

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f67k90-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 **DEVICE OVERVIEW**

This document contains device-specific information for the following devices:

- PIC18F65K90 PIC18F85K90
- PIC18F66K90
- PIC18F86K90 • PIC18F67K90 PIC18F87K90

This family combines the traditional advantages of all PIC18 microcontrollers - namely, high computational performance and a rich feature set - with a versatile on-chip LCD driver, while maintaining an extremely competitive price point. These features make the PIC18F87K90 family a logical choice for many high-performance applications where price is a primary consideration.

1.1 **Core Features**

1.1.1 nanoWatt TECHNOLOGY

All of the devices in the PIC18F87K90 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- · Alternate Run Modes: By clocking the controller from the Timer1 source or the internal RC oscillator, power consumption during code execution can be reduced.
- Multiple Idle Modes: The controller can also run with its CPU core disabled but the peripherals still active. In these states, power consumption can be reduced even further.
- · On-the-Fly Mode Switching: The power-managed modes are invoked by user code during operation, allowing the user to incorporate power-saving ideas into their application's software design.
- nanoWatt XLP: An extra low-power BOR, RTCC and low-power Watchdog Timer. Also, an ultra low-power regulator for Sleep mode is provided in regulator-enabled modes.

1.1.2 OSCILLATOR OPTIONS AND **FEATURES**

All of the devices in the PIC18F87K90 family offer different oscillator options, allowing users a range of choices in developing application hardware. These include:

- External Resistor/Capacitor (RC); RA6 available
- External Resistor/Capacitor with Clock Out (RCIO)
- · Three External Clock modes:
 - External Clock (EC); RA6 available
 - External Clock with Clock Out (ECIO)
 - External Crystal (XT, HS, LP)
- A Phase Lock Loop (PLL) frequency multiplier, available to the External Oscillator modes which allows clock speeds of up to 64 MHz. PLL can also be used with the internal oscillator.

- · An internal oscillator block that provides a 16 MHz clock (±2% accuracy) and an INTRC source (approximately 31 kHz, stable over temperature and VDD)
 - Operates as HF-INTOSC or MF-INTOSC when block selected for 16 MHz or 500 kHz
 - Frees the two oscillator pins for use as additional general purpose I/O

The internal oscillator block provides a stable reference source that gives the family additional features for robust operation:

- Fail-Safe Clock Monitor: This option constantly monitors the main clock source against a reference signal provided by the internal oscillator. If a clock failure occurs, the controller is switched to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.
- Two-Speed Start-up: This option allows the internal oscillator to serve as the clock source from Power-on Reset, or wake-up from Sleep mode, until the primary clock source is available.

MEMORY OPTIONS 1.1.3

The PIC18F87K90 family provides ample room for application code, from 32 Kbytes to 128 Kbytes of code space. The Flash cells for program memory are rated to last up to 10,000 erase/write cycles. Data retention without refresh is conservatively estimated to be greater than 40 years.

The Flash program memory is readable and writable. During normal operation, the PIC18F87K90 family also provides plenty of room for dynamic application data with up to 3,828 bytes of data RAM.

EXTENDED INSTRUCTION SET 1.1.4

The PIC18F87K90 family implements the optional extension to the PIC18 instruction set, adding 8 new instructions and an Indexed Addressing mode. Enabled as a device configuration option, the extension has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as 'C'.

EASY MIGRATION 1.1.5

Regardless of the memory size, all devices share the same rich set of peripherals (except the 32-Kbyte parts, which have two less CCPs and three less Timers), allowing for a smooth migration path as applications grow and evolve.

The consistent pinout scheme, used throughout the entire family, also aids in migrating to the next larger device. This is true when moving between the 64-pin members, between the 80-pin members, or even jumping from 64-pin to 80-pin devices.

2.0 GUIDELINES FOR GETTING STARTED WITH PIC18FXXKXX MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC18F87K90 family family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- ENVREG (if implemented) and VCAP/VDDCORE pins (see Section 2.4 "Voltage Regulator Pins (ENVREG and VCAP/VDDCORE)")

These pins must also be connected if they are being used in the end application:

- PGC/PGD pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

Note: The AVDD and AVSS pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED

MINIMUM CONNECTIONS

Key (all values are recommendations):

C1 through C6: 0.1 $\mu\text{F},$ 20V ceramic R1: 10 k Ω

R2: 100Ω to 470Ω

- Note 1: See Section 2.4 "Voltage Regulator Pins (ENVREG and VCAP/VDDCORE)" for explanation of ENVREG pin connections.
 - 2: The example shown is for a PIC18F device with five VDD/VSS and AVDD/AVSS pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

In the RC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 3-3 shows how the R/C combination is connected.

The RCIO Oscillator mode (Figure 3-4) functions like the RC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6).

3.5.1 EXTERNAL CLOCK INPUT (EC MODES)

The EC and ECPLL Oscillator modes require an external clock source to be connected to the OSC1 pin. There is no oscillator start-up time required after a Power-on Reset or after an exit from Sleep mode.

In the EC Oscillator mode, the oscillator frequency, divided by 4, is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 3-5 shows the pin connections for the EC Oscillator mode.

FIGURE 3-5: EXTERNAL CLOCK INPUT OPERATION (EC CONFIGURATION)

An external clock source may also be connected to the OSC1 pin in the HS mode, as shown in Figure 3-6. In this configuration, the divide-by-4 output on OSC2 is not available. Current consumption in this configuration will be somewhat higher than EC mode, as the internal oscillator's feedback circuitry will be enabled (in EC mode, the feedback circuit is disabled).

EXTERNAL CLOCK INPUT OPERATION (HS OSC CONFIGURATION)

3.5.2 PLL FREQUENCY MULTIPLIER

A Phase Lock Loop (PLL) circuit is provided as an option for users who want to use a lower frequency oscillator circuit, or to clock the device up to its highest rated frequency from a crystal oscillator. This may be useful for customers who are concerned with EMI due to high-frequency crystals, or users who require higher clock speeds from an internal oscillator.

3.5.2.1 HSPLL and ECPLL Modes

The HSPLL and ECPLL modes provide the ability to selectively run the device at four times the external oscillating source to produce frequencies up to 64 MHz.

The PLL is enabled by setting the PLLEN bit (OSCTUNE<6>) or the PLLCFG bit (CONFIG1H<4>). The PLLEN bit provides software control for the PLL, even if PLLCFG is set to '0'. The PLL is enabled only when the HS or EC oscillator frequency is within the 4 MHz to 16 MHz input range.

This enables additional flexibility for controlling the application's clock speed in software. The PLLEN should be enabled in HS or EC Oscillator mode only if the input frequency is in the range of 4 MHz-16 MHz.

Address	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR
F50h	CCPR2H	Capture/Com	Capture/Compare/PWM Register 2 High Byte						xxxx xxxx	
F51h	ECCP2DEL	P2RSEN	P2DC6	P2DC5	P2DC4	P2DC3	P2DC2	P2DC1	P2DC0	0000 0000
F52h	ECCP2AS	ECCP2ASE	ECCP2AS2	ECCP2AS1	ECCP2AS0	PSS2AC1	PSS2AC0	PSS2BD1	PSS2BD0	0000 0000
F53h	PADCFG1	RDPU	REPU	RJPU ⁽²⁾	_	_	RTSECSEL1	RTSECSEL0	_	00000-
F54h	CM1CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0	0001 1111
F55h	CTMUICON	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG1	0000 0000
F56h	CTMUCONL	EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	0000 0000
F57h	CTMUCONH	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	0-00 0000
F58h	ALRMVALL	Alarm Value	High Register	Window base	ed on APTR<1	:0>				0000 0000
F59h	ALRMVALH	Alarm Value	High Register	Window base	ed on APTR<1	:0>				xxxx xxxx
F5Ah	ALRMRPT	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000 0000
F5Bh	ALRMCFG	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	0000 0000
F5Ch	RTCVALL	RTCC Value	Low Register	Window base	d on RTCPTF	<1:0>				0000 0000
F5Dh	RTCVALH	RTCC Value	High Register	Window base	ed on RTCPTI	R<1:0>				xxxx xxxx
F5Eh	RTCCAL	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	xxxx xxxx
F5Fh	RTCCFG	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	0-00 0000
F60h	PIE6	_	_	_	EEIE	_	CMP3IE	CMP2IE	CMP1IE	0 -000
F61h	EEDATA	EEPROM Da	ta Register							0000 0000
F62h	EEADR	EEPROM Ad	Idress Registe	er Low Byte						0000 0000
F63h	EEADRH	EEPROM Ad	Idress Registe	r High Byte						00
F64h	OSCCON2	_	SOSCRUN	_	_	SOSCGO	_	MFIOFS	MFIOSEL	-0 0-x0
F65h	BAUDCON1	ABDOVF	RCIDL	RXDTP	ТХСКР	BRG16	_	WUE	ABDEN	0000 0-x0
F66h	LCDDATA0	S07C0	S06C0	S05C0	S04C0	S03C0	S02C0	S01C0	S00C0	xxxx xxxx
F67h	LCDDATA1	S15C0	S14C0	S13C0	S12C0	S11C0	S10C0	S09C0	S08C0	XXXX XXXX
F68h	LCDDATA2	S23C0	S22C0	S21C0	S20C0	S19C0	S18C0	S17C0	S16C0	XXXX XXXX
F69h	LCDDATA3	S31C0	S30C0	S29C0	S28C0	S27C0	S26C0	S25C0	S24C0	XXXX XXXX
F6Ah	LCDDATA4	S39C0	S38C0	S37C0	S36C0	S35C0	S34C0	S33C0	S32C0	XXXX XXXX
F6Bh	LCDDATA5	S47C0	S46C0	S45C0	S44C0	S43C0	S42C0	S41C0	S40C0	XXXX XXXX
F6Ch	LCDDATA6	S07C1	S06C1	S05C1	S04C1	S03C1	S02C1	S01C1	S00C1	xxxx xxxx
F6Dh	LCDDATA7	S15C1	S14C1	S13C1	S12C1	S11C1	S10C1	S09C1	S08C1	xxxx xxxx
F6Eh	LCDDATA8	S23C1	S22C1	S21C1	S20C1	S19C1	S18C1	S17C1	S16C1	xxxxxxxx
F6Fh	LCDDATA9	S31C1	S30C1	S29C1	S28C1	S27C1	S26C1	S25C1	S24C1	XXXX XXXX
F70h	LCDDATA10(2)	S39C1 ⁽²⁾	S38C1 ⁽²⁾	S37C1 ⁽²⁾	S36C1 ⁽²⁾	S35C1 ⁽²⁾	S34C1 ⁽²⁾	S33C1 ⁽²⁾	S32C1	xxxx xxxx
F71h	L CDDATA 11 ⁽²⁾	S47C1	S46C1	S45C1	S44C1	S43C1	S42C1	S41C1	S40C1	****
F72h	LCDDATA12	S07C2	S06C2	S05C2	S04C2	S03C2	S02C2	S01C2	S00C2	xxxx xxxx
F73h		S15C2	S14C2	S13C2	S12C2	S11C2	S10C2	S09C2	S08C2	****
F74h	LCDDATA14	\$23C2	S22C2	S21C2	S20C2	S19C2	S18C2	S17C2	S16C2	****
F75h	LCDDATA15	S31C2	S30C2	S29C2	S28C2	S27C2	S26C2	S25C2	S24C2	xxxx xxxx
F76h	LCDDATA16 ⁽²⁾	S39C2 ⁽²⁾	S38C2 ⁽²⁾	S37C2 ⁽²⁾	S36C2 ⁽²⁾	S35C2 ⁽²⁾	S34C2 ⁽²⁾	S33C2 ⁽²⁾	S32C2	****
F77h	LCDDATA17 ⁽²⁾	S47C2	S46C2	S45C2	S44C2	S43C2	S42C2	S41C2	S40C2	****
F78h		S07C3	S06C3	S05C3	S04C3	S03C3	S02C3	S01C3	S00C3	XXXX XXXX
F79h		S15C3	S14C3	S13C3	S12C3	S11C3	S10C3	S09C3	S08C3	XXXX XXXX
F7Ah	LCDDATA20	S23C3	S22C3	S21C3	S20C3	S19C3	S18C3	S17C3	S16C3	XXXX XXXX
F7Bh	L CDDATA21	S31C3	S30C3	S29C3	S28C3	S27C3	S26C3	S25C3	S24C3	XXXX XXXX
F7Ch		S39C3(2)	S38C3(2)	S37C3(2)	S36C3(2)	S35C3(2)	S34C3(2)	S33C3(2)	S32C3	YYYY YYYY
F7Db		S47C3	S46C3	S45C3	S44C3	S43C3	S42C3	S41C3	S40C3	~~~~ ~~~~
E7Eb	EECON?	FEPROM	ntrol Register	2 (not a như		0-000	07200	0,100	0-000	
E7Eb	EECON1		CECS			WREPP	WREN	\//P	BD	
F80b	PORTA		DV6	DA5						AA-U XUUU
10011	FURIA	RA/	RA0	RAD	RA4	RAJ	RAZ	RAI	RAU	XXXX XXXX

TABLE 6-2:	PIC18F87K90 FAMILY REGISTER FILE SUMMARY (CONTINUED)	1

Note 1: This bit is available when Master Clear is disabled (MCLRE = 0). When MCLRE is set, the bit is unimplemented.

2: Unimplemented in 64-pin devices (PIC18F6XK90).

3: Unimplemented in devices with a program memory of 32 Kbytes (PIC18FX5K90).

8.6 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in the Configuration Words. External read and write operations are disabled if code protection is enabled.

The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to **Section 28.0 "Special Features of the CPU"** for additional information.

8.7 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT, Parameter 33 in Section 31.3 "DC Characteristics: PIC18F87K90 Family (Industrial/Extended)").

The write initiate sequence, and the WREN bit together, help prevent an accidental write during brown-out, power glitch or software malfunction. The WREN bit is not cleared by hardware.

8.8 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). Frequently changing values will typically be updated more often than Specification D124. If this is the case, an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 8-3.

Note: If data EEPROM is only used to store constants and/or data that changes often, an array refresh is likely not required. See Specification D124 in Table 31-1.

EAAIVIFLE 0-3.	DATA EEPROW REFRESH ROUTINE	

DATA CEDDOM DECREQUIDOUTINE

	CLRF	EEADR	; Start at address 0
	CLRF	EEADRH	;
	BCF	EECON1, CFGS	; Set for memory
	BCF	EECON1, EEPGD	; Set for Data EEPROM
	BCF	INTCON, GIE	; Disable interrupts
	BSF	EECON1, WREN	; Enable writes
LOOP			; Loop to refresh array
	BSF	EECON1, RD	; Read current address
	MOVLW	0x55	;
	MOVWF	EECON2	; Write 55h
	MOVLW	0xAA	;
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BTFSC	EECON1, WR	; Wait for write to complete
	BRA	\$-2	
	INCFSZ	EEADR, F	; Increment address
	BRA	LOOP	; Not zero, do it again
	INCFSZ	EEADRH, F	; Increment the high address
	BRA	LOOP	; Not zero, do it again
	BCF	EECON1, WREN	; Disable writes
	BSF	INTCON, GIE	; Enable interrupts

EVAMPLE 0 2.

11.8 PORTG, TRISG and **LATG Registers**

PORTG is a 5-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISG and LATG.

PORTG is multiplexed with EUSART, LCD and CCP/ECCP/Analog/Comparator/RTCC/Timer input functions (Table 11-14). When operating as I/O, all PORTG pins have Schmitt Trigger input buffers. The open-drain functionality for the CCPx and UART can be configured using ODCONx.

RG4 is multiplexed with LCD segment drives controlled by bits in the LCDSE2 register and as the RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1D/C3INC pin. The I/O port function is only available when the segments are disabled.

The RG5 pin is multiplexed with the MCLR pin and is available only as an input port. To configure this port for input only, set the MCLRE pin (CONFIG3H<7>).

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTG pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings. The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register without concern due to peripheral overrides.

EXAMPL	.E 11-7:	INIT	ALIZING PORIG	
CLRF	PORTG		<pre>; Initialize PORTG by ; clearing output ; data latches</pre>	
BCF	CM1CON,	CON	; disable ; comparator 1	
CLRF	LATG		<pre>; Alternate method ; to clear output ; data latches</pre>	
BANKSEL MOVLW	ANCON2 0F0h		; make AN16 to AN19 ; digital	
MOVWF MOVLW	ANCON2 04h		; Value used to ; initialize data ; direction	
MOVWF	TRISG		; Set RG1:RG0 as ; outputs ; RG2 as input ; RG4:RG3 as inputs	

					; Gdlputs ; RG2 as input ; RG4:RG3 as inputs
TABLE 11-14:	PORTG I	FUNCTIC	ONS		
Pin Name	Function	TRIS Setting	I/O	l/O Type	Description
RG0/ECCP3/	RG0	0	0	DIG	LATG<0> data output.
P3A		1	Ι	ST	PORTG<0> data input.
	ECCP3	0	0	DIG	ECCP3 compare output and ECCP3 PWM output; takes priority over port data.
		1	Ι	ST	ECCP3 capture input.
	P3A	0	0	—	ECCP3 PWM Output A. May be configured for tri-state during Enhanced PWM shutdown events.
RG1/TX2/CK2/	RG1	0	0	DIG	LATG<1> data output.
AN19/C3OUT		1	Ι	ST	PORTG<1> data input.
	TX2	1	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.
	CK2	1	0	DIG	Synchronous serial data input (EUSART module); user must configure as an input.
		1	Ι	ST	Synchronous serial clock input (EUSART module).
	AN19	1	Ι	ANA	A/D Input Channel 19. Default input configuration on POR. Does not affect digital output.
	C3OUT	x	0	DIG	Comparator 3 output.

TAB

O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, Legend:

x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

13.8.2 TIMER1 GATE SOURCE SELECTION

The Timer1 gate source can be selected from one of four sources. Source selection is controlled by the T1GSSx bits, T1GCON<1:0> (see Table 13-4).

TABLE 13-4:	TIMER1	GATE	SOUR	CES
			0001	

T1GSS<1:0>	Timer1 Gate Source
00	Timer1 Gate Pin
01	TMR2 to Match PR2 (TMR2 increments to match PR2)
10	Comparator 1 Output (Comparator logic high output)
11	Comparator 2 Output (Comparator logic high output)

The polarity for each available source is also selectable, controlled by the T1GPOL bit (T1GCON<6>).

13.8.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 gate control. It can be used to supply an external source to the Timer1 gate circuitry.

13.8.2.2 Timer2 Match Gate Operation

The TMR2 register will increment until it matches the value in the PR2 register. On the very next increment cycle, TMR2 will be reset to 00h. When this Reset occurs, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 gate circuitry. The pulse will remain high for one instruction cycle and will return back to a low state until the next match.

Depending on T1GPOL, Timer1 increments differently when TMR2 matches PR2. When T1GPOL = 1, Timer1 increments for a single instruction cycle following a TMR2 match with PR2. When T1GPOL = 0, Timer1 increments continuously, except for the cycle following the match, when the gate signal goes from low-to-high.

13.8.2.3 Comparator 1 Output Gate Operation

The output of Comparator 1 can be internally supplied to the Timer1 gate circuitry. After setting up Comparator 1 with the CM1CON register, Timer1 will increment depending on the transition of the CMP1OUT (CMSTAT<5>) bit.

13.8.2.4 Comparator 2 Output Gate Operation

The output of Comparator 2 can be internally supplied to the Timer1 gate circuitry. After setting up Comparator 2 with the CM2CON register, Timer1 will increment depending on the transition of the CMP2OUT (CMSTAT<6>) bit.

15.5.5 TIMER3/5/7 GATE VALUE STATUS

When Timer3/5/7 gate value status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the TxGVAL bit (TxGCON<2>). The TxGVAL bit is valid even when the Timer3/5/7 gate is not enabled (TMRxGE bit is cleared).

15.5.6 TIMER3/5/7 GATE EVENT INTERRUPT

When the Timer3/5/7 gate event interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of TxGVAL occurs, the TMRxGIF flag bit in the PIRx register will be set. If the TMRxGIE bit in the PIEx register is set, then an interrupt will be recognized.

The TMRxGIF flag bit operates even when the Timer3/ 5/7 gate is not enabled (TMRxGE bit is cleared).

REGISTER 17-9: DAY: DAY VALUE REGISTER⁽¹⁾

Γ.

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal value of Day's Tens Digit bits Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 17-10: WEEKDAY: WEEKDAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3 Unimplemented: Read as '0'

bit 2-0 **WDAY<2:0>:** Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 17-11: HOUR: HOUR VALUE REGISTER⁽¹⁾

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 17-12: MINUTE: MINUTE VALUE REGISTER

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-4	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits Contains a value from 0 to 5.
bit 3-0	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits Contains a value from 0 to 9.

REGISTER 17-13: SECOND: SECOND VALUE REGISTER

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits Contains a value from 0 to 9.

© 2009-2011 Microchip Technology Inc.

21.4.2 OPERATION

The MSSP module functions are enabled by setting the MSSP Enable bit, SSPEN (SSPxCON1<5>).

The SSPxCON1 register allows control of the I^2C operation. Four mode selection bits (SSPxCON1<3:0>) allow one of the following I^2C modes to be selected:

- I²C Master mode, clock
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address) with Start and Stop bit interrupts enabled
- I²C Slave mode (10-bit address) with Start and Stop bit interrupts enabled
- I²C Firmware Controlled Master mode, slave is Idle

Selection of any I²C mode with the SSPEN bit set forces the SCLx and SDAx pins to be open-drain, provided these pins are programmed as inputs by setting the appropriate TRISC or TRISD bits. To ensure proper operation of the module, pull-up resistors must be provided externally to the SCLx and SDAx pins.

21.4.3 SLAVE MODE

In Slave mode, the SCLx and SDAx pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

The I^2C Slave mode hardware will always generate an interrupt on an address match. Address masking will allow the hardware to generate an interrupt for more than one address (up to 31 in 7-bit addressing and up to 63 in 10-bit addressing). Through the mode select bits, the user can also choose to interrupt on Start and Stop bits.

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (ACK) pulse and load the SSPxBUF register with the received value currently in the SSPxSR register.

Any combination of the following conditions will cause the MSSP module not to give this ACK pulse:

- The Buffer Full bit, BF (SSPxSTAT<0>), was set before the transfer was received.
- The overflow bit, SSPOV (SSPxCON1<6>), was set before the transfer was received.

In this case, the SSPxSR register value is not loaded into the SSPxBUF, but bit, SSPxIF, is set. The BF bit is cleared by reading the SSPxBUF register, while bit, SSPOV, is cleared through software.

The SCLx clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing Parameter 100 and Parameter 101.

21.4.3.1 Addressing

Once the MSSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the 8 bits are shifted into the SSPxSR register. All incoming bits are sampled with the rising edge of the clock (SCLx) line. The value of register, SSPxSR<7:1>, is compared to the value of the SSPxADD register. The address is compared on the falling edge of the eighth clock (SCLx) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- 1. The SSPxSR register value is loaded into the SSPxBUF register.
- 2. The Buffer Full bit, BF, is set.
- 3. An ACK pulse is generated.
- 4. The MSSP Interrupt Flag bit, SSPxIF, is set (and an interrupt is generated, if enabled) on the falling edge of the ninth SCLx pulse.

In 10-Bit Addressing mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. The R/\overline{W} bit (SSPxSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '11110 A9 A8 0', where 'A9' and 'A8' are the two MSbs of the address. The sequence of events for 10-bit addressing is as follows, with Steps, 7 through 9, for the slave-transmitter:

- 1. Receive first (high) byte of address (bits, SSPxIF, BF and UA, are set on address match).
- 2. Update the SSPxADD register with second (low) byte of address (clears bit, UA, and releases the SCLx line).
- 3. Read the SSPxBUF register (clears bit, BF) and clear flag bit, SSPxIF.
- 4. Receive second (low) byte of address (bits, SSPxIF, BF and UA, are set).
- 5. Update the SSPxADD register with the first (high) byte of address. If match releases the SCLx line, this will clear bit, UA.
- 6. Read the SSPxBUF register (clears bit, BF) and clear flag bit, SSPxIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits, SSPxIF and BF, are set).
- 9. Read the SSPxBUF register (clears bit, BF) and clear flag bit, SSPxIF.

21.4.14 SLEEP OPERATION

While in Sleep mode, the I^2C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

21.4.15 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

21.4.16 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit (SSPxSTAT<4>) is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the MSSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed in hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- · Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

21.4.17 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDAx pin, arbitration takes place when the master outputs a '1' on SDAx, by letting SDAx float high, and another master asserts a '0'. When the SCLx pin floats high, data should be stable. If the expected data on SDAx is a '1' and the data sampled on the SDAx pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF, and reset the I^2C port to its Idle state (Figure 21-27).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDAx and SCLx lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDAx and SCLx lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine, and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDAx and SCLx pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I²C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 21-27: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

FIGURE 28-8: EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED

FIGURE 28-9: EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED

GOTO	Unconditio	Unconditional Branch							
Syntax:	GOTO k								
Operands:	$0 \le k \le 104$	8575							
Operation:	$k \rightarrow PC<20$	D:1>							
Status Affected:	None	None							
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111	1111 k ₁₉ kkk	k ₇ kk kkk	:k k	kkkk ₀ kkkk ₈				
Description:	GOTO allow anywhere v range. The PC<20:1>. instruction.	GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a two-cycle instruction.							
Words:	2								
Cycles:	2	2							
Q Cycle Activity:									
Q1	Q2	Q3			Q4				
Decode	Read literal 'k'<7:0>,	No operat	ion	Rea 'k'< Writ	ad literal <19:8>, te to PC				
No operation	No operation	No operation		ор	No eration				
Example: After Instructio PC =	GOTO THE on Address (T	RE HERE)							

INCF	Increment	f				
Syntax:	INCF f{,	d {,a}}				
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \left[0,1\right] \end{array}$					
	a ∈[0,1]	$a \in [0, 1]$				
Operation:	(f) + 1 \rightarrow d	(f) + 1 \rightarrow dest				
Status Affected:	C, DC, N,	OV, Z				
Encoding:	0010	10da	ffff	ffff		
Description:	The conter incremente placed in V placed bac	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'.				
	If 'a' is '0', f If 'a' is '1', f GPR bank.	the Acces the BSR is	s Bank is s used to	s selected. select the		
	If 'a' is '0' a set is enab in Indexed mode when Section 29 Bit-Oriento Literal Off	Ind the ex led, this in Literal Of never f < 9 0.2.3 "Byt ed Instructions set Mode	tended in hstruction fset Addr 25 (5Fh). e-Orient ctions in " for deta	nstruction n operates ressing See red and n Indexed ails.		
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Proce Data	ss V I de	Write to estination		
Example:	INCF	CNT,	1, 0			
Before Instruc CNT Z DC After Instructio CNT Z C	tion = FFh = 0 = ? = ? on = 00h = 1 = 1 = 1					

ADD	WF	ADD W to Indexed (Indexed Literal Offset mode)						
Synt	ax:	ADDWF	[k] {,d}					
Operands:		$\begin{array}{l} 0 \leq k \leq 95 \\ d \in \left[0 , 1 \right] \end{array}$						
Ope	ration:	(W) + ((FSF	R2) + k) -	\rightarrow dest				
Statu	is Affected:	N, OV, C, D	N, OV, C, DC, Z					
Enco	oding:	0010	01d0	kkkk	kkkk			
Description:		The conten contents of FSR2, offse	The contents of W are added to the contents of the register indicated by FSR2, offset by the value 'k'.					
		lf 'd' is '0', tl is '1', the re register 'f' (he result esult is st default).	is stored ored bac	l in W. lf 'd' k in			
Word	ds:	1						
Cycl	es:	1						
QC	vcle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read 'k'	Proce Data	ss a de	Write to estination			
<u>Exar</u>	nple:	ADDWF	[OFST]	,0				
	Before Instruct W OFST FSR2 Contents of 0A2Ch After Instruction W Contents of 0A2Ch	ion = = = n = =	17h 2Ch 0A00r 20h 37h 20h	1				

BSF		Bit Set Indexed (Indexed Literal Offset mode)						
Synta	ax:	BSF [k], b						
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$						
Oper	ation:	$1 \rightarrow ((FSR))$	2) + k) 					
Statu	is Affected:	None	None					
Enco	oding:	1000	1000 bbb0 kkkk kkkk					
Desc	ription:	Bit 'b' of the offset by the	register indica e value 'k', is s	ated by FSR2, set.				
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process Data	Write to destination				
Exan	nple:	BSF [FLAG_OFST]	, 7				
	Before Instruc FLAG_O FSR2	tion FST = =	0Ah 0A00h					
	Contents		55h					
	After Instructio	on –	0011					
	Contents	_	DEb					
		. –	DSIT					
SETI	F	Set Indexe (Indexed L	d iteral Offset r	node)				
SETI Synta	F ax:	Set Indexe (Indexed L SETF [k]	d iteral Offset r	node)				
SET Synta Oper	F ax: ands:	Set Indexe (Indexed L SETF [k] 0 ≤ k ≤ 95	d iteral Offset r	node)				
SET Synta Oper Oper	F ax: ands: ation:	Set Indexed (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS	d iteral Offset r SR2) + k)	node)				
Setti Synta Oper Oper Statu	F ax: rands: ration: is Affected:	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None	d iteral Offset r GR2) + k)	node)				
Setti Synta Oper Oper Statu Encc	F ax: ands: ation: s Affected: oding:	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110	d iteral Offset r SR2) + k) 1000 kkJ	node) kk kkkk				
SETI Synta Oper Statu Enco Desc	F rands: ration: us Affected: oding: pription:	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offse	d iteral Offset r SR2) + k) 1000 kkl ts of the registe et by 'k', are se	node) kkkkk er indicated by et to FFh.				
Serri Synta Oper Statu Enco Deso	F rands: ration: us Affected: oding: pription: ds:	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offse 1	d iteral Offset r GR2) + k) 1000 kkl ts of the registr et by 'k', are se	kk kkkk er indicated by et to FFh.				
SETI Synta Oper Statu Enco Deso Word	r ax: ration: us Affected: uding: uription: ds:	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1	d iteral Offset r SR2) + k) 1000 kki ts of the registe et by 'k', are se	kk kkkk er indicated by et to FFh.				
SETI Synta Oper Statu Encc Desc Word Cycle Q C	ration: ax: sation: us Affected: oding: oription: ds: es: ycle Activity:	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1	d iteral Offset r SR2) + k) 1000 kki ts of the registe et by 'k', are se	node) kkkk kkkk er indicated by et to FFh.				
Setti Oper Oper Statu Enco Deso Word Cycle Q C	F aax: rands: ration: us Affected: oding: oription: ds: es: ycle Activity: Q1	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1	d iteral Offset r GR2) + k) 1000 kkl ts of the registr et by 'k', are se	rindicated by to FFh.				
SETI Synta Oper Statu Encc Desc Vorc Cycle Q C	rands: rands: ration: us Affected: uding: pription: ds: us: us: us: us: us: us: us: us: us: u	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1 Q2 Read 'k'	d iteral Offset r SR2) + k) 1000 kkl ts of the registe tby 'k', are se Q3 Process	ck kkkk er indicated by et to FFh. Q4 Write				
SETI Synta Oper Statu Encco Desco Cycle Q C	F ax: ration: is Affected: oding: cription: ds: ess: ycle Activity: Q1 Decode	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1 Q2 Read 'k'	d iteral Offset r SR2) + k) 1000 kkl ts of the registe et by 'k', are se Q3 Process Data	kkkkk er indicated by et to FFh. Q4 Write register				
SETI Synta Oper Statu Encc Desc Cycle Q C	rands: rands: ration: us Affected: oding: rription: ds: es: ycle Activity: Q1 Decode	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offse 1 1 Q2 Read 'k'	d iteral Offset r SR2) + k) 1000 kkl ts of the registe et by 'k', are se Q3 Process Data OFST]	kk kkkk er indicated by et to FFh. Q4 Write register				
SETI Synta Oper Statu Enccc Desc Cycle Q C	rands: rands: ration: is Affected: oding: cription: ds: es: ycle Activity: Q1 Decode Decode nple: Before Instruc	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1 Q2 Read 'k' SETF [d iteral Offset r GR2) + k) 1000 kkl ts of the registre et by 'k', are se Q3 Process Data OFST]	kk kkkk er indicated by et to FFh. Q4 Write register				
SETI Synta Oper Statu Enccc Desc Cycle Q C	F ax: rands: ration: us Affected: oding: ription: ds: es: ycle Activity: Q1 Decode nple: Before Instruct OFST FSR2	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1 Q2 Read 'k' SETF [tion = 2C = 0A	d iteral Offset r SR2) + k) 1000 kkl ts of the registe ts of the registe to of the registe OFST] th 00h	Anode)				
SETI Synta Oper Statu Encc Desc Vorc Cycle Q C	rands: rands: ration: is Affected: oding: cription: ds: es: ycle Activity: Q1 Decode Mple: Before Instruc OFST FSR2 Contents of 0A2CH	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1 Q2 Read 'k' SETF [tion = 2C = 0A	d iteral Offset r SR2) + k) 1000 kkl ts of the registe of the registe Q3 Process Data OFST] Ch 00h	kk kkkk er indicated by et to FFh. Q4 Write register				
SETI Synta Oper Statu Enccc Desc Cycle Q C	F ax: rands: ration: us Affected: uding: ription: ds: es: ycle Activity: Q1 Decode nple: Before Instruct OFST FSR2 Contents of 0A2CF After Instruction	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1 Q2 Read 'k' SETF [= 2C = 0A n = 00 on	d iteral Offset r SR2) + k) 1000 kkl ts of the registre ts of the registre Q3 Process Data OFST] th 00h h	kk kkk er indicated by et to FFh. Q4 Write register				
SETI Synta Oper Statu Enccc Descc Cycle Q C	rands: rands: ration: us Affected: oding: rription: ds: es: ycle Activity: Q1 Decode Decode nple: Before Instruct OFST FSR2 Contents of 0A2Ct After Instruction Contents	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1 Q2 Read 'k' SETF [tion = 2C = 0A n = 00 on = FF	d iteral Offset r SR2) + k) 1000 kkl ts of the registe et by 'k', are se Q3 Process Data OFST] th 00h h	kk kkk er indicated by et to FFh. Q4 Write register				

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K90 Family (Industrial/Extended) (Continued)

PIC18F87K90 Family								
Param No.	Device	Тур	Max	Units	Conditions			
D025B	LCD External Biasing							
$(\Delta ILCD)$	PIC18FXXK90	0.3	1.4	μA	-40°C			
		0.3	1.4	μA	+25°C	VDD = 1.8V ⁽⁴⁾		
		0.7	1.7	μA	+85°C	Regulator Disabled		
		0.8	2.3	μA	+125°C			
	PIC18FXXK90	0.7	2.9	μA	-40°C		External biasing ⁽⁶⁾	
		0.7	3.5	μA	+25°C	VDD = 3.3V ⁽⁴⁾	1/4 Multiplex mode	
		1.1	3.9	μA	+85°C	Regulator Disabled	Type-A wave form	
		1.2	5.8	μA	+125°C		LCD CIOCK IS INTERNAL RC	
	PIC18FXXK90	0.8	3.3	μA	-40°C			
		1.1	4.1	μA	+25°C	Vdd = 5V		
		1.1	4.2	μA	+85°C	Regulator Enabled		
		1.3	6.2	μA	+125°C]		

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).

- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).
- 6: LCD glass is not connected; resistor current is not included.
- **7:** 48 MHz maximum frequency at 125°C.

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input		3 Тсү		ns	
70A	TssL2WB	SSx to write to SSPxBUF		3 TCY	_	ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	—	ns	
72A		(Slave mode)	Single Byte	40		ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge		20		ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2		1.5 Tcy + 40		ns	(Note 2)
74	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge		40	—	ns	
75	TDOR	SDOx Data Output Rise Time		—	25	ns	
76	TDOF	SDOx Data Output Fall Time		—	25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impedance		10	50	ns	
78	TscR	SCKx Output Rise Time (Master mode)		—	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)		_	25	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		—	50	ns	
83	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge		1.5 TCY + 40	-	ns	

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

Brown-out Reset (BOR)	71
Detecting	71
BSF	
BTFSC	
BTFSS	
BTG	
BZ	

С

C Compilers	
MPLAB C18	502
CALL	466
CALLW	495
Capture (CCP Module)	242
Associated Registers	246
CCP Pin Configuration	242
CCPR4H:CCPR4L Registers	242
Prescaler	243
Software Interrupt	243
Timer1/3/5/7 Mode Selection	242
Capture (ECCP Module)	255
CCPRxH:CCPRxL Registers	255
ECCP Pin Configuration	255
Prescaler	255
Software Interrupt	255
Timer1/Timer3 Mode Selection	255
Capture/Compare/PWM (CCP)	237
Capture Mode See Capture	
CCP6/7/8/9 Pin Assignment	242
CCPRxH Register	241
CCPRvI Register	241
Compare Mode See Compare	271
Configuration	2/1
Mode and Timer Resources	241
	241
Charge Time Measurement Unit (CTMU)	24Z
Charge Time Measurement Onit (CTMO)	407
Associated Registers	420
	412
Greating a Delay	421
Effects of a Reset.	423
Measuring Capacitance with the CTMU	418
	422
Measuring Time	420
	412
Operation	411
During Sleep and Idle Modes	423
Clock Sources	
Default System Clock on Reset	46
Selection Using OSCCON Register	46
	467
CLRWDT	467
Code Examples	
16 x 16 Signed Multiply Routine	128
16 x 16 Unsigned Multiply Routine	128
8 x 8 Signed Multiply Routine	127
8 x 8 Unsigned Multiply Routine	127
Capacitance Calibration Routine	417
Changing Between Capture Prescalers	255
Computed GOTO Using an Offset Value	89
Current Calibration Routine	415
Data EEPROM Read	123
Data EEPROM Refresh Routine	124
Data EEPROM Write	123
Erasing a Flash Program Memory Row	116
Fast Register Stack	89

How to Clear RAM (Bank 1) Using Indirect	
Addressing	104
Initializing PORTA	157
Initializing PORTB	160
Initializing PORTC	163
Initializing PORTD	166
Initializing PORTE	169
Initializing PORTF	172
Initializing PORTG	175
Initializing PORTH	177
Initializing PORTJ	180
Loading the SSP1BUF (SSP1SR) Register	306
Reading a Flash Program Memory Word	115
Routine for Canacitive Touch Switch	419
Routine for Temperature Measurement Lising	
Internal Diode	422
Saving STATUS WREG and BSP	722
Begisters in BAM	151
Sotting the DTCM/DEN Dit	101
Setung the RTCWREN Bit	231
Setup for CIMU Calibration Routines	414
Ultra Low-Power Wake-up Initialization	66
Writing to Flash Program Memory 1	18–119
Code Protection 4	25, 447
Associated Registers	448
Data EEPROM	450
Program Memory	448
COMF	468
Comparator	389
Analog Input Connection Considerations	392
Associated Registers	396
Control and Configuration	393
Effects of a Reset	396
Enable and Input Selection	393
Enable and Output Selection	393
Interrunts	395
Operation	302
Operation During Sleep	306
Response Time	302
Comparator Voltago Poferenco	307
Accuracy and Error	308
	200
Associated Registers	399
Configuring	397
	398
	398
Operation During Sleep	398
Compare (CCP Module)	244
Associated Registers	246
CCPR4 Register	244
Pin Configuration	244
Software Interrupt	244
Special Event Trigger	244
Timer1/3/5/7 Mode Selection	244
Compare (ECCP Module)	256
CCPRx Register	256
Pin Configuration	256
Software Interrupt	256
Special Event Trigger2	10, 256
Timer1/Timer3 Mode Selection	256
Computed GOTO	89
Configuration Bits	425
Configuration Mismatch (CM) Reset	
Configuration Register Protection	450
	+00

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support