

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f66k90-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Special Microcontroller Features:

- Operating Voltage Range: 1.8V to 5.5V
- On-Chip 3.3V Regulator
- Operating Speed up to 64 MHz
- Up to 128 Kbytes On-Chip Flash Program Memory
- Data EEPROM of 1,024 Bytes
- 4K x 8 General Purpose Registers (SRAM)
- 10,000 Erase/Write Cycle Flash Program Memory, Minimum
- 1,000,000 Erase/write Cycle Data EEPROM Memory, Typical
- Flash Retention 40 Years, Minimum
- Three Internal Oscillators: LF-INTRC (31 kHz), MF-INTOSC (500 kHz) and HF-INTOSC (16 MHz)
- Self-Programmable under Software Control

- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
- Programmable period from 4 ms to 4,194s (about 70 minutes)
- In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
- · In-Circuit Debug via Two Pins
- Programmable:
 - BOR
 - LVD
- Two Enhanced Addressable USART modules:
 - LIN/J2602 support
 - Auto-Baud Detect (ABD)
- 12-Bit A/D Converter with up to 24 Channels:
 - Auto-acquisition and Sleep operation
 - Differential Input mode of operation

TABLE 3-2:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Typical Capacitor Values Used:						
Mode	Freq.	OSC1	OSC2			
HS	8.0 MHz 16.0 MHz	27 pF 22 pF	27 pF 22 pF			
16.0 MHZ 22 pF 22 pF						

Capacitor values are for design guidance only.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application. Refer to the following application notes for oscillator-specific information:

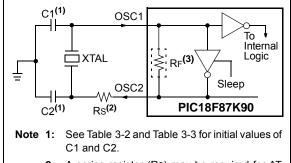
- AN588, "PIC[®] Microcontroller Oscillator Design Guide"
- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices"
- AN849, "Basic PIC® Oscillator Design"
- AN943, "Practical PIC[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

See the notes following Table 3-3 for additional information.

TABLE 3-3: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Osc Type	Crystal Freq.	Typical Capacitor Values Tested:			
	Fieq.	C1	C2		
HS	4 MHz	27 pF	27 pF		
	8 MHz	22 pF	22 pF		
	20 MHz	15 pF	15 pF		

Capacitor values are for design guidance only.


Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

Refer to the Microchip application notes cited in Table 3-2 for oscillator-specific information. Also see the notes following this table for additional information.

- Note 1: Higher capacitance increases the stability of the oscillator but also increases the start-up time.
 - 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - **3:** Rs may be required to avoid overdriving crystals with low drive level specification.
 - **4:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.

FIGURE 3-2:

CRYSTAL/CERAMIC RESONATOR OPERATION (HS OR HSPLL CONFIGURATION)

- **2:** A series resistor (Rs) may be required for AT strip cut crystals.
- 3: RF varies with the oscillator mode chosen.

3.5 RC Oscillator

For timing-insensitive applications, the RC and RCIO Oscillator modes offer additional cost savings. The actual oscillator frequency is a function of several factors:

- · Supply voltage
- Values of the external resistor (REXT) and capacitor (CEXT)
- Operating temperature Given the same device, operating voltage and temperature and component values, there will also be unit-to-unit frequency variations. These are due to factors, such as:
 - Normal manufacturing variation
 - Difference in lead frame capacitance between package types (especially for low CEXT values)
 - Variations within the tolerance of limits of REXT and CEXT

3.6.2 INTPLL MODES

The 4x Phase Locked Loop (PLL) can be used with the HF-INTOSC to produce faster device clock speeds than are normally possible with the internal oscillator sources. When enabled, the PLL produces a clock speed of 32 MHz or 64 MHz.

PLL operation is controlled through software. The control bit, PLLEN (OSCTUNE<6>) is used to enable or disable its operation. Additionally, the PLL will only function when the selected HF-INTOSC frequency is either 8 MHz or 16 MHz (OSCCON<6:4> = 111 or 110).

Like the INTIO modes, there are two distinct INTPLL modes available:

- In INTPLL1 mode, the OSC2 pin outputs Fosc/4, while OSC1 functions as RA7 for digital input and output. Externally, this is identical in appearance to INTIO1 (Figure 3-8).
- In INTPLL2 mode, OSC1 functions as RA7 and OSC2 functions as RA6, both for digital input and output. Externally, this is identical to INTIO2 (Figure 3-9).

3.6.3 INTERNAL OSCILLATOR OUTPUT FREQUENCY AND TUNING

The internal oscillator block is calibrated at the factory to produce an INTOSC output frequency of 16 MHz. It can be adjusted in the user's application by writing to TUN<5:0> (OSCTUNE<5:0>) in the OSCTUNE register (Register 3-3).

When the OSCTUNE register is modified, the INTOSC (HF-INTOSC and MF-INTOSC) frequency will begin shifting to the new frequency. The oscillator will require some time to stabilize. Code execution continues during this shift and there is no indication that the shift has occurred.

The LF-INTOSC oscillator operates independently of the HF-INTOSC or the MF-INTOSC source. Any changes in the HF-INTOSC or the MF-INTOSC source, across voltage and temperature, are not necessarily reflected by changes in LF-INTOSC or vice versa. The frequency of LF-INTOSC is not affected by OSCTUNE.

3.6.4 INTOSC FREQUENCY DRIFT

The INTOSC frequency may drift as VDD or temperature changes and can affect the controller operation in a variety of ways. It is possible to adjust the INTOSC frequency by modifying the value in the OSCTUNE register. Depending on the device, this may have no effect on the LF-INTOSC clock source frequency. Tuning INTOSC requires knowing when to make the adjustment, in which direction it should be made, and in some cases, how large a change is needed. Three compensation techniques are shown here.

3.6.4.1 Compensating with the EUSART

An adjustment may be required when the EUSART begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high. To adjust for this, decrement the value in OSCTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low. To compensate, increment OSCTUNE to increase the clock frequency.

3.6.4.2 Compensating with the Timers

This technique compares device clock speed to some reference clock. Two timers may be used; one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the SOSC oscillator.

Both timers are cleared, but the timer clocked by the reference source generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is much greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register.

3.6.4.3 Compensating with the CCP Module in Capture Mode

A CCP module can use free-running Timer1 (or Timer3), clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded for use later. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated.

If the measured time is much greater than the calculated time, the internal oscillator block is running too fast. To compensate, decrement the OSCTUNE register. If the measured time is much less than the calculated time, the internal oscillator block is running too slow. To compensate, increment the OSCTUNE register.

TABLE 6-2: PIC18F87K90 FAMILY REGISTER FILE SUMMARY (CONTINUED)

Address	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR
F81h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX
F82h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX
F83h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX
F84h	PORTE	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	XXXX XXXX
F85h	PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	—	xxxx xxx-
F86h	PORTG	—	—	RG5 ⁽¹⁾	RG4	RG3	RG2	RG1	RG0	xx xxxx
F87h	PORTH ⁽²⁾	RH7	RH6	RH5	RH4	RH3	RH2	RH1	RH0	XXXX XXXX
F88h	PORTJ ⁽²⁾	RJ7	RJ6	RJ5	RJ4	RJ3	RJ2	RJ1	RJ0	XXXX XXXX
F89h	LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX XXXX
F8Ah	LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX XXXX
F8Bh	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	XXXX XXXX
F8Ch	LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	XXXX XXXX
F8Dh	LATE	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	XXXX XXXX
F8Eh	LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	—	xxxx xxx-
F8Fh	LATG	—	—	—	LATG4	LATG3	LATG2	LATG1	LATG0	x xxxx
F90h	LATH ⁽²⁾	LATH7	LATH6	LATH5	LATH4	LATH3	LATH2	LATH1	LATH0	XXXX XXXX
F91h	LATJ ⁽²⁾	LATJ7	LATJ6	LATJ5	LATJ4	LATJ3	LATJ2	LATJ1	LATJ0	XXXX XXXX
F92h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111
F93h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111
F94h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111
F95h	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111
F96h	TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	1111 1111
F97h	TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	—	1111 111-
F98h	TRISG	—	—	—	TRISG4	TRISG3	TRISG2	TRISG1	TRISG0	1 1111
F99h	TRISH ⁽²⁾	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0	1111 1111
F9Ah	TRISJ ⁽²⁾	TRISJ7	TRISJ6	TRISJ5	TRISJ4	TRISJ3	TRISJ2	TRISJ1	TRISJ0	1111 1111
F9Bh	OSCTUNE	INTSRC	PLLEN	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000 0000
F9Ch	PSTR1CON	CMPL1	CMPL0	—	STRSYNC	STRD	STRC	STRB	STRA	00-0 0001
F9Dh	PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	TMR1GIE	TMR2IE	TMR1IE	-000 0000
F9Eh	PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	TMR1GIF	TMR2IF	TMR1IF	-000 0000
F9Fh	IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	TMR1GIP	TMR2IP	TMR1IP	-111 1111
FA0h	PIE2	OSCFIE	_	SSP2IE	BCL2IE	BCL1IE	HLVDIE	TMR3IE	TMR3GIE	0-10 0000
FA1h	PIR2	OSCFIF	_	SSP2IF	BCL2IF	BCL1IF	HLVDIF	TMR3IF	TMR3GIF	0-10 0000
FA2h	IPR2	OSCFIP	_	SSP2IP	BCL2IP	BCL1IP	HLVDIP	TMR3IP	TMR3GIP	1-00 1110
FA3h	PIE3	TMR5GIE	LCDIE	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE	0000 0000
FA4h	PIR3	TMR5GIF	LCDIF	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	RTCCIF	0000 0000
FA5h	IPR3	TMR5GIP	LCDIP	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP	1111 1111
FA6h	PIR6	—	—	—	EEIF	_	CMP3IF	CMP2IF	CMP1IF	0 -000
FA7h	—	—	—	—	—	_	—	—	—	
FA8h	HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000 0000
FA9h	IPR6	_	_	_	EEIP	_	CMP3IP	CMP2IP	CMP1IP	1 -111
FAAh	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ T1DONE	T1GVAL	T1GSS1	T1GSS0	0000 0x00
FABh	RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x
FACh	TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010
FADh	TXREG1	USART1 Tran	nsmit Registe	r						XXXX XXXX
FAEh	RCREG1	USART1 Rec	eive Register							0000 0000
FAFh	SPBRG1	USART1 Bau	d Rate Gene	rator						0000 0000

Note 1: This bit is available when Master Clear is disabled (MCLRE = 0). When MCLRE is set, the bit is unimplemented.

2: Unimplemented in 64-pin devices (PIC18F6XK90).

3: Unimplemented in devices with a program memory of 32 Kbytes (PIC18FX5K90).

6.4 Data Addressing Modes

Note:	The execution of some instructions in the core PIC18 instruction set are changed
	when the PIC18 extended instruction set is
	enabled. For more information, see
	Section 6.6 "Data Memory and the
	Extended Instruction Set".

While the program memory can be addressed in only one way, through the Program Counter, information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). For details on this mode's operation, see **Section 6.6.1 "Indexed Addressing with Literal Offset**".

6.4.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all. They either perform an operation that globally affects the device or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples of this mode include SLEEP, RESET and DAW.

Other instructions work in a similar way, but require an additional explicit argument in the opcode. This method is known as the Literal Addressing mode because the instructions require some literal value as an argument. Examples of this include ADDLW and MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

6.4.2 DIRECT ADDRESSING

Direct Addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

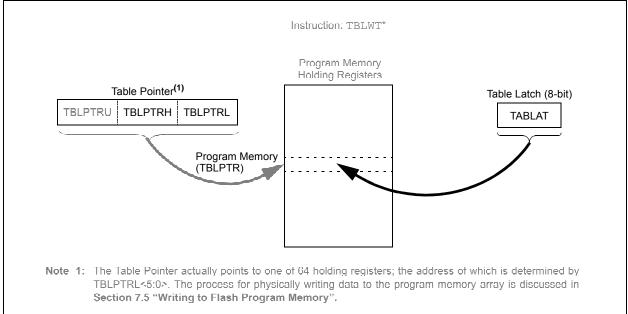
In the core PIC18 instruction set, bit-oriented and byte-oriented instructions use some version of Direct Addressing by default. All of these instructions include some 8-bit literal address as their Least Significant Byte. This address specifies the instruction's data source as either a register address in one of the banks of data RAM (see Section 6.3.3 "General Purpose Register File") or a location in the Access Bank (see Section 6.3.2 "Access Bank").

The Access RAM bit 'a' determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 6.3.1 "Bank Select Register") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit, 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction, either the target register is being operated on or the W register.

6.4.3 INDIRECT ADDRESSING


Indirect Addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations to be read or written to. Since the FSRs are themselves located in RAM as Special Function Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures such as tables and arrays in data memory.

The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code using loops, such as the example of clearing an entire RAM bank in Example 6-5. It also enables users to perform Indexed Addressing and other Stack Pointer operations for program memory in data memory.

EXAMPLE 6-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

	LFSR	FSR0, 100h	;	
NEXT	CLRF	POSTINC0	;	Clear INDF
			;	register then
			;	inc pointer
	BTFSS	FSROH, 1	;	All done with
			;	Bank1?
	BRA	NEXT	;	NO, clear next
CONTINU	JE		;	YES, continue

FIGURE 7-2: TABLE WRITE OPERATION

7.2 Control Registers

Several control registers are used in conjunction with the ${\tt TBLRD}$ and ${\tt TBLWT}$ instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

7.2.1 EECON1 AND EECON2 REGISTERS

The EECON1 register (Register 7-1) is the control register for memory accesses. The EECON2 register, not a physical register, is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

The EEPGD control bit determines if the access is a program or data EEPROM memory access. When clear, any subsequent operations operate on the data EEPROM memory. When set, any subsequent operations operate on the program memory.

The CFGS control bit determines if the access is to the Configuration/Calibration registers or to program memory/data EEPROM memory. When set, subsequent operations operate on Configuration registers regardless of EEPGD (see Section 28.0 "Special Features of the CPU"). When clear, memory selection access is determined by EEPGD.

The FREE bit, when set, allows a program memory erase operation. When FREE is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, allows a write operation. On power-up, the WREN bit is clear. The WRERR bit is set in hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR is
	read as '1'. This can indicate that a write
	operation was prematurely terminated by
	a Reset, or a write operation was
	attempted improperly.

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the write operation.

Note: The EEIF interrupt flag bit (PIR6<4>) is set when the write is complete. It must be cleared in software.

7.4 Erasing Flash Program Memory

The erase block is 32 words or 64 bytes for the PIC18FX5K90 and PIC18FX6K90 devices, and 64 words or 128 bytes for the PIC18FX7K90 devices. Word erase in the Flash array is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 64 or 128 bytes of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased. The TBLPTR<5:0> bits are ignored.

The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the Flash program memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

For protection, the write initiate sequence for EECON2 must be used.

A long write is necessary for erasing the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

7.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory location is:

- 1. Load the Table Pointer register with the address of the row to be erased.
- 2. Set the EECON1 register for the erase operation:
 - · Set the EEPGD bit to point to program memory
 - Clear the CFGS bit to access program memory
 - · Set the WREN bit to enable writes
 - · Set the FREE bit to enable the erase
- 3. Disable the interrupts.
- 4. Write 0x55 to EECON2.
- 5. Write 0xAA to EECON2.
- Set the WR bit. This begins the row erase cycle. The CPU will stall for the duration of the erase for TIW. (See Parameter D133A.)
- 7. Re-enable interrupts.

	MOVLW MOVWF MOVLW	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH	; load TBLPTR with the base ; address of the memory block
	MOVWF MOVLW MOVWF	TBLPTRH CODE_ADDR_LOW TBLPTRL	
ERASE_ROW	110 V WI		
	BSF	EECON1, EEPGD	; point to Flash program memory
	BCF	EECON1, CFGS	; access Flash program memory
	BSF	EECON1, WREN	; enable write to memory
	BSF	EECON1, FREE	; enable Row Erase operation
	BCF	INTCON, GIE	; disable interrupts
Required	MOVLW	0x55	
Sequence	MOVWF	EECON2	; write 55h
	MOVLW	0xAA	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts

EXAMPLE 7-2: ERASING A FLASH PROGRAM MEMORY ROW

TABLE 11-14: PORTG FUNCTIONS (CONTINUED)

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description	
RG2/RX2/DT2/	RG2	0	0	DIG	LATG<2> data output.	
AN18/C3INA		1	Ι	ST	PORTG<2> data input.	
	RX2	1	Ι	ST	Asynchronous serial receive data input (EUSART module).	
·	DT2	1	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.	
		1	I	ST	Synchronous serial data input (EUSART module); user must configure as an input.	
	AN18	1	I	ANA	A/D Input Channel 18. Default input configuration on POR; does not affect digital output.	
	C3INA	х	Ι	ANA	Comparator 3 Input A.	
RG3/CCP4/AN17/	RG3	0	0	DIG	LATG<3> data output.	
P3D/C3INB		1	Ι	ST	PORTG<3> data input.	
	CCP4	0	0	DIG	CCP4 compare/PWM output; takes priority over port data.	
		1	I	ST	CCP4 capture input.	
	AN17	1	I	ANA	A/D Input Channel 17. Default input configuration on PR; does not affect digital output.	
	C3INB	х	Ι	ANA	Comparator 3 Input B.	
	P3D	0	0	—	ECCP3 PWM Output D. May be configured for tri-state during Enhanced PWM.	
RG4/SEG26/	RG4	0	0	DIG	LATG<4> data output.	
RTCC/T7CKI/		1	Ι	ST	PORTG<4> data input.	
T5G/CCP5/ AN16/P1D/	SEG26	1	0	ANA	LCD Segment 26 output; disables all other pin functions.	
C3INC	RTCC	x	0	DIG	RTCC output.	
	T7CKI	x	-	ST	Timer7 clock input.	
	T5G	x	Ι	ST	Timer5 external clock gate input.	
	CCP5	0	0	DIG	CCP5 compare/PWM output; takes priority over port data.	
		1	Ι	ST	CCP5 capture input.	
·	AN16	1	I	ANA	A/D Input Channel 17. Default input configuration on POR; does not affect digital output.	
	C3INC	x	Ι	ANA	Comparator 3 Input C.	
	P1D	0	0	_	ECCP1 PWM Output D. May be configured for tri-state during Enhanced PWM.	
RG5			I	ST	See the MCLR/RG5 pin.	

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input,

x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

TABLE 11-15: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTG	_		RG5 ⁽¹⁾	RG4	RG3	RG2	RG1	RG0	78
TRISG	—	—	—	TRISG4	TRISG3	TRISG2	TRISG1	TRISG0	78
LCDSE3	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24	83
ANCON2	ANSEL23	ANSEL22	ANSEL21	ANSEL20	ANSEL19	ANSEL18	ANSEL17	ANSEL16	81
ODCON1	SSP10D	CCP2OD	CCP10D	_	_	_	_	SSP2OD	81
ODCON2	CCP100D ⁽²⁾	CCP90D ⁽²⁾	CCP8OD	CCP7OD	CCP6OD	CCP5OD	CCP4OD	CCP3OD	81

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTG.

Note 1: This bit is available when Master Clear is disabled (MCLRE = 0). When MCLRE is set, the bit is unimplemented.

2: Unimplemented in devices with a program memory of 32 Kbytes (PIC18FX5K90).

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RJ0	RJ0	0	0	DIG	LATJ<0> data output.
		1	I	ST	PORTJ<0> data input.
RJ1/SEG33	RJ1	0	0	DIG	LATJ<1> data output.
		1	I	ST	PORTJ<1> data input.
	SEG33	1	0	ANA	LCD Segment 33 output; disables all other pin functions.
RJ2/SEG34	RJ2	0	0	DIG	LATJ<2> data output.
		1	I	ST	PORTJ<2> data input.
	SEG34	1	0	ANA	LCD Segment 34 output; disables all other pin functions.
RJ3/SEG35	RJ3	0	0	DIG	LATJ<3> data output.
		1	I	ST	PORTJ<3> data input.
	SEG35	1	0	ANA	LCD Segment 35 output; disables all other pin functions.
RJ4/SEG39	RJ4	0	0	DIG	LATJ<4> data output.
		1	I	ST	PORTJ<4> data input.
	SEG39	1	0	ANA	LCD Segment 39 output; disables all other pin functions.
RJ5/SEG38	RJ5	0	0	DIG	LATJ<5> data output.
		1	I	ST	PORTJ<5> data input.
	SEG38	1	0	ANA	LCD Segment 38 output; disables all other pin functions.
RJ6/SEG37	RJ6	0	0	DIG	LATJ<6> data output.
		1	I	ST	PORTJ<6> data input.
	SEG37	1	0	ANA	LCD Segment 37 output; disables all other pin functions.
RJ7/SEG36	RJ7	0	0	DIG	LATJ<7> data output.
		1	I	ST	PORTJ<7> data input.
	SEG36	1	0	ANA	LCD Segment 36 output; disables all other pin functions.

TABLE 11-18: PORTJ FUNCTIONS

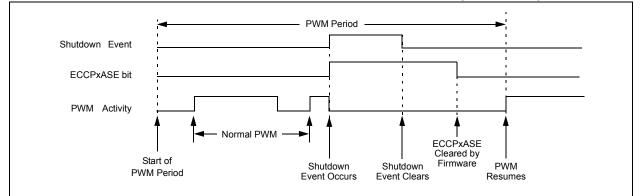
Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

TABLE 11-19:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTJ
--------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTJ	RJ7	RJ6	RJ5	RJ4	RJ3	RJ2	RJ1	RJ0	78
LATJ	LATJ7	LATJ6	LATJ5	LATJ4	LATJ3	LATJ2	LATJ1	LATJ0	78
TRISJ	TRISJ7	TRISJ6	TRISJ5	TRISJ4	TRISJ3	TRISJ2	TRISJ1	TRISJ0	78
LCDSE4	SE39	SE38	SE37	SE36	SE35	SE34	SE33	SE32	83
PADCFG1	RDPU	REPU	RJPU ⁽¹⁾	_		RTSECSEL1	RTSECSEL0		80

Legend: Shaded cells are not used by PORTJ.

Note 1: Unimplemented in PIC18F6XK90 devices, read as '0'.

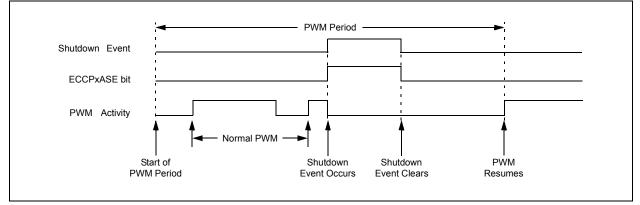

NOTES:

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PxM1	PxM0	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7	·			·	•	•	bit
Legend: R = Readab	le hit	W = Writable	hit	II = I Inimpler	mented bit, read	d as 'O'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown
			•		arcu		
bit 7-6	PxM<1:0>: E	Enhanced PWM	l Output Confi	guration bits			
	If CCPxM<3:	2> = 00, 01, 10	<u>):</u>	-			
	xx = PxA is	assigned as a c	apture/compar	e input/output; I	PxB, PxC and P	xD are assigned	d as PORT pin
	If CCPxM<3:						
		output: PxA, P	xB, PxC and	PxD are contro	olled by steerin	g (see Section	19.4.7 "Puls
		ng Mode") idge output forv	vard [.] PxD is n	odulated [.] PxA	is active: PxB	PxC are inactiv	/e
		ridge output: F					
		ied as PORT pi					
	11 = Full-br	idge output revo	erse: PxB is m	nodulated; PxC	is active; PxA	and PxD are in	active
bit 5-4	DCxB<1:0>:	PWM Duty Cyc	cle Bit 1 and E	sit O			
	Capture mod	le:					
	Unused.						
	<u>Compare mo</u> Unused.	<u>de:</u>					
	PWM mode:						
		e the two LSbs	of the 10-bit F	WM duty cycle	e. The eight MS	bs of the duty c	ycle are found
	in CCPRxL.				C C	-	-
bit 3-0	CCPxM<3:0	>: ECCPx Mode	e Select bits				
	0000 = Cap	oture/Compare/I	PWM off (rese	ts ECCPx mod	lule)		
	0001 = Res						
	0010 = Cor 0011 = Cap	npare mode: to	ggle output or	match			
		oture mode: eve	erv falling edge	2			
		oture mode: eve					
	0110 = Cap	oture mode: eve	ry fourth rising	g edge			
		oture mode: eve					
		npare mode: ini					
		npare mode: init npare mode: ge					
		npare mode: tri					
	sets	CCxIF bit)					
		M mode: PxA a					
		M mode: PxA a		•			
	1110 = PW	M mode: PxA a	nd PxC are a	ctive-low; PxB a	and PXD are ac	nve-nigh	

REGISTER 19-1: CCPxCON: ENHANCED CAPTURE/COMPARE/PWM x CONTROL

1110 = PWM mode: PxA and PxC are active-low; PxB and PxD are active-high 1111 = PWM mode: PxA and PxC are active-low; PxB and PxD are active-low

FIGURE 19-12: PWM AUTO-SHUTDOWN WITH FIRMWARE RESTART (PxRSEN = 0)



19.4.5 AUTO-RESTART MODE

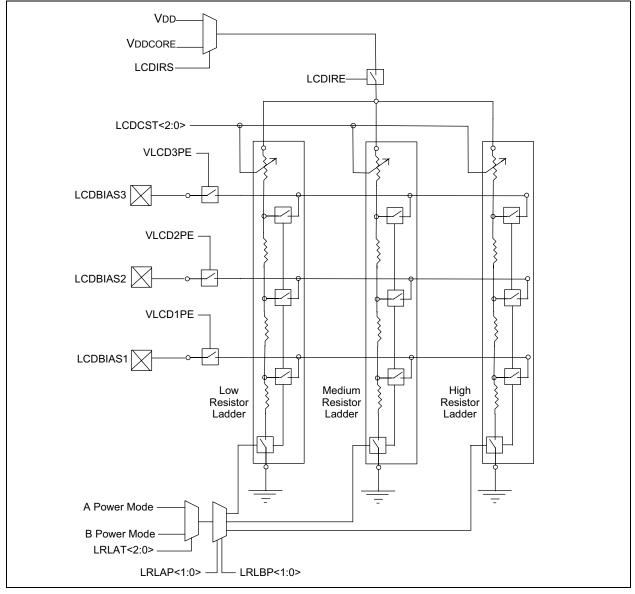
The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PxRSEN bit (ECCPxDEL<7>).

If auto-restart is enabled, the ECCPxASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the ECCPxASE bit will be cleared via hardware and normal operation will resume. The module will wait until the next PWM period begins, however, before re-enabling the output pin. This behavior allows the auto-shutdown with auto-restart features to be used in applications based on current mode of PWM control.

FIGURE 19-13: PWM AUTO-SHUTDOWN WITH AUTO-RESTART ENABLED (PxRSEN = 1)

20.3.2 INTERNAL RESISTOR BIASING

This mode does not use external resistors, but rather internal resistor ladders that are configured to generate the bias voltage.


The internal reference ladder actually consists of three separate ladders. Disabling the internal reference ladder disconnects all of the ladders, allowing external voltages to be supplied.

Depending on the total resistance of the resistor ladders, the biasing can be classified as low, medium or high power. Table 20-3 shows the total resistance of each of the ladders. Figure 20-4 shows the internal resister ladder connections. When the internal resistor ladder is selected, the bias voltage can either be from VDD or from VDDCORE, depending on the LCDIRS setting.

TABLE 20-3: INTERNAL RESISTANCE LADDER POWER MODES

Power Mode	Nominal Resistance of Entire Ladder	ldd
Low	3 ΜΩ	1 μA
Medium	300 kΩ	10 μA
High	30 kΩ	100 μA

FIGURE 20-4: LCD BIAS INTERNAL RESISTOR LADDER CONNECTION DIAGRAM

RETURN		Return from	Return from Subroutine					
Synta	ax:	RETURN	RETURN {s}					
Oper	ands:	$s \in [0,1]$						
Oper	ation:	if s = 1, (WS) \rightarrow W, (STATUSS) (BSRS) \rightarrow	$(TOS) \rightarrow PC;$ if s = 1, $(WS) \rightarrow W,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged					
Statu	s Affected:	None						
Enco	ding:	0000	0000	0001	001s			
Description:		popped and is loaded in 's'= 1, the c registers W loaded into registers W	Return from subroutine. The stack is popped and the top of the stack (TOS) is loaded into the Program Counter. If 's'= 1, the contents of the shadow registers WS, STATUSS and BSRS are loaded into their corresponding registers W, STATUS and BSR. If 's' = 0, no update of these registers occurs					
Word	ls:	1	1					
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	No operation	Proce Data		POP PC from stack			
	No operation	No operation	No operat		No operation			
Example:		RETURN						

After Instruction: PC = TOS

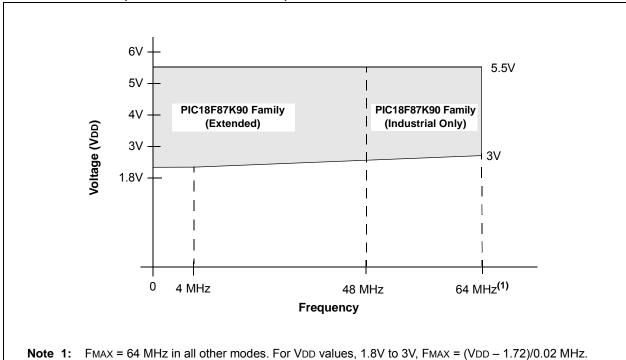
RLCF	Rotate Left f through Carry				
Syntax:	RLCF f {	,d {,a}}			
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$				
Operation:	$(f < n >) \rightarrow de$ $(f < 7 >) \rightarrow C,$ $(C) \rightarrow dest <$		•,		
Status Affected:	C, N, Z				
Encoding:	0011	01da	ffff	ffff	
Description:	The content one bit to the If 'd' is '0', th is '1', the res 'f'.	e left thro ne result i	ugh the C s placed i	arry flag. n W. If 'd'	
	lf 'a' is '0', th lf 'a' is '1', th GPR bank.				
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				
	C	- re	gister f		
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		Q4	
Decode	Read register 'f'	Proce: Data		Vrite to stination	
Example:	RLCF	REG	, 0, 0		
Before Instruc	ction				
REG	= 1110 = 0	0110			
REG	= 0	0110			
REG C After Instructio REG	= 0 on = 1110	0110			
REG C After Instruction	= 0 on = 1110				
REG C After Instructio REG W	= 0 on = 1110 = 1100	0110			
REG C After Instructio REG W	= 0 on = 1110 = 1100	0110			

XORWF	Exclusive	OR W wi	th f	
Syntax:	XORWF	f {,d {,a}}		
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$			
Operation:	(W) .XOR. ((f) \rightarrow des	t	
Status Affected:	N, Z			
Encoding:	0001	10da	ffff	ffff
Description:	Exclusive C register 'f'. I in W. If 'd' is in the regist	f 'd' is '0', s '1', the r	the resu	It is stored
	lf 'a' is '0', tl lf 'a' is '1', tl GPR bank.			
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.			
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Proces Data		Vrite to stination
Example:	XORWF F	REG, 1,	0	
Before Instruct REG W	= AFh = B5h			
After Instructio REG W	n = 1Ah = B5h			

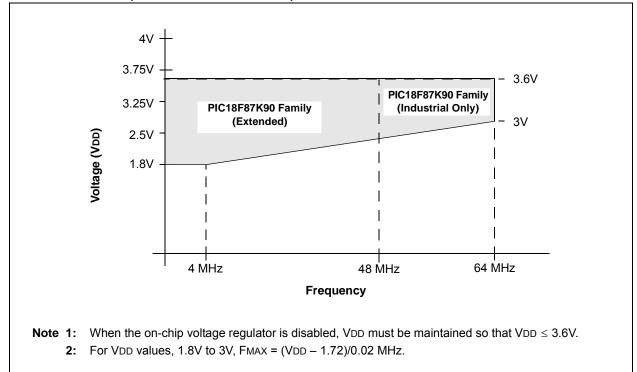
MOVSS	Move Indexed to Indexed			
Syntax:	MOVSS [z _s], [z _d]			
Operands:	$\begin{array}{l} 0 \leq z_s \leq 127 \\ 0 \leq z_d \leq 127 \end{array}$			
Operation:	$((FSR2) + z_s) \rightarrow ((FSR2) + z_d)$			
Status Affected:	None			
Encoding: 1st word (source) 2nd word (dest.)	1110 1011 1zzz zzzz _s 1111 xxxx xzzz zzzz _d			
Description	The contents of the source register are moved to the destination register. The addresses of the source and destination registers are determined by adding the 7-bit literal offsets, 'z _s ' or 'z _d ', respectively, to the value of FSR2. Both registers can be located anywhere in the 4096-byte data memory space (000h to FFFh). The MOVSS instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.			
	If the resultant source address points to an Indirect Addressing register, the value returned will be 00h. If the resultant destination address points to an Indirect Addressing register, the instruction will execute as a NOP.			
Words:	2			
Cycles:	2			
Q Cycle Activity:				

/CIE	es:	2		
Cycle Activity:				
	Q1	Q2	Q3	
	Decode	Determine	Determine	F

Decode	Determine	Determine	Read	
	source addr	source addr	source reg	
Decode	Determine	Determine	Write	
	dest addr	dest addr	to dest reg	


Q4

Before Instruction		
FSR2	=	80h
Contents of 85h Contents	=	33h
of 86h	=	11h
After Instruction		
FSR2	=	80h
Contents of 85h Contents	=	33h
of 86h	=	33h


PUSHL	Store Literal at FSR2, Decrement FSR2					
Syntax:	PUSHL k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \rightarrow (FSR2)$ FSR2 – 1 –	.,				
Status Affected:	None					
Encoding:	1110	1010	kkkk	kkkk		
Description:	memory address specified by FSR2. FSR2 is decremented by 1 after the operation.					
	This instruction allows users to push values onto a software stack.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2 Q3		3	Q4		
Decode	Read 'k'	Proc da		Write to destination		
Example:	PUSHL 0	8h				

Before Instruction FSR2H:FSR2L Memory (01ECh)	= =	01ECh 00h
After Instruction FSR2H:FSR2L Memory (01ECh)	= =	01EBh 08h

FIGURE 31-2: VOLTAGE-FREQUENCY GRAPH, REGULATOR DISABLED (INDUSTRIAL/EXTENDED)^(1,2)

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K90 Family (Industrial/Extended) (Continued)

PIC18F8	7K90 Family	$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array} $					
Param No.	Device	Тур	Max	Units	Conditions		
	Supply Current (IDD) ^(2,3)						
	All devices	5.3	10	μA	-40°C		
		5.5	10	μA	+25°C	VDD = 1.8V ⁽⁴⁾	
		5.5	10	μA	+85°C	Regulator Disabled	
		12	24	μA	+125°C		
	All devices	10	15	μA	-40°C		
		10	16	μA	+25°C	VDD = 3.3V ⁽⁴⁾	Fosc = 31 kHz (RC_RUN mode,
		11	17	μA	+85°C	Regulator Disabled	LF-INTOSC)
		15	35	μA	+125°C		
	All devices	70	180	μA	-40°C		
		80	185	μA	+25°C	VDD = 5V ⁽⁵⁾	
		90	190	μA	+85°C	Regulator Enabled	
		200	500	μA	+125°C		
	All devices	410	850	μA	-40°C		
		410	800	μA	+25°C	VDD = 1.8V ⁽⁴⁾	
		410	830	μA	+85°C	Regulator Disabled	
		700	1500	μA	+125°C		
	All devices	680	990	μA	-40°C		Fosc = 1 MHz
		680	960	μA	+25°C	VDD = 3.3V ⁽⁴⁾	(RC RUN mode,
		670	950	μA	+85°C	Regulator Disabled	HF-INTOSC)
		800	1700	μA	+125°C		
	All devices	760	1400	μA	-40°C		
		780	1400	μA	+25°C	VDD = 5V ⁽⁵⁾	
		800	1500	μA	+85°C	Regulator Enabled	
		1200	2400	μA	+125°C		

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- 3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).
- 6: LCD glass is not connected; resistor current is not included.
- 7: 48 MHz maximum frequency at 125°C.

INDEX

Α

A/D	373
A/D Converter Interrupt, Configuring	
Acquisition Requirements	
ADRESH Register	
Analog Port Pins, Configuring	
Associated Registers	
Automatic Acquisition Time	
Configuring the Module	
Conversion Clock (TAD)	
Conversion Requirements	
Conversion Status (GO/DONE Bit)	
Conversions Converter Characteristics	
Differential	
Operation in Power-Managed Modes	
Use of the Special Event Triggers	
Absolute Maximum Ratings	505
AC (Timing) Characteristics	
Load Conditions for Device Timing	
Specifications	524
Parameter Symbology	
Timing Conditions	
ACKSTAT	339
ACKSTAT Status Flag	
ADCON0 Register	
GO/DONE Bit	381
ADDFSR	494
ADDLW	457
ADDULNK	
ADDWF	
ADDWFC	
ADRESL Register	
Analog and Digital Ports	156
Analog-to-Digital Converter. See A/D.	450
ANDWF	459
MPASM Assembler	502
	502
В	
Baud Rate Generator	335
BC	
BCF	460
BF	339
BF Status Flag	339
Block Diagrams	
A/D	
A/D Differential Channel Measurement	
Analog Input Model	383
Baud Rate Generator	
Capture Mode Operation243,	
Clock Source Multiplexing	
Comparator Analog Input Model	
Comparator Configurations	
Comparator Output	
Comparator Voltage Reference	398
Comparator Voltage Reference Output	200
Buffer Example	
Compare Mode Operation	
Crystal/Ceramic Resonator (HS, HSPLL)	
CTMU	

CTMU Current Source Calibration Circuit
CTMU Typical Connections and Internal Configuration for Pulse Delay Generation 421
CTMU Typical Connections and Internal
Configuration for Time Measurement
Device Clock
Enhanced PWM Mode257
EUSART Receive
EUSART Transmit 359
External Clock Input (EC) 48
External Clock Input (HS) 48
External Power-on Reset Circuit
(Slow VDD Power-up)
Fail-Safe Clock Monitor (FSCM)
Full-Bridge Application
Generic I/O Port Operation
High/Low-Voltage Detect with External Input
Internal Reference and Contrast Control
Interrupt Logic
INTIO1 Oscillator Mode
INTIO2 Oscillator Mode
LCD Bias Internal Resistor Ladder Connection
LCD Clock Generation
LCD Driver Module
MSSPx (I ² C Master Mode) 333
MSSPx (I ² C Mode)
MSSPx (SPI Mode) 303
On-Chip Reset Circuit 69
Open-Drain Output (USART Example) 154
PIC18F6XK90 12
PIC18F8XK9013
PLL
PWM Operation (Simplified)
RC Oscillator Mode
Reads from Flash Program Memory
RTCC
Simplified Steering
Single Comparator
SOSC External Components
SPI Master/Slave Connection
Table Read Operation 111
Table Write Operation 112
Table Writes to Flash Program Memory 117
Timer0 in 16-Bit Mode 184
Timer0 in 8-Bit Mode 184
Timer1 190
Timer2
Timer3/5/7
Timer4/6/8/10/12
Ultra Low-Power Wake-up Initialization
Watchdog Timer
BN
BNN
BNN
BNZ
BOR. See Brown-out Reset.
BOV
BRA
BRG. See Baud Rate Generator.

RC4/SDI1/SDA1/SEG16.		26
RC5/SDO1/SEG12		26
RC6/TX1/CK1/SEG27		26
RD1/SEG1/T5CKI/T7G		27
		27
RD6/SEG6/SCK2/SCL2		27
RE0/LCDBIAS1/P2D		28
RE1/LCDBIAS2/P2C		28
RE2/LCDBIAS3/P2B/CCF	P10 19,	28
RE3/COM0/P3C/CCP9/R	EFO 19,	28
RE4/COM1/P3B/CCP8		28
RE6/COM3/P1B/CCP6		28
	/CTDIN	
		20
	/CTMUI	20
RF3/AN8/SEG21/C2INB.		29
RF3/AN8/SEG21/C2INB/	CTMUI	20
RF5/AN10		20
	3/C1INB	
RF7/AN5/SS1/SEG25		29
		30
RG0/ECCP3/P3A	21, DUT21,	
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C)UT21,	30
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I	DUT21, NA21,	30 30
RG0/ECCP3/P3ARG1/TX2/CK2/AN19/C3C RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3	DUT21, NA21, 3INB21,	30 30
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C RG4/SEG26/RTCC/T7CF	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/	30 30 30
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21, 21,	30 30 30 30
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21,	30 30 30 30 30
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21,	30 30 30 30 31 31
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21,	30 30 30 31 31 31 31
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH1/SEG45/AN21 RH3/SEG44/AN20	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21,	30 30 30 31 31 31 31 31
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH1/SEG46/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C//	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21, 21, AN12/C2INC	30 30 30 31 31 31 31 31 31
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH1/SEG46/AN21 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B//	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21, AN12/C2INC	30 30 30 31 31 31 31 31 31 31
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C//	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21, AN12/C2INC AN12/C2INC AN13/C2IND	30 30 30 31 31 31 31 31 31 31
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH7/SEG43/CCP6/P1B//	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21, AN12/C2INC21, AN13/C2IND	30 30 30 31 31 31 31 31 31 31 31 32
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH7/SEG43/CCP6/P1B// RJ0	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21, AN12/C2INC21, AN13/C2IND AN13/C2IND	30 30 30 31 31 31 31 31 31 31 31 32 33
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH7/SEG43/CCP6/P1B// RJ0 RJ1/SEG33	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21, AN12/C2INC AN12/C2INC AN13/C2IND AN14/C1INC AN15	30 30 30 31 31 31 31 31 31 31 32 33 33
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH7/SEG43/CCP6/P1B// RJ0 RJ1/SEG33 RJ2/SEG34	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21, AN12/C2INC AN12/C2INC AN13/C2IND AN14/C1INC AN15	30 30 30 31 31 31 31 31 31 31 31 32 33 33 33
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH7/SEG43/CCP6/P1B// RJ0 RJ1/SEG33 RJ2/SEG34	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21, AN12/C2INC AN13/C2IND AN13/C2IND AN14/C1INC	30 30 30 31 31 31 31 31 31 31 31 32 33 33 33
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH5/SEG43/CCP6/P1B// RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21, AN12/C2INC AN12/C2INC AN13/C2IND AN14/C1INC AN15	30 30 30 31 31 31 31 31 31 31 31 32 33 33 33 33
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH5/SEG43/CCP6/P1B// RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21, AN12/C2INC AN12/C2INC AN13/C2IND AN14/C1INC AN15	30 30 30 31 31 31 31 31 31 31 31 32 33 33 33 33 33
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH5/SEG43/CCP6/P1B// RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ5/SEG38	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21, AN12/C2INC AN13/C2IND AN13/C2IND AN15	30 30 30 31 31 31 31 31 31 31 31 32 33 33 33 33 33 33
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH7/SEG43/CCP6/P1B// RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ5/SEG38 RJ5/SEG37	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21, AN12/C2INC AN12/C2INC AN13/C2IND AN14/C1INC AN15	30 30 30 31 31 31 31 31 31 31 32 33 33 33 33 33 33 33
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH7/SEG43/CCP6/P1B// RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ5/SEG38 RJ6/SEG37 RJ7/SEG36	DUT21, NA21, 3INB21, (I/T5G/CCP5/AN16/P1D/ 21, AN12/C2INC AN13/C2IND AN14/C1INC AN15	30 30 30 31 31 31 31 31 31 31 31 33 33 33 33 33
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7Ck C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH7/SEG33 RJ2/SEG33 RJ2/SEG34 RJ3/SEG35 RJ3/SEG35 RJ3/SEG35 RJ4/SEG39 RJ5/SEG38 RJ5/SEG37 RJ7/SEG36 VDD	DUT	30 30 31 31 31 31 31 31 31 32 33 33 33 33 33 33 33 33 33 33 33
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH7/SEG43/CCP6/P1B// RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ4/SEG39 RJ5/SEG38 RJ6/SEG37 RJ7/SEG36 VDD VDDCORE/VCAP	DUT	$\begin{array}{c} 30 \\ 30 \\ 30 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\$
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH7/SEG43/CCP6/P1B// RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ4/SEG39 RJ5/SEG38 RJ6/SEG37 RJ7/SEG36 VDD VDDCORE/VCAP VSS	DUT	$\begin{array}{c} 30 \\ 30 \\ 30 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\$
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7Ck C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH7/SEG43/CCP6/P1B// RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39. RJ3/SEG35 RJ4/SEG39. RJ5/SEG38. RJ6/SEG37 RJ7/SEG36 VDD VDDCORE/VCAP VSS Pinout I/O Descriptions	DUT	30 30 31 31 31 31 31 31 31 31 32 33 33 33 33 33 33 33 33 33 33 33 33
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7Ck C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH7/SEG33 RJ2/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ4/SEG39 RJ5/SEG38 RJ5/SEG38 RJ5/SEG38 RJ5/SEG37 RJ7/SEG36 VDD VDDCORE/VCAP VSS Pinout I/O Descriptions PIC18F6XK90	DUT	303030313131313131313233
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7Ck C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH7/SEG33 RJ2/SEG33 RJ2/SEG34 RJ3/SEG35 RJ3/SEG35 RJ4/SEG39 RJ5/SEG38 RJ5/SEG38 RJ6/SEG37 RJ7/SEG36 VDD VDDCORE/VCAP VSS Pinout I/O Descriptions PIC18F6XK90 PIC18F8XK90	DUT	303030313131313131313233
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH7/SEG43/CCP6/P1B// RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ5/SEG38 RJ5/SEG38 RJ6/SEG37 RJ7/SEG36 VDD VDDCORE/VCAP VSS Pinout I/O Descriptions PIC18F6XK90 PIC18F8XK90 PIR5 Register	21, NA	30 30 30 31 31 31 31 31 31 31 31 31 32 33 33 33 33 33 33 33 33 33 33 33 33
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH7/SEG43/CCP6/P1B// RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ5/SEG38 RJ5/SEG38 RJ6/SEG37 RJ7/SEG36 VDD VDDCORE/VCAP VSS Pinout I/O Descriptions PIC18F6XK90 PIC18F8XK90 PIR5 Register TMR12IF Bit	DUT	30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH7/SEG43/CCP6/P1B// RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ4/SEG39 RJ5/SEG38. RJ6/SEG37. RJ7/SEG36 VDD VDDCORE/VCAP VSS Pinout I/O Descriptions PIC18F6XK90 PIC18F8XK90 PIR5 Register TMR12IF Bit	21, NA	30 30 30 31 31 31 31 31 31 31 31 32 33 33 33 33 33 33 33 33 33
RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3C RG2/RX2/DT2/AN18/C3I RG3/CCP4/AN17/P3D/C3 RG4/SEG26/RTCC/T7CF C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C// RH5/SEG41/CCP8/P3B// RH6/SEG42/CCP7/P1C// RH7/SEG43/CCP6/P1B// RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ3/SEG35 RJ4/SEG39 RJ5/SEG38 RJ5/SEG38 RJ6/SEG37 RJ7/SEG36 VDD VDDCORE/VCAP VSS Pinout I/O Descriptions PIC18F6XK90 PIC18F8XK90 PIR5 Register TMR12IF Bit PLL HSPLL and ECPLL Oscil	DUT	30 30 30 31 31 31 31 31 31 31 31 31 32 33 33 33 33 33 33 33 33 33 33 33 33

POP	100
POR. See Power-on Reset.	400
PORTA	
	450
Associated Registers	
LATA Register	
PORTA Register	
TRISA Register	157
PORTB	
Associated Registers	162
LATB Register	160
PORTB Register	
RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)	
TRISB Register	
PORTC	100
Associated Registers	165
LATC Register	
PORTC Register	
TRISC Register	163
PORTD	
Associated Registers	168
LATD Register	166
PORTD Register	166
TRISD Register	
PORTE	100
Associated Registers	171
-	
LATE Register	
Pins Available in Different LCD Drives	
PORTE Register	
TRISE Register	169
PORTF	
Associated Registers	174
LATF Register	172
PORTF Register	
TRISF Register	
PORTG	172
	470
Associated Registers	
LATG Register	
PORTG Register	
TRISG Register	175
PORTH	
Associated Registers	179
LATH Register	177
PORTH Register	
TRISH Register	
PORT.I	
Associated Registers	181
LATJ Register	
PORTJ Register	
TRISJ Register	
Power-Managed Modes	
and PWM Operation	
and SPI Operation	311
Clock Transitions and Status Indicators	
Entering	
Exiting Idle and Sleep Modes	
by Interrupt	
, ,	
by Reset	
by WDT Time-out	
Without an Oscillator Start-up Delay	
Idle Modes	
PRI_IDLE	
RC_IDLE	
SEC_IDLE	. 59