

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betails	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f66k90-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Special Microcontroller Features:

- Operating Voltage Range: 1.8V to 5.5V
- On-Chip 3.3V Regulator
- Operating Speed up to 64 MHz
- Up to 128 Kbytes On-Chip Flash Program Memory
- Data EEPROM of 1,024 Bytes
- 4K x 8 General Purpose Registers (SRAM)
- 10,000 Erase/Write Cycle Flash Program Memory, Minimum
- 1,000,000 Erase/write Cycle Data EEPROM Memory, Typical
- Flash Retention 40 Years, Minimum
- Three Internal Oscillators: LF-INTRC (31 kHz), MF-INTOSC (500 kHz) and HF-INTOSC (16 MHz)
- Self-Programmable under Software Control

- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
- Programmable period from 4 ms to 4,194s (about 70 minutes)
- In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
- · In-Circuit Debug via Two Pins
- Programmable:
 - BOR
 - LVD
- Two Enhanced Addressable USART modules:
 - LIN/J2602 support
 - Auto-Baud Detect (ABD)
- 12-Bit A/D Converter with up to 24 Channels:
 - Auto-acquisition and Sleep operation
 - Differential Input mode of operation

2.0 GUIDELINES FOR GETTING STARTED WITH PIC18FXXKXX MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC18F87K90 family family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

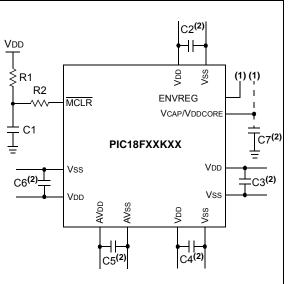
- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- ENVREG (if implemented) and VCAP/VDDCORE pins (see Section 2.4 "Voltage Regulator Pins (ENVREG and VCAP/VDDCORE)")

These pins must also be connected if they are being used in the end application:

- PGC/PGD pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

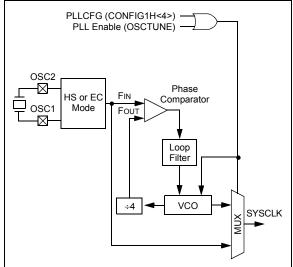

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED

MINIMUM CONNECTIONS


Key (all values are recommendations):

C1 through C6: 0.1 $\mu\text{F},$ 20V ceramic R1: 10 k Ω

R2: 100Ω to 470Ω

- Note 1: See Section 2.4 "Voltage Regulator Pins (ENVREG and VCAP/VDDCORE)" for explanation of ENVREG pin connections.
 - 2: The example shown is for a PIC18F device with five VDD/VSS and AVDD/AVSS pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

FIGURE 3-7: PLL BLOCK DIAGRAM

3.5.2.2 PLL and HF-INTOSC

The PLL is available to the internal oscillator block when the internal oscillator block is configured as the primary clock source. In this configuration, the PLL is enabled in software and generates a clock output of up to 64 MHz.

The operation of INTOSC with the PLL is described in **Section 3.6.2 "INTPLL Modes**". Care should be taken that the PLL is enabled only if the HF-INTOSC postscaler is configured for 8 MHz or 16 MHz.

3.6 Internal Oscillator Block

The PIC18F87K90 family of devices includes an internal oscillator block which generates two different clock signals. Either clock can be used as the micro-controller's clock source, which may eliminate the need for an external oscillator circuit on the OSC1 and/or OSC2 pins.

The internal oscillator consists of three blocks, depending on the frequency of operation. They are HF-INTOSC, MF-INTOSC and LF-INTRC.

In HF-INTOSC mode, the internal oscillator can provide a frequency, ranging from 31 kHz to 16 MHz, with the postscaler deciding the selected frequency (IRCF<2:0>).

The INTSRC bit (OSCTUNE<7>) and MFIOSEL bit (OSCCON2<0>) also decide which INTOSC provides the lower frequency (500 kHz to 31 kHz). For the HF-INTOSC to provide these frequencies, INTSRC = 1 and MFIOSEL = 0.

In HF-INTOSC, the postscaler (IRCF<2:0>) provides the frequency range of 31 kHz to 16 MHz. If HF-INTOSC is used with the PLL, the input frequency to the PLL should be 8 MHz or 16 MHz (IRCF<2:0> = 111, 110).

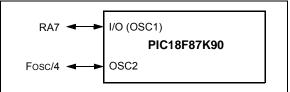
For MF-INTOSC mode to provide a frequency range of 500 kHz to 31 kHz, INTSRC = 1 and MFIOSEL = 1. The postscaler (IRCF<2:0>), in this mode, provides the frequency range of 31 kHz to 500 kHz.

The LF-INTRC can provide only 31 kHz if INTSRC = 0.

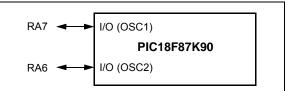
The LF-INTRC provides 31 kHz and is enabled if it is selected as the device clock source. The mode is enabled automatically when any of the following is enabled:

- Power-up Timer
- · Fail-Safe Clock Monitor
- · Watchdog Timer
- · Two-Speed Start-up

These features are discussed in greater detail in **Section 28.0 "Special Features of the CPU"**.

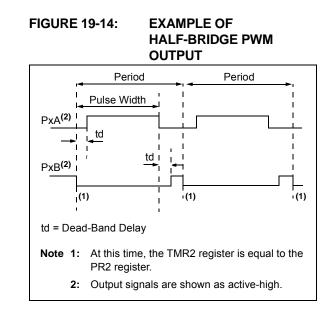

The clock source frequency (HF-INTOSC, MF-INTOSC or LF-INTRC direct) is selected by configuring the IRCF bits of the OSCCON register, as well the INTSRC and MFIOSEL bits. The default frequency on device Resets is 8 MHz.

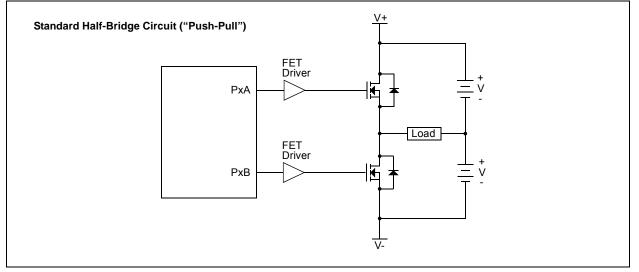
3.6.1 INTIO MODES


Using the internal oscillator as the clock source eliminates the need for up to two external oscillator pins, which can then be used for digital I/O. Two distinct oscillator configurations, which are determined by the OSC Configuration bits, are available:

- In INTIO1 mode, the OSC2 pin (RA6) outputs Fosc/4, while OSC1 functions as RA7 (see Figure 3-8) for digital input and output.
- In INTIO2 mode, OSC1 functions as RA7 and OSC2 functions as RA6 (see Figure 3-9). Both are available as digital input and output ports.

FIGURE 3-8: INTIO1 OSCILLATOR MODE


FIGURE 3-9: INTIO2 OSCILLATOR MODE


19.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE

In half-bridge applications, where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on and the other turned off), both switches may be on for a short period until one switch completely turns off. During this brief interval, a very high current (shoot-through current) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. For an illustration, see Figure 19-14. The lower seven bits of the associated ECCPxDEL register (Register 19-4) set the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 19-15: EXAMPLE OF HALF-BRIDGE APPLICATIONS

PIC18F87K90 FAMILY

The LCDSE5:LCDSE0 registers configure the functions of the port pins. Setting the segment enable bit for a particular segment configures that pin as an LCD driver. There are six LCD Segment Enable registers, as shown in Table 20-1. The prototype LCDSEx register is shown in Register 20-5.

TABLE 20-1:LCDSE REGISTERS AND
ASSOCIATED SEGMENTS

Register	Segments
LCDSE0	7:0 (RD<7:0>)
LCDSE1	15:8 (RA<5:4>, RC2, RC5, RB<4:1>)
LCDSE2	23:16 (RF<5:1>, RA1, RC<4:3>)
LCDSE3	31:24 (RE7, RB0, RB5, RC<7:6>, RG4, RF<7:6>)
LCDSE4	39:32 (RJ<4:7>, RJ<3:1>, RC1)
LCDSE5	47:40 (RH<0:3>, RH<7:4>)

Note:	The LCDSE5:LCDSE4 registers are not
	implemented in PIC18F6XK90 devices.

Once the module is initialized for the LCD panel, the individual bits of the LCDDATA23:LCDDATA0 registers are cleared or set to represent a clear or dark pixel, respectively.

Specific sets of LCDDATA registers are used with specific segments and common signals. Each bit represents a unique combination of a specific segment connected to a specific common.

Individual LCDDATA bits are named by the convention, "SxxCy", with "xx" as the segment number and "y" as the common number. The relationship is summarized in Table 20-2. The prototype LCDDATAx register is shown in Register 20-6.

Note:	In PIC18F6XK90 devices, writing into the
	registers, LCDDATA4, LCDDATA5,
	LCDDATA10, LCDDATA11, LCDDATA16,
	LCDDATA17, LCDDATA22 and
	LCDDATA23, will not affect the status of
	any pixel. These registers can be used as
	general purpose registers.

REGISTER 20-5: LCDSEx: LCD SEGMENTx ENABLE REGISTER

R/W-0	R/W-0 R/W-0		W-0 R/W-0 R/V		R/W-0	R/W-0	R/W-0		
SE(n + 7)	SE(n + 6)	SE(n + 5) SE(n + 4)		SE(n + 3)	SE(n + 2)	SE(n + 1)	SE(n)		
bit 7 bit 0									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

SE(n + 7):SE(n): Segment Enable bits
For LCDSE0: $n = 0$
For LCDSE1: n = 8
<u>For LCDSE2: n = 16</u>
For LCDSE3: n = 24
For LCDSE4: n = 32
<u>For LCDSE5: n = 40</u>

1 = Segment function of the pin is enabled, digital I/O is disabled

0 = I/O function of the pin is enabled

20.7 LCD Frame Frequency

The rate at which the COM and SEG outputs change is called the LCD frame frequency.

TABLE 20-5: FRAME FREQUENCY FORMULAS

Multiplex	Frame Frequency =							
Static	Clock Source/(4 x 1 x (LP<3:0> + 1))							
1/2	Clock Source/(2 x 2 x (LP<3:0> + 1))							
1/3	Clock Source/(1 x 3 x (LP<3:0> + 1))							
1/4	Clock Source/(1 x 4 x (LP<3:0> + 1))							

Note: Clock source is (Fosc/4)/8192, Timer1 Osc/32 or INTRC/32.

TABLE 20-6: APPROXIMATE FRAME FREQUENCY (IN Hz) USING Fosc AT 32 MHz, TIMER1 AT 32.768 kHz OR INTRC OSC

LP<3:0>	Static	1/2	1/3	1/4
1	125	125	167	125
2	83	83	111	83
3	62	62	83	62
4	50	50	67	50
5	42	42	56	42
6	36	36	48	36
7	31	31	42	31

20.8 LCD Waveform Generation

LCD waveform generation is based on the philosophy that the net AC voltage across the dark pixel should be maximized and the net AC voltage across the clear pixel should be minimized. The net DC voltage across any pixel should be zero.

The COM signal represents the time slice for each common, while the SEG contains the pixel data.

The pixel signal (COM-SEG) will have no DC component and can take only one of the two rms values. The higher rms value will create a dark pixel and a lower rms value will create a clear pixel.

As the number of commons increases, the delta between the two rms values decreases. The delta represents the maximum contrast that the display can have.

The LCDs can be driven by two types of waveforms: Type-A and Type-B. In a Type-A waveform, the phase changes within each common type, whereas a Type-B waveform's phase changes on each frame boundary. Thus, Type-A waveforms maintain 0 VDc over a single frame, whereas Type-B waveforms take two frames.

Note 1:	If Sleep has to be executed with							
	LCD Sleep enabled (SLPEN							
	(LCDCON<6>) = 1), care must be taken							
	to execute Sleep only when VDC on all							
	the pixels is '0'.							
2:	When the LCD clock source is (Fosc/4)/							

2: When the LCD clock source is (FOSC/4)/ 8192, if Sleep is executed irrespective of the LCDCON<SLPEN> setting, the LCD goes into Sleep. Thus, take care to see that VDC on all pixels is '0' when Sleep is executed.

Figure 20-7 through Figure 20-17 provide waveforms for static, half-multiplex, one-third multiplex and quarter multiplex drives for Type-A and Type-B waveforms.

21.3.2 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPxCON1<5:0> and SSPxSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCKx is the clock output)
- Slave mode (SCKx is the clock input)
- Clock Polarity (Idle state of SCKx)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCKx)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

Each MSSP module consists of a Transmit/Receive Shift register (SSPxSR) and a Serial Receive Transmit Buffer register (SSPxBUF). The SSPxSR shifts the data in and out of the device, MSb first. The SSPxBUF holds the data that was written to the SSPxSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPxBUF register. Then, the Buffer Full detect bit, BF (SSPxSTAT<0>), and the interrupt flag bit, SSPxIF, are set. This double-buffering of the received data (SSPxBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPxBUF register during transmission/reception of data will be ignored and the Write Collision Detect bit, WCOL (SSPxCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPxBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPxBUF should be read before the next byte of data to transfer is written to the SSPxBUF. The Buffer Full bit, BF (SSPxSTAT<0>), indicates when SSPxBUF has been loaded with the received data (transmission is complete). When the SSPxBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 21-1 shows the loading of the SSPxBUF (SSPxSR) for data transmission.

The SSPxSR is not directly readable or writable and can only be accessed by addressing the SSPxBUF register. Additionally, the SSPxSTAT register indicates the various status conditions.

21.3.3 OPEN-DRAIN OUTPUT OPTION

The drivers for the SDOx output and SCKx clock pins can be optionally configured as open-drain outputs. This feature allows the voltage level on the pin to be pulled to a higher level through an external pull-up resistor, and allows the output to communicate with external circuits without the need for additional level shifters. For more information, see **Section 11.1.3 "Open-Drain Outputs"**.

The open-drain output option is controlled by the SSP2OD (ODCON1<0>) and SSP1OD bits (ODCON1<7>). Setting an SSPxOD bit configures the SDOx and SCKx pins for the corresponding module for open-drain operation.

Note: To avoid lost data in Master mode, a read of the SSPxBUF must be performed to clear the Buffer Full (BF) detect bit (SSPxSTAT<0>) between each transmission.

EXAMPLE 21-1: LOADING THE SSP1BUF (SSP1SR) REGISTER

LOOP	BTFSS	SSP1STAT, BF	;Has data been received (transmit complete)?
	BRA	LOOP	;No
	MOVF	SSP1BUF, W	;WREG reg = contents of SSP1BUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF	TXDATA, W	;W reg = contents of TXDATA
	MOVWF	SSP1BUF	;New data to xmit

21.4.3.2 Address Masking Modes

Masking an address bit causes that bit to become a "don't care". When one address bit is masked, two addresses will be Acknowledged and cause an interrupt. It is possible to mask more than one address bit at a time, which greatly expands the number of addresses Acknowledged.

The l^2C slave behaves the same way whether address masking is used or not. However, when address masking is used, the l^2C slave can Acknowledge multiple addresses and cause interrupts. When this occurs, it is necessary to determine which address caused the interrupt by checking the SSPxBUF.

The PIC18F87K90 family of devices is capable of using two different Address Masking modes in I²C slave operation: 5-Bit Address Masking and 7-Bit Address Masking. The Masking mode is selected at device configuration using the MSSPMSK Configuration bit. The default device configuration is 7-Bit Address Masking.

Both Masking modes, in turn, support address masking of 7-bit and 10-bit addresses. The combination of Masking modes and addresses provide different ranges of Acknowledgable addresses for each combination.

While both Masking modes function in roughly the same manner, the way they use address masks are different.

21.4.3.3 5-Bit Address Masking Mode

As the name implies, 5-Bit Address Masking mode uses an address mask of up to 5 bits to create a range of addresses to be Acknowledged, using bits, 5 through 1, of the incoming address. This allows the module to Acknowledge up to 31 addresses when using 7-bit addressing, or 63 addresses with 10-bit addressing (see Example 21-2). This Masking mode is selected when the MSSPMSK Configuration bit is programmed ('0').

The address mask in this mode is stored in the SSPxCON2 register, which stops functioning as a control register in l^2C Slave mode (Register 21-6). In 7-Bit Address Masking mode, address mask bits, ADMSK<5:1> (SSPxCON2<5:1>), mask the corresponding address bits in the SSPxADD register. For any ADMSK bits that are set (ADMSK<n> = 1), the corresponding address bit is ignored (SSPxADD<n> = x). For the module to issue an address Acknowledge, it is sufficient to match only on addresses that do not have an active address mask.

In 10-Bit Address Masking mode, bits, ADMSK<5:2>, mask the corresponding address bits in the SSPxADD register. In addition, ADMSK1 simultaneously masks the two LSbs of the address (SSPxADD<1:0>). For any ADMSK bits that are active (ADMSK<n> = 1), the corresponding address bit is ignored (SPxADD<n> = x). Also note, that although in 10-Bit Address Masking mode, the upper address bits reuse part of the SSPxADD register bits. The address mask bits do not interact with those bits; they only affect the lower address bits.

- **Note 1:** ADMSK1 masks the two Least Significant bits of the address.
 - The two Most Significant bits of the address are not affected by address masking.

EXAMPLE 21-2: ADDRESS MASKING EXAMPLES IN 5-BIT MASKING MODE

7-Bit Addressing:

SSPxADD<7:1>= A0h (1010000) (SSPxADD<0> is assumed to be '0')

```
ADMSK<5:1> = 00111
```

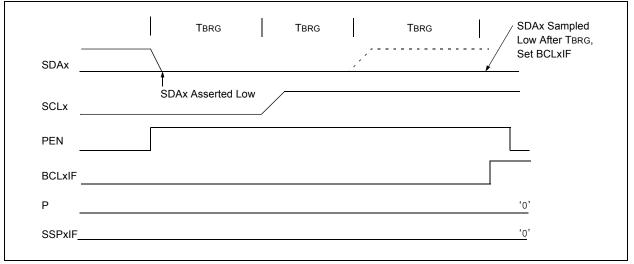
Addresses Acknowledged: A0h, A2h, A4h, A6h, A8h, AAh, ACh, AEh

10-Bit Addressing:

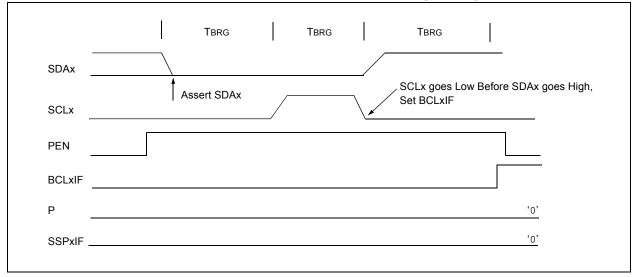
SSPxADD<7:0> = A0h (10100000) (The two MSb of the address are ignored in this example, since they are not affected by masking)

ADMSK<5:1> = 00111

Addresses Acknowledged: A0h, A1h, A2h, A3h, A4h, A5h, A6h, A7h, A8h, A9h, AAh, ABh, ACh, ADh, AEh, AFh


21.4.17.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDAx pin has been deasserted and allowed to float high, SDAx is sampled low after the BRG has timed out.
- b) After the SCLx pin is deasserted, SCLx is sampled low before SDAx goes high.

The Stop condition begins with SDAx asserted low. When SDAx is sampled low, the SCLx pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD<6:0> and counts down to 0. After the BRG times out, SDAx is sampled. If SDAx is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 21-33). If the SCLx pin is sampled low before SDAx is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 21-34).

FIGURE 21-33: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 21-34: BUS COLLISION DURING A STOP CONDITION (CASE 2)

					SYNC	= 0, BRGH	l = 0, BRG	16 = 1				
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz		Fosc = 10.000 MHz			Fosc = 8.000 MHz			
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)									
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	0.300	-0.04	1665
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1.201	-0.16	415
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2.403	-0.16	207
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	_	—	—

TABLE 22-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

			S	YNC = 0, E	BRGH = (), BRG16 =	1		
BAUD	Foso	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	c = 1.000	MHz
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.04	832	0.300	-0.16	415	0.300	-0.16	207
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_
19.2	19.231	0.16	12	—	_	_	—	_	_
57.6	62.500	8.51	3	—	_	_	—	_	_
115.2	125.000	8.51	1	_	_	—	_	_	_

				SYNC = 0,	, BRGH =	= 1, BRG16	= 1 or SY	NC = 1,	BRG16 = 1			
BAUD RATE	Fosc	= 40.000) MHz	Fosc	= 20.000) MHz	Fosc	= 10.000) MHz	Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)									
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	0.300	-0.01	6665
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1.200	-0.04	1665
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2.400	-0.04	832
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9.615	-0.16	207
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19.230	-0.16	103
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57.142	0.79	34
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117.647	-2.12	16

		SYN	IC = 0, BR(GH = 1, BF	RG16 = 1	or SYNC =	= 1, BRG1	6 = 1	
BAUD	Fost	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	c = 1.000	MHz
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.01	3332	0.300	-0.04	1665	0.300	-0.04	832
1.2	1.200	0.04	832	1.201	-0.16	415	1.201	-0.16	207
2.4	2.404	0.16	415	2.403	-0.16	207	2.403	-0.16	103
9.6	9.615	0.16	103	9.615	-0.16	51	9.615	-0.16	25
19.2	19.231	0.16	51	19.230	-0.16	25	19.230	-0.16	12
57.6	58.824	2.12	16	55.555	3.55	8	—	_	—
115.2	111.111	-3.55	8	—	_	—	—	_	—

22.2.4.2 Special Considerations Using the WUE Bit

The timing of WUE and RCxIF events may cause some confusion when it comes to determining the validity of received data. As noted, setting the WUE bit places the EUSART in an Idle mode. The wake-up event causes a receive interrupt by setting the RCxIF bit. The WUE bit is cleared after this when a rising edge is seen on RXx/DTx. The interrupt condition is then cleared by reading the RCREGx register. Ordinarily, the data in RCREGx will be dummy data and should be discarded.

The fact that the WUE bit has been cleared (or is still set) and the RCxIF flag is set should not be used as an indicator of the integrity of the data in RCREGx. Users should consider implementing a parallel method in firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process. If a receive operation is not occurring, the WUE bit may then be set just prior to entering Sleep mode.

FIGURE 22-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION

0366	승규는 다 다 다	ટું આ આ આવે પ	pununun.	ટ્રે ચેટ પ	7 3.2 3.2 3.	ઝ દેકે દેકે દે.	(N.C. N.C. N.C. N	હતું દેવને દાતે દેવ	옷 다섯 다가 다가	3.2 S.Z	[1년 1년 1년 1년 1년	[12] 12] 12
) – 85 Set byg	Yeast	5			1					a garren hadal	YSaaaas -
9403 B8 ⁹⁹	S		2			······	·····		•••••••			
	5	;	· ·	4 - 1 4 - 1	÷	5	1	5		1		((
ozie Skieber	3	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	111					:776277777777	an i		·····
	2	·		< 2 		1. N.	:		· · · · · · · · · · · · · · · · · · ·		((
800a9	\$, ;	; ; · · · · · · · · · · · · · · · · · ·	÷	·····	••••••			. 44		Varia and an	Z
	/	·	ł				. S	effect cas	an Marian	00 OCJ	žorec –	
	2 C	·	·					1 A A A A A A A A A A A A A A A A A A A	· · · · · · · · · · · · · · · · · · ·			

FIGURE 22-9: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

	 BR Star BV 	(NUAUAUA). %*******	innunni.		mununun. İ	anagaguna.	LAUAUAUAUAU Jauk	
VYDE 58 ⁶³		- 4 	2/		······································			
	6. 6. 9.	· · · · · · · · · · · · · · · · · · ·	· · · · ·					
8026		9 	e Esocatori	 Sosap Sods	à Ciean	i sé due la User Real	e el ACRECE ²	

2: The HURARY comens in the write the WOH of it eat.

22.3.2 EUSART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either the Single Receive Enable bit, SREN (RCSTAx<5>), or the Continuous Receive Enable bit, CREN (RCSTAx<4>). Data is sampled on the RXx pin on the falling edge of the clock.

If enable bit, SREN, is set, only a single word is received. If enable bit, CREN, is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.

- 3. Ensure bits, CREN and SREN, are clear.
- 4. If interrupts are desired, set enable bit, RCxIE.
- 5. If 9-bit reception is desired, set bit, RX9.
- 6. If a single reception is required, set bit, SREN. For continuous reception, set bit, CREN.
- 7. Interrupt flag bit, RCxIF, will be set when reception is complete and an interrupt will be generated if the enable bit, RCxIE, was set.
- 8. Read the RCSTAx register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREGx register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 22-13: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

.C7/RX1/DT1/ SEG28 Pin	1	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	X' <u>. </u>	bit 7
C6/TX1/CK1/ SEG27 Pin (TXCKP = 0)	1 1 1 1					J÷	J.	J; L		1 1 1 1
C6/TX1/CK1/ SEG27 Pin - (TXCKP = 1)	, , , ,									1 1 1 1
Write to _ bit, SREN	- <u> </u>									
SREN bit		1		1	1		1			1
CREN bit	'0'	1		1 1	1	1	1 1	1	î L	ʻ0
RC1IF bit (Interrupt) –	1 1 1	1 1 1	1 1 1	1 1 1			1 1 1	1 1 1	1 1 1	
Read RCREG1 -	, , ,	1	1						1 1 1	:_f

PIC18F87K90 FAMILY

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7							bit
Legend:							
R = Readat		W = Writable			nented bit, read		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	ADFM: A/D R	Result Format S	elect bit				
	1 = Right justi 0 = Left justifie						
bit 6	Unimplement	ted: Read as '	כ'				
bit 5-3	ACQT<2:0>:	A/D Acquisition	n Time Select	bits			
	$111 = 20 \text{ TAD}$ $110 = 16 \text{ TAD}$ $101 = 12 \text{ TAD}$ $100 = 8 \text{ TAD}$ $011 = 6 \text{ TAD}$ $010 = 4 \text{ TAD}$ $001 = 2 \text{ TAD}$ $000 = 0 \text{ TAD}^{(1)}$						
bit 2-0	111 = FRC (cl 110 = FOSC/6 101 = FOSC/1 100 = FOSC/4	6 ock derived frc 2	m A/D RC oso	cillator) ⁽¹⁾			

REGISTER 23-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

23.2.2 A/D RESULT REGISTERS

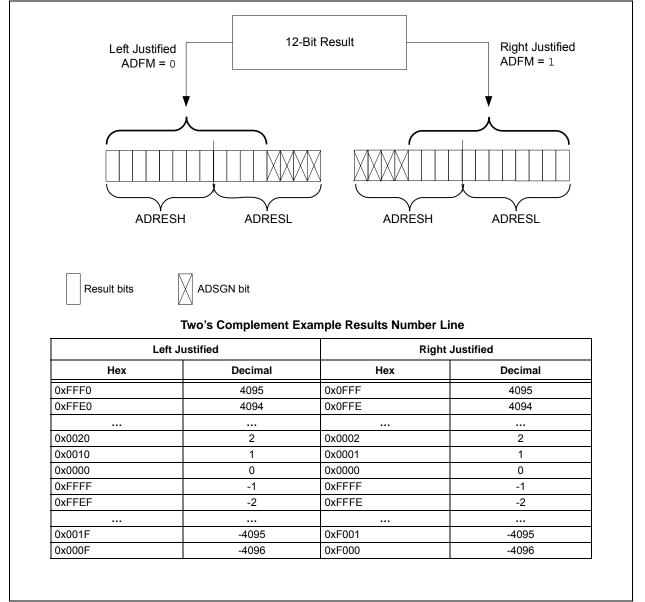

The ADRESH:ADRESL register pair is where the 12-bit A/D result and extended sign bits (ADSGN) are loaded at the completion of a conversion. This register pair is 16 bits wide. The A/D module gives the flexibility of left or right justifying the 12-bit result in the 16-Bit Result register. The A/D Format Select bit (ADFM) controls this justification.

Figure 23-3 shows the operation of the A/D result justification and location of the sign bit (ADSGN). The extended sign bits allow for easier 16-bit math to be

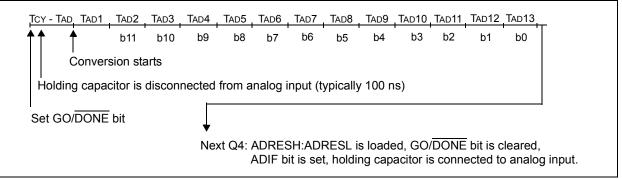
performed on the result. The results are represented as a two's compliment binary value. This means that when sign bits and magnitude bits are considered together in right justification, the ADRESH and ADRESL can be read as a single signed integer value.

When the A/D Converter is disabled, these 8-bit registers can be used as two general purpose registers.

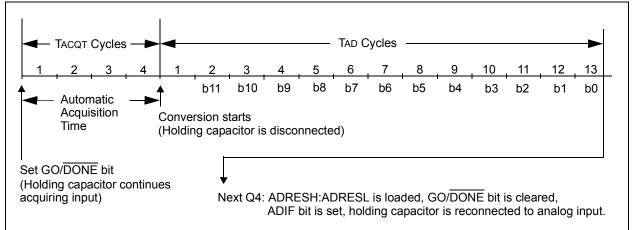
FIGURE 23-3: A/D RESULT JUSTIFICATION

23.7 A/D Conversions

Figure 23-6 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.


Figure 23-7 shows the operation of the A/D Converter after the GO/DONE bit has been set, the ACQT<2:0> bits set to '010' and a 4 TAD acquisition time selected.

Clearing the GO/\overline{DONE} bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers).


After the A/D conversion is completed or aborted, a 2 TAD Wait is required before the next acquisition can be started. After this Wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

FIGURE 23-6: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

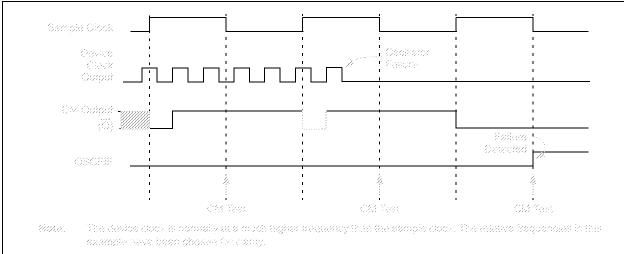


FIGURE 23-7: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

PIC18F87K90 FAMILY

28.5.3 FSCM INTERRUPTS IN POWER-MANAGED MODES

By entering a power-managed mode, the clock multiplexer selects the clock source selected by the OSCCON register. Fail-Safe Monitoring of the powermanaged clock source resumes in the power-managed mode.

If an oscillator failure occurs during power-managed operation, the subsequent events depend on whether or not the Oscillator Failure Interrupt Flag is enabled. If enabled (OSCFIF = 1), code execution will be clocked by the INTOSC multiplexer. An automatic transition back to the failed clock source will not occur.

If the interrupt is disabled, subsequent interrupts while in Idle mode will cause the CPU to begin executing instructions while being clocked by the INTOSC source.

28.5.4 POR OR WAKE FROM SLEEP

The FSCM is designed to detect oscillator failure at any point after the device has exited Power-on Reset (POR) or low-power Sleep mode. When the primary device clock is EC, RC or INTRC modes, monitoring can begin immediately following these events. For oscillator modes involving a crystal or resonator (HS, HSPLL, LP or XT), the situation is somewhat different. Since the oscillator may require a start-up time considerably longer than the FCSM sample clock time, a false clock failure may be detected. To prevent this, the internal oscillator block is automatically configured as the device clock and functions until the primary clock is stable (when the OST and PLL timers have timed out).

This is identical to Two-Speed Start-up mode. Once the primary clock is stable, the INTOSC returns to its role as the FSCM source.

Note: The same logic that prevents false oscillator failure interrupts on POR, or wake from Sleep, also prevents the detection of the oscillator's failure to start at all following these events. This can be avoided by monitoring the OSTS bit and using a timing routine to determine if the oscillator is taking too long to start. Even so, no oscillator failure interrupt will be flagged.

As noted in **Section 28.4.1 "Special Considerations for Using Two-Speed Start-up"**, it is also possible to select another clock configuration and enter an alternate power-managed mode while waiting for the primary clock to become stable. When the new powermanaged mode is selected, the primary clock is disabled.

31.3 DC Characteristics: PIC18F87K90 Family (Industrial/Extended) (Continued)

DC CHA	ARACTE	RISTICS		erature -40°	$C \leq TA \leq$	unless otherwise stated) ≤ +85°C for industrial ≤ +125°C for extended
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
	Vol	Output Low Voltage				
D080		I/O Ports:				
		PORTA,PORTB,PORTC	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +125°C
		PORTD, PORTE, PORTF, PORTG, PORTH, PORTJ	_	0.6	V	IOL = 3.5 mA, VDD = 4.5V, -40°C to +125°C
D083		OSC2/CLKO (EC modes)	_	0.6	V	IOL = 1.6 mA, VDD = 5.5V, -40°C to +125°C
	Vон	Output High Voltage ⁽¹⁾				
D090		I/O Ports:				
		PORTA,PORTB,PORTC	VDD - 0.7	—	V	ІОн = -3 mA, VDD = 4.5V, -40°C to +125°C
		PORTD, PORTE, PORTF, PORTG, PORTH, PORTJ	VDD - 0.7	—	V	ІОн = -2 mA, VDD = 4.5V, -40°C to +125°C
D092		OSC2/CLKO (INTOSC, EC modes)	Vdd - 0.7	—	V	ІОн = -1 mA, VDD = 5.5V, -40°C to +125°C
		Capacitive Loading Specs on Output Pins				
D100	COSC2	OSC2 Pin	_	20	pF	In HS mode when external clock is used to drive OSC1
D101	Сю	All I/O Pins and OSC2	_	50	pF	To meet the AC Timing Specifications
D102	Св	SCLx, SDAx	_	400	pF	I ² C™ Specification

Note 1: Negative current is defined as current sourced by the pin.

31.4 DC Characteristics: CTMU Current Source Specifications

DC CH	ARACT	ERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
	IOUT1	CTMU Current Source, Base Range	_	550		nA	CTMUICON<1:0> = 01		
	IOUT2	CTMU Current Source, 10x Range	—	5.5	_	μA	CTMUICON<1:0> = 10		
	IOUT3	CTMU Current Source, 100x Range	—	55	_	μA	CTMUICON<1:0> = 11		

Note 1: Nominal value at center point of current trim range (CTMUICON<7:2> = 000000).

TABLE 31-25: A/D CONVERTER CHARACTERISTICS: PIC18F87K90 FAMILY (INDUSTRIAL/EXTENDED)

Param No.	Sym	Characteristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution	-		12	bit	$\Delta V \text{REF} \ge 5.0 V$
A03	EIL	Integral Linearity Error	_	±1	±6.0	LSB	ΔVREF = 5.0V
A04	Edl	Differential Linearity Error	_	±1	+3.0/-1.0	LSB	ΔVREF = 5.0V
A06	EOFF	Offset Error	_	±1	±9.0	LSB	ΔVREF = 5.0V
A07	Egn	Gain Error	_	±1	±8.0	LSB	ΔVREF = 5.0V
A10	_	Monotonicity ⁽¹⁾	_	_	_	_	$VSS \le VAIN \le VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	3	_	Vdd - Vss	V	
A21	Vrefh	Reference Voltage High	Vss + 3.0V	_	VDD + 0.3V	V	
A22	Vrefl	Reference Voltage Low	Vss – 0.3V	_	Vdd - 3.0V	V	
A25	VAIN	Analog Input Voltage	VREFL	_	VREFH	V	
A30	Zain	Recommended Impedance of Analog Voltage Source	_	_	2.5	kΩ	
A50	IREF	VREF Input Current ⁽²⁾		_	5 150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.

Note 1: The A/D conversion result never decreases with an increase in the input voltage.

2: VREFH current is from the RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from the RA2/AN2/VREF-/CVREF pin or VSs, whichever is selected as the VREFL source.

TABLE B-1: NOTABLE DIFFERENCES BETWEEN PIC18F87K90, PIC18F87J90 AND PIC18F85J90 FAMILIES

FAMILIES		r	
Characteristic	PIC18F87K90 Family	PIC18F87J90 Family	PIC18F85J90 Family
Max Operating Frequency	64 MHz	48 MHz	40 MHz
Max Program Memory	128 Kbytes	128 Kbytes	32 Kbytes
Data Memory	4 Kbytes	4 Kbytes	2 Kbytes
Program Memory Endurance	10,000 Write/Erase (minimum)	10,000 Write/Erase (minimum)	1,000 Write/Erase (minimum)
Single-Word Write for Flash	Yes	Yes	No
Oscillator Options	PLL can be used with INTOSC	Yes	PLL cannot be used with INTOSC
СТМИ	Yes	Yes	No
RTCC	Yes	Yes	No
SOSC Oscillator Options	Low-power oscillator option for SOSC	Low-power oscillator option for SOSC	No
TICKI Clock	T1CKI can be used as a clock without enabling the SOSC oscillator	No	No
INTOSC	Up to 16 MHz	8 MHz	8 MHz
SPI/I ² C™	2	1	1
Timers	11	4	4
ECCP	3	No	No
ССР	7	2	2
Data EEPROM	Yes	No	No
Programmable BOR	Multiple level of BOR	No	No
WDT Prescale Options	22	16	16
5V Operation	Yes	No	No
nanoWatt XLP	Yes	No	No
Regulator	Yes	Yes	Yes
Low-Power BOR	Yes	No	No
ADC	24-Channel Differential (12-bit)	12-Channel Not differential (10-bit)	12-Channel Not Differential (10-bit)
Internal Temperature Sensor	Yes	No	No
Programmable HLVD	Yes	No	No
EUSART	2 EUSARTs	1 EUSART, 1 AUSART	1 EUSART, 1 AUSART
Comparators	3	2	2
Oscillator Options	14 options by OSC<3:0>	8 options by OSC<3:0>	8 options by OSC<3:0>
Ultra Low-Power Wake-up (ULPW)	Yes	No	No
Power-up Timer	Yes	No	No
MCLR Pin as Input Port	Yes	No	No
LCD Charge Pump	No	Yes	Yes
Internal Resistor Ladder for Biasing	Yes	No	No

PIC18F87K90 FAMILY

Core Features	
Easy Migration	9
Extended Instruction Set	9
Memory Options	9
nanoWatt Technology	9
Oscillator Options and Features	9
CPFSEQ	
CPFSGT	
CPFSLT	
Crystal Oscillator/Ceramic Resonators (HS)	
Customer Change Notification Service	566
Customer Notification Service	566
Customer Support	

D

Data Addressing Modes	104
Comparing Addressing Modes (Bit-Oriented,	
Byte Oriented) with the Extended	
Instruction Set Enabled	
Direct	104
Indexed Literal Offset	
BSR	
Mapping Access Bank	
Indirect	
Inherent and Literal	104
Data EEPROM Memory	
Associated Registers	
EEADR and EEADRH Registers	
EECON1 and EECON2 Registers	
Operation During Code-Protect	
Overview	
Protection, Spurious Writes	124
Reading	
Usage	
Write Verify	
Writing To	
Data Memory	
Access Bank Bank Select Register (BSR)	
Extended Instruction Set	
General Purpose Registers	
Memory Maps	
PIC18FX5K90/X7K90 Devices	03
Special Function Registers	
Special Function Registers	
Data Memory Modes	
Indexed Literal Offset	107
Affected Instructions	
DAW	
DC Characteristics	
CTMU Current Source	520
PIC18F87K90 Family, Industrial	
Power-Down and Supply Current	508
Supply Voltage	
DCFSNZ	471
DECF	
DECFSZ	
Default System Clock	
Details on Individual Family Members	10
Development Support	501
Device Overview	
Features (64-Pin Devices)	
Features (80-Pin Devices)	
Direct Addressing	105

Е

Effect on Standard PIC18 Instructions	100
Effects of Power-Managed Modes on Various	490
Clock Sources	52
Electrical Characteristics	
Enhanced Capture/Compare/PWM (ECCP)	
Capture Mode. See Capture.	
Compare Mode. See Compare.	
ECCP Mode and Timer Resources	
Enhanced PWM Mode	
Auto-Restart	
Auto-Shutdown	264
Direction Change in Full-Bridge	262
Output Mode	
Full-Bridge Application Full-Bridge Mode	
Half-Bridge Application	
Half-Bridge Application Examples	
Half-Bridge Mode	
Output Relationships (Active-High and	200
Active-Low)	258
Output Relationships Diagram	
Programmable Dead-Band Delay	
Shoot-Through Current	
Start-up Considerations	264
Outputs and Configuration	
Enhanced Capture/Compare/PWM (ECCP1/2/3)	
Associated Registers	272
Enhanced Universal Synchronous Asynchronous Received	er
Transmitter (EUSART). See EUSART.	
Equations	
16 x 16 Signed Multiplication Algorithm	
16 x 16 Unsigned Multiplication Algorithm	
A/D Acquisition Time	
A/D Minimum Charging Time	384
Calculating the Minimum Required	
Acquisition Time	
Converting Error Pulses	232
Asynchronous Mode	350
12-Bit Break Transmit and Receive	000
Sequence	366
Associated Registers, Receive	
Associated Registers, Transmit	
Auto-Wake-up on Sync Break	
Receiver	
Setting Up 9-Bit Mode with Address Detect	362
Transmitter	
Baud Rate Generator	
Operation in Power-Managed Modes	
Baud Rate Generator (BRG)	
Associated Registers	
Auto-Baud Rate Detect	
Baud Rate Error, Calculating	
Baud Rates, Asynchronous Modes	
High Baud Rate Select (BRGH Bit)	
Sampling	
Synchronous Master Mode	
Associated Registers, Receive	
Associated Registers, Transmit	
Reception Transmission	
1101151111551011	307