al , PC			
No	ʻk'<7:0>, No	stac No	k	kead liter 'k'<19:8> Write to F No	al , PC			
Decode No operation	'k'<7:0>, No operation	stac No operat	k ion	kead liter 'k'<19:8> Write to F No operatio	ral •, •C			
No operation	'k'<7:0>, No operation HERE	Stac No operat	k ion THER	Kead liter 'k'<19:8> Write to F No operatio	ral , PC			
Decode No operation Example: Before Instruc PC	'k'<7:0>, No operation HERE tion = address	Stac No operat CALL	k ion THER)	Vite to F No operatio	ral , PC			

BSRS = BSR STATUSS = STATUS

30.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

30.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

30.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

30.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

30.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K90 Family (Industrial/Extended) (Continued)

PIC18F87K90 Family		$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$						
Param No.	Device	Тур	Max	Units		Conditions		
	Supply Current (IDD) Cont	(2,3)						
	All devices	42	73	μA	-40°C			
		42	73	μA	+25°C	V _{DD} = 1.8V ⁽⁴⁾ Regulator Disabled	VDD = 1.8V ⁽⁴⁾	
		43	74	μA	+85°C			
		53	100	μA	+125°C			
	All devices	110	190	μA	-40°C			
		110	195	μA	+25°C	$V_{DD} = 3.3V^{(4)}$ Regulator Disablec $V_{DD} = 5V^{(5)}$ Regulator Enabled	FOSC = 1 MHZ	
		110	195	μA	+85°C		(PRI_IDLE mode, EC oscillator)	
		130	250	μA	+125°C			
	All devices	280	450	μA	-40°C			
		290	440	μA	+25°C		VDD = 5V ⁽⁵⁾	
		300	460	μA	+85°C			
		330	500	μA	+125°C			
	All devices	160	360	μA	-40°C			
		160	360	μA	+25°C	VDD = 1.8V ⁽⁴⁾ Regulator Disable		
		170	370	μA	+85°C			
		200	400	μA	+125°C			
	All devices	330	650	μA	-40°C			
		340	660	μA	+25°C	VDD = 3.3V ⁽⁴⁾	FOSC = 4 MHZ	
		340	660	μA	+85°C	Regulator Disabled	EC oscillator)	
		370	700	μA	+125°C			
	All devices	510	900	μA	-40°C			
		520	950	μA	+25°C	VDD = 5V ⁽⁵⁾		
		540	990	μA	+85°C	Regulator Enabled		
		600	1200	μA	+125°C			
	All devices	4.7	9	mA	-40°C			
		4.8	9	mA	+25°C	VDD = 3.3V ⁽⁴⁾		
		4.8	10	mA	+85°C	Regulator Disabled		
		5.2	12	mA	+125°C ⁽⁷⁾		FOSC = 64 MHZ	
	All devices	5.1	11	mA	-40°C		EC oscillator)	
		5.1	11	mA	+25°C	VDD = 5V ⁽⁵⁾	(i)	
		5.2	12	mA	+85°C	Regulator Enabled		
		5.7	14	mA	+125°C ⁽⁷⁾			

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- 3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).
- 6: LCD glass is not connected; resistor current is not included.
- 7: 48 MHz maximum frequency at 125°C.

Core Features	
Easy Migration	9
Extended Instruction Set	9
Memory Options	9
nanoWatt Technology	9
Oscillator Options and Features	9
CPFSEQ	
CPFSGT	
CPFSLT	
Crystal Oscillator/Ceramic Resonators (HS)	
Customer Change Notification Service	566
Customer Notification Service	566
Customer Support	

D

Data Addressing Modes	104
Comparing Addressing Modes (Bit-Oriented,	
Byte Oriented) with the Extended	
Instruction Set Enabled	108
Direct	104
Indexed Literal Offset	
BSR	109
Mapping Access Bank	109
Indirect	104
Inherent and Literal	104
Data EEPROM Memory	
Associated Registers	125
EEADR and EEADRH Registers	121
EECON1 and EECON2 Registers	121
Operation During Code-Protect	124
Overview	121
Protection, Spurious Writes	
Reading	123
	124
VVriting To	
Data Memory	
Access Ballk	
Extended Instruction Set	107
Ceneral Purpose Registers	107 04
Memory Mans	
	03
Special Function Registers	
Special Function Registers	
Data Memory Modes	
Indexed Literal Offset	107
Affected Instructions	107
DAW.	
DC Characteristics	
CTMU Current Source	520
PIC18F87K90 Family, Industrial	519
Power-Down and Supply Current	508
Supply Voltage	507
DCFSNZ	471
DECF	470
DECFSZ	471
Default System Clock	
Details on Individual Family Members	10
Development Support	501
Device Overview	9
Features (64-Pin Devices)	11
Features (80-Pin Devices)	11
Direct Addressing	105

Е

Effect on Standard DIC19 Instructions	100
Effects of Power-Managed Modes on Various	490
Clock Sources	52
Electrical Characteristics	505
Enhanced Capture/Compare/PWM (ECCP)	251
Capture Mode. See Capture.	
Compare Mode. See Compare.	
ECCP Mode and Timer Resources	254
Enhanced PWM Mode	257
Auto-Restart	266
Auto-Shutdown	264
Direction Change in Full-Bridge	262
Output Mode	203
Full-Bridge Mode	201
Half-Bridge Application	201
Half-Bridge Application Examples	267
Half-Bridge Mode	260
Output Relationships (Active-High and	200
Active-Low)	258
Output Relationships Diagram	259
Programmable Dead-Band Delay	267
Shoot-Through Current	267
Start-up Considerations	264
Outputs and Configuration	254
Enhanced Capture/Compare/PWM (ECCP1/2/3)	
Associated Registers	272
Enhanced Universal Synchronous Asynchronous Received	er
Transmitter (EUSART). See EUSART.	
Equations	
16 x 16 Signed Multiplication Algorithm	128
16 x 16 Unsigned Multiplication Algorithm	128
A/D Acquisition Time	384
A/D Minimum Charging Time	384
Calculating the Minimum Required	
Acquisition Time	384
	232
Asynchronous Mode	350
12-Bit Break Transmit and Receive	000
Sequence	366
Associated Registers Receive	363
Associated Registers, Transmit.	361
Auto-Wake-up on Sync Break	364
Receiver	362
Setting Up 9-Bit Mode with Address Detect	362
Transmitter	359
Baud Rate Generator	
Operation in Power-Managed Modes	353
Baud Rate Generator (BRG)	353
Associated Registers	354
Auto-Baud Rate Detect	357
Baud Rate Error, Calculating	354
Baud Rates, Asynchronous Modes	355
High Baud Rate Select (BRGH Bit)	353
Sampling	353
Synchronous Master Mode	367
Associated Registers, Receive	3/0
Associated Registers, Transmit	300
Transmission	367
1101151111551011	307

Multiple cleep communication
Pun Modes 54
RC_RUN
SEC_RUN
Selecting
Sleep Mode
OSC1, OSC2 Pin States
Summary (table)53
Power-on Reset (POR)71
Power-up Delays52
Power-up Timer (PWRT)52, 72
Time-out Sequence72
Prescaler, Timer0
Prescaler, Timer2
PRI IDLE Mode
PRI RUN Mode
Program Counter (PC)
PCL. PCH and PCU Registers
PCI ATH and PCI ATU Registers 87
Program Memory
Extended Instruction Set 106
Hard Memory Vectors
Instructions 01
Two Word 01
Interrupt Vector
Look-up Tables
Memory Maps
Hard Vectors and Configuration Words
Reset Vector
Program Verification
Programming, Device Instructions
Pulse Steering
D = 1 = 2 M = 1 + 1 = 1 + 1 = 1 + 1 = 1 = 0 = 2 D = D = D = M = 1 + 1 = 0 = 1 = 1 = 1 = 1
Pulse-width Modulation. See PWW (CCP Module).
Pulse-Width Modulation. See PWM (CCP Module). PUSH
PUISe-Width Modulation. See PWM (CCP Module). PUSH
Pulse-Width Modulation. See PWM (CCP Module). PUSH
PUIse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 496 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Period 248
PUIse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 496 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 496 Associated Registers with PWM and Timers 249 Duty Cycle. 248 Example Frequencies/Resolutions, 40 MHz 248 Period 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 243 TMRx to PRx Match 213
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 138
Pulse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRX to PRx Match 213 PWM (ECCP Module) Effects of a Reset Effects of a Reset 271
Pulse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRX to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271
Pulse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRX to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271
PUIse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Pulse Steering 268
Pulse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Pulse Steering 268 Steering Synchronization 270
Pulse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Pulse Steering 268 Steering Synchronization 270 PWM Mode See Enhanced Canture/Compare/PWM
PUIse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Pulse Steering 268 Steering Synchronization 270 PWM Mode. See Enhanced Capture/Compare/PWM. 270
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Pulse Steering 268 Steering Synchronization 270 PWM Mode. See Enhanced Capture/Compare/PWM. Q
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 PWM (ECCP Module) 248 Effects of a Reset 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Pulse Steering 268 Steering Synchronization 270 PWM Mode. See Enhanced Capture/Compare/PWM. 248
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Operation with Fail-Safe Clock Monitor 270 PWM Mode. See Enhanced Capture/Compare/PWM. 248 Q Clock 248
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Operation with Fail-Safe Clock Monitor 270 PWM Mode. See Enhanced Capture/Compare/PWM. 248 Q Clock 248 R 248
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Operation with Fail-Safe Clock Monitor 270 PWM Mode. See Enhanced Capture/Compare/PWM. Q Q Clock 248 R RAM. See Data Memory. 248
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Operation with Fail-Safe Clock Monitor 270 PWM Mode. See Enhanced Capture/Compare/PWM. 248 Q Clock 248 R RAM. See Data Memory. 248 RC Oscillator 47
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Pulse Steering 268 Steering Synchronization 270 PWM Mode. See Enhanced Capture/Compare/PWM. 248 R RAM. See Data Memory. RC Oscillator 47 RC_IDLE Mode 60
Pulse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle. 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 270 PWM Mode. See Enhanced Capture/Compare/PWM. Q Q Clock 248 R RAM. See Data Memory. 248 RC Oscillator 47 47 RC_IDLE Mode 60 60 RC RUN Mode 55
Pulse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) Effects of a Reset Effects of a Reset 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 270 PWM Mode. See Enhanced Capture/Compare/PWM. Q Q Clock 248 R RAM. See Data Memory. 47 RC_IDLE Mode 60 60 RC_RUN Mode 55 55 RCALL 481
Pulse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 213 Effects of a Reset 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 270 PWM Mode. See Enhanced Capture/Compare/PWM. Q Q Clock 248 R RAM. See Data Memory. 248 RC Oscillator 47 47 RC_IDLE Mode 60 60 RC_RUN Mode 55 55 RCALL 481 RCON Register

Reader Response	567 217
Alarm	232
Configuring	232
Interrupt	233
Mask Settings	233
Alarm Value Registers (ALRMVAL)	226
Clock Source	230
Control Registers	210
Digit Carry Rules	230
Operation	220
Calibration	232
General Functionality	231
l ean Year	231
Register Manning	231
Register Reads/Writes Safety Window	231
Write Lock	231
Register Interface	229
Register Maps	235
Alarm Value	235
RTCC Control	235
RTCC Value	235
Registers	218
Reset	234
Device	
Power-on Reset (POR).	
RTCEN Bit. Write	
Sleep Mode	234
Value Registers (RTCVAL)	222
Reference Clock Output	51
Register File	94
Register File Summary	7–102
Registers	
ADCON0 (A/D Control 0)	374
ADCON1 (A/D Control 1)	375
ADCON2 (A/D Control 2)	376
ADRESH (A/D Result High Byte Left Justified,	
ADFM = 0)	378
ADRESH (A/D Result High Byte Right Justified,	
ADFM = 1)	379
ADRESL (A/D Result Low Byte Left Justified,	
ADFM = 0)	378
ADRESL (A/D Result Low Byte Right Justified,	
ADFM = 1)	379
ALRMCFG (Alarm Configuration)	221
ALRMDAY (Alarm Day Value)	226
ALRMHR (Alarm Hours Value)	227
ALRMMIN (Alarm Minutes Value)	228
ALRMMNTH (Alarm Month Value)	226
ALRMRPT (Alarm Repeat)	222
ALRMSEC (Alarm Seconds Value)	228
ALRMWD (Alarm Weekday Value)	227
ANCON0 (A/D Port Configuration 0)	380
ANCON1 (A/D Port Configuration 1)	380
ANCON2 (A/D Port Configuration 2)	381
BAUDCONx (Baud Rate Control)	352
CCPRxH (CCPx Period High Byte)	240
CCPRxL (CCPx Period Low Byte)	240
CCPTMRS0 (CCP Timer Select 0)	253
CCPTMRS1 (CCPx Timer Select 1)	238
CCPTMRS2 (CCPx Timer Select 2)	239
CCPxCON (CCPx Control, CCP4-CCP10)	237
CCPxCON (Enhanced Capture/Compare/	
PWM x Control)	252