

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f67k90t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number	Pin		Description	
Pin Name	QFN/TQFP	Туре		Description	
				PORTA is a bidirectional I/O port.	
RA0/AN0/ULPWU RA0 AN0 ULPWU	24	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 0. Ultra Low-Power Wake-up (ULPW) input.	
RA1/AN1/SEG18 RA1 AN1 SEG18	23	I/O I O	TTL Analog Analog	Digital I/O. Analog Input 1. SEG18 output for LCD.	
RA2/AN2/VREF- RA2 AN2 VREF-	22	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 2. A/D reference voltage (low) input.	
RA3/AN3/VREF+ RA3 AN3 VREF+	21	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 3. A/D reference voltage (high) input.	
RA4/T0CKI/SEG14 RA4 T0CKI SEG14	28	I/O I O	ST ST Analog	Digital I/O. Timer0 external clock input. SEG14 output for LCD.	
RA5/AN4/SEG15/T1CKI/ T3G/HLVDIN RA5 AN4 SEG15 T1CKI T3G HLVDIN	27	I/O I O I I	TTL Analog Analog ST ST Analog	Digital I/O. Analog Input 4. SEG15 output for LCD. Timer1 clock input. Timer3 external clock gate input. High/Low-Voltage Detect (HLVD) input.	
RA6				See the OSC2/CLKO/RA6 pin.	
RA7				See the OSC1/CLKI/RA7 pin.	
$ST = Schm$ $I = Input$ $P = Powe$ $I^{2}C^{TM} = I^{2}C/SI$	MBus	: with C		CMOS = CMOS compatible input or output els Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD) 2MX Configuration bit is set.	

TABLE 1-3: PIC18F6XK90 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K90 and PIC18F85K90 devices.

TABLE 6-1: PIC18F87K90 FAMILY SPECIAL FUNCTION REGISTER MAP⁽⁵⁾ (CONTINUED)

Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name	Addr.	Name
F3Eh	TMR7L ⁽⁴⁾	F31h	PR12 ⁽⁴⁾	F24h	ANCON1	F17h	PMD2	F0Ah	CCPR6L	EFDh	LCDREF
F3Dh	T7CON ⁽⁴⁾	F30h	T12CON ⁽⁴⁾	F23h	ANCON2	F16h	PMD3	F09h	CCP6CON	EFCh	LCDRL
F3Ch	T7GCON ⁽⁴⁾	F2Fh	CM2CON	F22h	RCSTA2	F15h	TMR5H	F08h	CCPR7H	EFBh	LCDSE5 ⁽³⁾
F3Bh	TMR6	F2Eh	CM3CON	F21h	TXSTA2	F14h	TMR5L	F07h	CCPR7L	EFAh	LCDSE4
F3Ah	PR6	F2Dh	CCPTMRS0	F20h	BAUDCON2	F13h	T5CON	F06h	CCP7CON	EF9h	LCDSE3
F39H	T6CON	F2Ch	CCPTMRS1	F1Fh	SPBRGH2	F12h	T5GCON	F05h	TMR4	EF8h	LCDSE2
F38h	TMR8	F2Bh	CCPTMRS2	F1Eh	SPBRG2	F11h	CCPR4H	F04h	PR4	EF7h	LCDSE1
F37h	PR8	F2Ah	REFOCON	F1Dh	RCREG2	F10h	CCPR4L	F03h	T4CON	EF6h	LCDSE0
F36h	T8CON	F29H	ODCON1	F1Ch	TXREG2	F0Fh	CCP4CON	F02h	SSP2BUF	EF5h	LCDPS
F35h	TMR10 ⁽⁴⁾	F28h	ODCON2	F1Bh	PSTR2CON	F0Eh	CCPR5H	F01h	SSP2ADD	EF4h	LCDCON
F34h	PR10 ⁽⁴⁾	F27h	ODCON3	F1Ah	PSTR3CON	F0Dh	CCPR5L	F00h	SSP2STAT		
F33h	T10CON ⁽⁴⁾	F26h		F19h	PMD0	F0Ch	CCP5CON	EFFh	SSP2CON1]	

Note 1: This is not a physical register.

2: Unimplemented registers are read as '0'.

3: This register is not available in 64-pin devices (PIC18F6XK90).

4: This register is not available in devices with a program memory of 32 Kbytes (PIC18FX5K90).

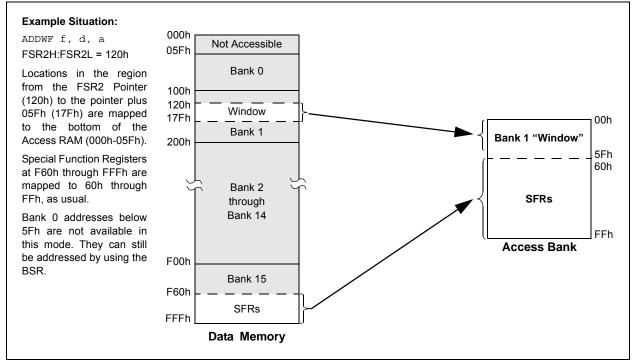
5: Addresses, EF4h through F5Fh, are also used by SFRs, but are not part of the Access RAM. Users must always load the proper BSR value to access these registers.

Address	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR
F50h	CCPR2H	Capture/Com	pare/PWM R	egister 2 High	Byte					xxxx xxxx
F51h	ECCP2DEL	P2RSEN	P2DC6	P2DC5	P2DC4	P2DC3	P2DC2	P2DC1	P2DC0	0000 0000
F52h	ECCP2AS	ECCP2ASE	ECCP2AS2	ECCP2AS1	ECCP2AS0	PSS2AC1	PSS2AC0	PSS2BD1	PSS2BD0	0000 0000
F53h	PADCFG1	RDPU	REPU	RJPU ⁽²⁾	_	_	RTSECSEL1	RTSECSEL0	_	00000-
F54h	CM1CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0	0001 1111
F55h	CTMUICON	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG1	0000 0000
F56h	CTMUCONL	EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	0000 0000
F57h	CTMUCONH	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	0-00 0000
F58h	ALRMVALL	Alarm Value	High Register	Window base	ed on APTR<1	:0>				0000 0000
F59h	ALRMVALH	Alarm Value	High Register	Window base	ed on APTR<1	:0>				xxxx xxxx
F5Ah	ALRMRPT	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000 0000
F5Bh	ALRMCFG	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	0000 0000
F5Ch	RTCVALL		Low Register	Window base	d on RTCPTF	R<1:0>				0000 0000
F5Dh	RTCVALH		High Register							xxxx xxxx
F5Eh	RTCCAL	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	xxxx xxxx
F5Fh	RTCCFG	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	0-00 0000
F60h	PIE6	_	_	_	EEIE	_	CMP3IE	CMP2IE	CMP1IE	0 -000
F61h	EEDATA	EEPROM Da	ata Register				0	0	0	0000 0000
F62h	EEADR		Idress Registe	er Low Byte						0000 0000
F63h	EEADRH		Idress Registe							00
F64h	OSCCON2		SOSCRUN		_	SOSCGO		MFIOFS	MFIOSEL	-0 0-x0
F65h	BAUDCON1	ABDOVF	RCIDL	RXDTP	ТХСКР	BRG16		WUE	ABDEN	0000 0-x0
F66h	LCDDATA0	S07C0	S06C0	S05C0	S04C0	S03C0	S02C0	S01C0	S00C0	xxxx xxxx
F67h	LCDDATA0	S15C0	S14C0	S13C0	S12C0	S11C0	S10C0	S09C0	S08C0	
F68h	LCDDATA1	S23C0	S22C0	S21C0	S20C0	S19C0	S18C0	S17C0	S16C0	xxxx xxxx
F69h	LCDDATA2	S31C0	S30C0	S29C0	S28C0	S19C0	S26C0	S25C0	S24C0	xxxx xxxx
		S39C0								xxxx xxxx
F6Ah	LCDDATA4		S38C0	S37C0	S36C0	S35C0	S34C0	S33C0	S32C0	XXXX XXXX
F6Bh	LCDDATA5	S47C0	S46C0	S45C0	S44C0	S43C0	S42C0	S41C0	S40C0	XXXX XXXX
F6Ch	LCDDATA6	S07C1	S06C1	S05C1	S04C1	S03C1	S02C1	S01C1	S00C1	XXXX XXXX
F6Dh	LCDDATA7	S15C1	S14C1	S13C1	S12C1	S11C1	S10C1	S09C1	S08C1	XXXX XXXX
F6Eh	LCDDATA8	S23C1	S22C1	S21C1	S20C1	S19C1	S18C1	S17C1	S16C1	XXXXXXXX
F6Fh	LCDDATA9	S31C1	S30C1	S29C1	S28C1	S27C1	S26C1	S25C1	S24C1	XXXX XXXX
F70h	LCDDATA10 ⁽²⁾	S39C1 ⁽²⁾	S38C1 ⁽²⁾	S37C1 ⁽²⁾	S36C1 ⁽²⁾	S35C1 ⁽²⁾	S34C1 ⁽²⁾	S33C1 ⁽²⁾	S32C1	XXXX XXXX
F71h	LCDDATA11 ⁽²⁾	S47C1	S46C1	S45C1	S44C1	S43C1	S42C1	S41C1	S40C1	XXXX XXXX
	LCDDATA12	S07C2	S06C2	S05C2	S04C2	S03C2	S02C2	S01C2	S00C2	XXXX XXXX
F73h	LCDDATA13	S15C2	S14C2	S13C2	S12C2	S11C2	S10C2	S09C2	S08C2	XXXX XXXX
F74h	LCDDATA14	S23C2	S22C2	S21C2	S20C2	S19C2	S18C2	S17C2	S16C2	XXXX XXXX
F75h	LCDDATA15	S31C2	S30C2	S29C2	S28C2	S27C2	S26C2	S25C2	S24C2	XXXX XXXX
F76h	LCDDATA16 ⁽²⁾	S39C2 ⁽²⁾	S38C2 ⁽²⁾	S37C2 ⁽²⁾	S36C2 ⁽²⁾	S35C2 ⁽²⁾	S34C2 ⁽²⁾	S33C2 ⁽²⁾	S32C2	XXXX XXXX
F77h	LCDDATA17 ⁽²⁾	S47C2	S46C2	S45C2	S44C2	S43C2	S42C2	S41C2	S40C2	XXXX XXXX
F78h	LCDDATA18	S07C3	S06C3	S05C3	S04C3	S03C3	S02C3	S01C3	S00C3	XXXX XXXX
F79h	LCDDATA19	S15C3	S14C3	S13C3	S12C3	S11C3	S10C3	S09C3	S08C3	XXXX XXXX
F7Ah	LCDDATA20	S23C3	S22C3	S21C3	S20C3	S19C3	S18C3	S17C3	S16C3	XXXX XXXX
F7Bh	LCDDATA21	S31C3	S30C3	S29C3	S28C3	S27C3	S26C3	S25C3	S24C3	XXXX XXXX
F7Ch	LCDDATA22	S39C3 ⁽²⁾	S38C3 ⁽²⁾	S37C3 ⁽²⁾	S36C3 ⁽²⁾	S35C3 ⁽²⁾	S34C3 ⁽²⁾	S33C3 ⁽²⁾	S32C3	XXXX XXXX
F7Dh	LCDDATA23 ⁽²⁾	S47C3	S46C3	S45C3	S44C3	S43C3	S42C3	S41C3	S40C3	XXXX XXXX
F7Eh	EECON2	EEPROM Co	ontrol Register	2 (not a phys	ical register)	r	1	r	1	
F7Fh	EECON1	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	xx-0 x000
F80h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxxx

2: Unimplemented in 64-pin devices (PIC18F6XK90).

3: Unimplemented in devices with a program memory of 32 Kbytes (PIC18FX5K90).

6.6.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE


The use of Indexed Literal Offset Addressing mode effectively changes how the lower part of Access RAM (00h to 5Fh) is mapped. Rather than containing just the contents of the bottom part of Bank 0, this mode maps the contents from Bank 0 and a user-defined "window" that can be located anywhere in the data memory space.

The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described. (See **Section 6.3.2 "Access Bank**".) An example of Access Bank remapping in this addressing mode is shown in Figure 6-10. Remapping the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit = 1) will continue to use Direct Addressing as before. Any Indirect or Indexed Addressing operation that explicitly uses any of the indirect file operands (including FSR2) will continue to operate as standard Indirect Addressing. Any instruction that uses the Access Bank, but includes a register address of greater than 05Fh, will use Direct Addressing and the normal Access Bank map.

6.6.4 BSR IN INDEXED LITERAL OFFSET MODE

Although the Access Bank is remapped when the extended instruction set is enabled, the operation of the BSR remains unchanged. Direct Addressing, using the BSR to select the data memory bank, operates in the same manner as previously described.

FIGURE 6-10: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING

REGISTER 11-2: ODCON2: PERIPHERAL OPEN-DRAIN CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP100D ⁽¹⁾	CCP90D ⁽¹⁾	CCP8OD	CCP7OD	CCP6OD	CCP5OD	CCP4OD	CCP3OD
oit 7			I				bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	CCP100D: C	CP10 Open-D	ain Output Er	nable bit ⁽¹⁾			
		in capability is					
	-	in capability is		(4)			
bit 6		P9 Open-Drai	-	ble bit ⁽¹⁾			
		in capability is in capability is					
bit 5	•	P8 Open-Drai		ole hit			
bit 5		in capability is	•				
		in capability is					
bit 4	CCP70D: CC	P7 Open-Drai	n Output Enat	ole bit			
	1 = Open-dra	in capability is	enabled				
	0 = Open-dra	in capability is	disabled				
bit 3		P6 Open-Drai	•	ole bit			
		in capability is					
	•	in capability is					
bit 2		P5 Open-Drai	•	de bit			
		in capability is in capability is					
bit 1	•	P4 Open-Drai		ole hit			
		in capability is	•				
		in capability is					
bit 0	CCP3OD: EC	CP3 Open-Dra	ain Output Ena	able bit			
	1 = Open-dra	in capability is	enabled				
	0 = Open-dra	in capability is	disabled				

Note 1: Unimplemented in devices with a program memory of 32 Kbytes (PIC18FX5K90).

11.6 PORTE, TRISE and LATE Registers

PORTE is an 8-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISE and LATE.

All pins on PORTE are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output. The RE7 pin is also configurable for open-drain output when ECCP2 is active on this pin. Open-drain configuration is selected by setting the CCP2OD control bit (ODCON1<6>)

Note:	These pins are configured as digital inputs
	on any device Reset.

Each of the PORTE pins has a weak internal pull-up. A single control bit can turn off all the pull-ups. This is performed by clearing bit, REPU (PADCFG1<6>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on any device Reset.

Pins, RE<6:3>, are multiplexed with the LCD common drives. I/O port functions are available only on those PORTE pins according to which commons are active. The configuration is determined by the LMUX<1:0> control bits (LCDCON<1:0>). The availability is summarized in Table 11-9.

TABLE 11-9:PORTE PINS AVAILABLE IN
DIFFERENT LCD DRIVE
CONFIGURATIONS⁽¹⁾

LCDCON <1:0>	Active LCD Commons	PORTE Pins Available for I/O
00	COM0	RE6, RE5, RE4
01	COM0, COM1	RE6, RE5
10	COM0, COM1 and COM2	RE6
11	All (COM0 through COM3)	None

Note 1: If the LCD bias voltages are generated using the internal resistor ladder, the LCDBIASx pins are also available as I/O ports (RE0, RE1 and RE2). Pins, RE2, RE1 and RE0, are multiplexed with the functions of LCDBIAS3, LCDBIAS2 and LCDBIAS1. When LCD bias generation is required (in any application where the device is connected to an external LCD), these pins cannot be used as digital I/O. These pins can be used as digital I/O, however, when the internal resistor ladder is used for bias generation.

PORTE is also multiplexed with the Enhanced PWM Outputs B and C for ECCP1 and ECCP3, and Outputs B, C and D for ECCP2. For all devices, their default assignments are on PORTE<6:0>. On 80-pin devices, the multiplexing for the outputs of ECCP1 and ECCP3 is controlled by the ECCPMX Configuration bit. Clearing this bit reassigns the P1B/P1C and P3B/P3C outputs to PORTH.

RE7 is multiplexed with the LCD segment drive (SEG31) that is controlled by the LCDSE3<7> bit. I/O port function is only available when the segment is disabled. RE7 can also be configured as the alternate peripheral pin for the ECCP2 module. This is done by clearing the CCP2MX Configuration bit.

RE3 can also be configured as the Reference Clock Output (REFO) from the system clock. For further details, refer to **Section 3.7 "Reference Clock Output"**.

EXAMPLE 11-5:	INITIALIZING PORTE

CLRF	PORTE	; Initialize PORTE by
		; clearing output
		; data latches
CLRF	LATE	; Alternate method
		; to clear output
		; data latches
MOVLW	03h	; Value used to
		; initialize data
		; direction
MOVWF	TRISE	; Set RE<1:0> as inputs
		; RE<7:2> as outputs
		-

14.0 TIMER2 MODULE

The Timer2 module incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- · Both registers are readable and writable
- Software programmable prescaler (1:1, 1:4 and 1:16)
- Software programmable postscaler (1:1 through 1:16)
- Interrupt on TMR2 to PR2 match
- Optional use as the shift clock for the MSSP modules

This module is controlled through the T2CON register (Register 14-1) that enables or disables the timer, and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

A simplified block diagram of the module is shown in Figure 14-1.

14.1 Timer2 Operation

In normal operation, TMR2 is incremented from 00h on each clock (Fosc/4). A 4-bit counter/prescaler on the clock input gives the prescale options of direct input, divide-by-4 or divide-by-16. These are selected by the prescaler control bits, T2CKPS<1:0> (T2CON<1:0>).

The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/ postscaler. (See **Section 14.2 "Timer2 Interrupt**".)

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, while the PR2 register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- A write to the TMR2 register
- · A write to the T2CON register
- Any device Reset (Power-on Reset (POR), MCLR Reset, Watchdog Timer Reset (WDTR) or Brown-out Reset [BOR])

TMR2 is not cleared when T2CON is written.

Note: The CCP and ECCP modules use Timers, 1 through 8, for some modes. The assignment of a particular timer to a CCP/ECCP module is determined by the Timer to CCP enable bits in the CCPTMRSx registers. For more details, see Register 18-2, Register 18-3 and Register 19-2.

REGISTER 14-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 Unimplemented: Read as '0'

bit 6-3	T2OUTPS<3:0>: Timer2 Output Postscale Select bits 0000 = 1:1 Postscale 0001 = 1:2 Postscale
	•
	•
	1111 = 1:16 Postscale
bit 2	TMR2ON: Timer2 On bit
	1 = Timer2 is on
	0 = Timer2 is off
bit 1-0	T2CKPS<1:0>: Timer2 Clock Prescale Select bits
	00 = Prescaler is 1
	01 = Prescaler is 4
	1x = Prescaler is 16

© 2009-2011 Microchip Technology Inc.

15.0 TIMER3/5/7 MODULES

The Timer3/5/7 timer/counter modules incorporate these features:

- Software-selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMRxH and TMRxL)
- Selectable clock source (internal or external) with device clock or SOSC oscillator internal options
- Interrupt-on-overflow
- · Module Reset on ECCP Special Event Trigger

Timer7 is unimplemented for devices with a program memory of 32 Kbytes (PIC18FX5K90).

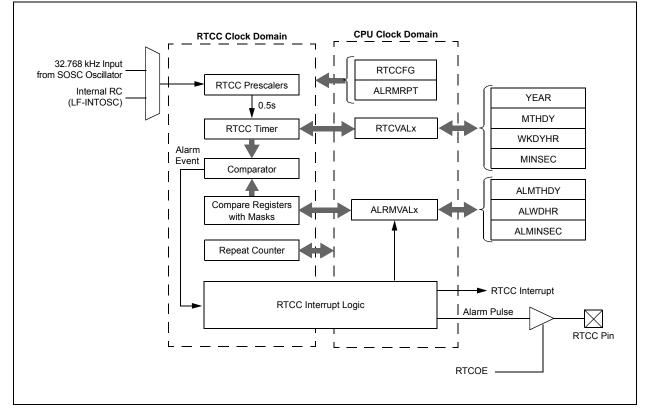
Note: Throughout this section, generic references are used for register and bit names that are the same, except for an 'x' variable that indicates the item's association with the Timer3, Timer5 or Timer7 module. For example, the control register is named TxCON and refers to T3CON, T5CON and T7CON.

A simplified block diagram of the Timer3/5/7 module is shown in Figure 15-1.

The Timer3/5/7 module is controlled through the TxCON register (Register 15-1). It also selects the clock source options for the ECCP modules. (For more information, see **Section 19.1.1 "ECCP Module and Timer Resources"**.)

The Fosc clock source should not be used with the ECCP capture/compare features. If the timer will be used with the capture or compare features, always select one of the other timer clocking options.

17.0 REAL-TIME CLOCK AND CALENDAR (RTCC)


The key features of the Real-Time Clock and Calendar (RTCC) module are:

- Time: hours, minutes and seconds
- Twenty-four hour format (military time)
- Calendar: weekday, date, month and year
- · Alarm configurable
- Year range: 2000 to 2099
- · Leap year correction
- · BCD format for compact firmware
- Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: external 32.768 kHz clock crystal
- · Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for an extended period with minimum to no intervention from the CPU. The module is optimized for low-power usage in order to provide extended battery life while keeping track of time.

The module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

Hours are measured in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

FIGURE 17-1: RTCC BLOCK DIAGRAM

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ALRMEN CHIME AMASK3 AMASK2 AMASK1 AMASK0 ALRMPTR1 ALRMPTR0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 ALRMEN: Alarm Enable bit 1 = Alarm is enabled (cleared automatically after an alarm event whenever ALRMPTR<1:0> = 00 and CHIME = 0) 0 = Alarm is disabled bit 6 CHIME: Chime Enable bit 1 = Chime is enabled; ALRMPTR<1:0> bits are allowed to roll over from 00h to FFh 0 = Chime is disabled; ALRMPTR<1:0> bits stop once they reach 00h bit 5-2 AMASK<3:0>: Alarm Mask Configuration bits 0000 = Every half second 0001 = Every second 0010 = Every 10 seconds 0011 = Every minute 0100 = Every 10 minutes 0101 = Every hour 0110 = Once a day 0111 = Once a week 1000 = Once a month 1001 = Once a year (except when configured for February 29th, once every four years) 101x = Reserved – Do not use 11xx = Reserved – Do not use bit 1-0 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading the ALRMVALH and ALRMVALL registers. The ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00'. ALRMVALH: 00 = ALRMMIN 01 = ALRMWD 10 = ALRMMNTH 11 = Unimplemented ALRMVALL: 00 = ALRMSEC 01 = ALRMHR 10 = ALRMDAY 11 = Unimplemented

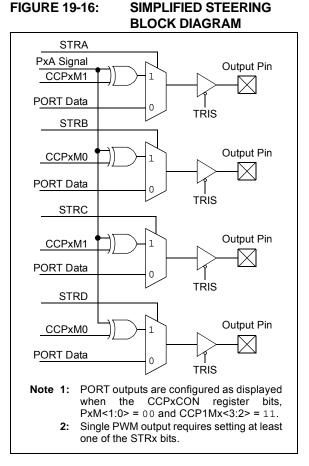
REGISTER 17-4: ALRMCFG: ALARM CONFIGURATION REGISTER

NOTES:

REGISTER 18-4: CCPRxL: CCPx PERIOD LOW BYTE REGISTER

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CCPRxL7 | CCPRxL6 | CCPRxL5 | CCPRxL4 | CCPRxL3 | CCPRxL2 | CCPRxL1 | CCPRxL0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 7-0 CCPRxL<7:0>: CCPx Period Register Low Byte bits <u>Capture Mode:</u> Capture register low byte. <u>Compare Mode:</u> Compare register low byte. <u>PWM Mode:</u> Duty Cycle register low byte.

REGISTER 18-5: CCPRxH: CCPx PERIOD HIGH BYTE REGISTER

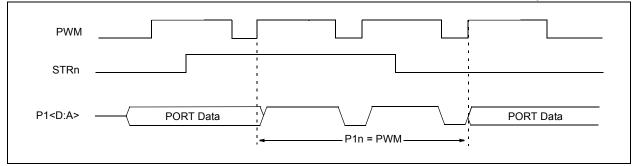
| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CCPRxH7 | CCPRxH6 | CCPRxH5 | CCPRxH4 | CCPRxH3 | CCPRxH2 | CCPRxH1 | CCPRxH0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 CCPRxH<7:0>: CCPx Period Register High Byte bits <u>Capture Mode:</u> Capture register high byte. <u>Compare Mode:</u> Compare register high byte. <u>PWM Mode:</u> Duty Cycle Buffer register high byte.


19.4.7.1 Steering Synchronization

The STRSYNC bit of the PSTRxCON register gives the user two choices for when the steering event will happen. When the STRSYNC bit is '0', the steering event will happen at the end of the instruction that writes to the PSTRxCON register. In this case, the output signal at the Px<D:A> pins may be an incomplete PWM waveform. This operation is useful when the user firmware needs to immediately remove a PWM signal from the pin.


When the STRSYNC bit is '1', the effective steering update will happen at the beginning of the next PWM period. In this case, steering on/off the PWM output will always produce a complete PWM waveform.

Figures 19-17 and 19-18 illustrate the timing diagrams of the PWM steering depending on the STRSYNC setting.

FIGURE 19-17: EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRSYNC = 0)

FIGURE 19-18: EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION (STRSYNC = 1)

21.3.9 OPERATION IN POWER-MANAGED MODES

In SPI Master mode, module clocks may be operating at a different speed than when in full-power mode; in the case of the Sleep mode, all clocks are halted.

In Idle modes, a clock is provided to the peripherals. That clock can be from the primary clock source, the secondary clock (SOSC oscillator) or the INTOSC source. See **Section 3.3** "**Clock Sources and Oscillator Switching**" for additional information.

In most cases, the speed that the master clocks SPI data is not important; however, this should be evaluated for each system.

If MSSP interrupts are enabled, they can wake the controller from Sleep mode, or one of the Idle modes, when the master completes sending data. If an exit from Sleep or Idle mode is not desired, MSSP interrupts should be disabled.

If the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

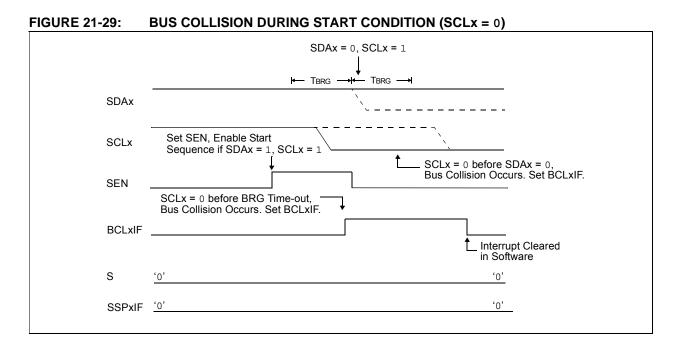
In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in any power-managed mode and data to be shifted into the SPI Transmit/Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set, and if enabled, will wake the device.

21.3.10 EFFECTS OF A RESET

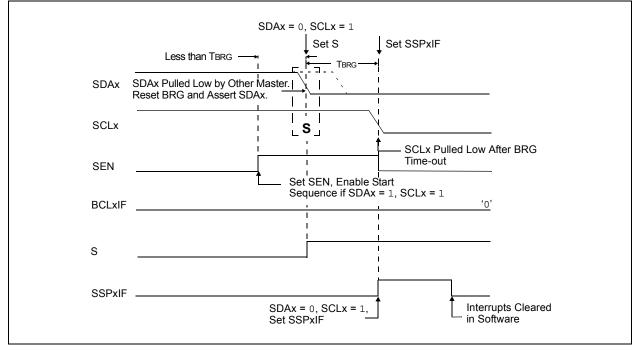
A Reset disables the MSSP module and terminates the current transfer.

21.3.11 BUS MODE COMPATIBILITY

Table 21-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.


Standard SPI Mode	Control Bits State		
Terminology	СКР	CKE	
0, 0	0	1	
0, 1	0	0	
1, 0	1	1	
1, 1	1	0	

There is also an SMP bit which controls when the data is sampled.


21.3.12 SPI CLOCK SPEED AND MODULE INTERACTIONS

Because MSSP1 and MSSP2 are independent modules, they can operate simultaneously at different data rates. Setting the SSPM<3:0> bits of the SSPxCON1 register determines the rate for the corresponding module.

An exception is when both modules use Timer2 as a time base in Master mode. In this instance, any changes to the Timer2 module's operation will affect both MSSP modules equally. If different bit rates are required for each module, the user should select one of the other three time base options for one of the modules.

DAW	Decimal A	djust W Regis	ter	DECF	Decrement	f	
Syntax:	DAW			Syntax:	DECF f{,c	1 {,a}}	
Operands:	None			Operands:	$0 \leq f \leq 255$		
Operation:	•	> 9] or [DC = 1 6 → W<3:0>;], then		d ∈ [0,1] a ∈ [0,1]		
	else,	o , ele ,		Operation:	(f) – 1 \rightarrow de	est	
	(W<3:0>) –	→ W<3:0>;		Status Affected:	C, DC, N, 0	DV, Z	
	lf [W<7:4>	> 9] or [C = 1],	then	Encoding:	0000	01da ff	ff ffff
	(W<7:4>) + C = 1; else,	$6 \rightarrow W < 7:4>;$		Description:	result is sto	register 'f'. If red in W. If 'c red back in re	l' is '1', the
Statua Affaatad	(W<7:4>) –	→ W<7:4>			,		ank is selected.
Status Affected: Encoding:	C	0000 000	0 0111		lf 'a' is '1', t GPR bank.		ed to select the
Description: Words:	resulting fro variables (e	the 8-bit valu om the earlier a each in packed es a correct pa	ddition of two BCD format)		set is enabl in Indexed mode wher Section 29 Bit-Oriente	ed, this instru Literal Offset never f ≤ 95 (5 .2.3 "Byte-O ed Instruction	5Fh). See riented and ns in Indexed
	1					set Mode" fo	r details.
Cycles:	I			Words:	1		
Q Cycle Activity: Q1	Q2	Q3	Q4	Cycles:	1		
Decode	Read	Process	Write	Q Cycle Activity:			
	register W	Data	W	Q1	Q2	Q3	Q4
Example 1:	DAW			Decode	Read register 'f'	Process Data	Write to destination
Before Instruc	ction						
W	= A5h			Example:	DECF (CNT, 1, (0
C DC	= 0 = 0			Before Instruc			
After Instructi	on			CNT Z	= 01h = 0		
W	= 05h			After Instruction	0		
C DC	= 1 = 0			CNT Z	= 00h = 1		
Example 2:				L	- 1		
Before Instruc	ction						
W	= CEh						
C DC	= 0 = 0						
After Instruction	0						
W	= 34h						
C DC	= 1 = 0						
	= 0						

RRN	CF	Rotate Rig	ght f (No	Carry)
Synta	ax:	RRNCF	f {,d {,a}}		
Oper	ands:	$0 \le f \le 255$ $d \in [0, 1]$ $a \in [0, 1]$	5		
Oper	ation:	$(f \le n >) \rightarrow c$ $(f \le 0 >) \rightarrow c$.>,	
Statu	is Affected:	N, Z			
Enco	oding:	0100	00da	fff	f ffff
Desc	ription:	one bit to	the right. I n W. If 'd'	f 'd' is is '1',	' are rotated '0', the result the result is
			overriding the bank	the BS	nk will be SR value. If 'a' e selected as
		set is enal in Indexed mode whe Section 2	bled, this i Literal O never f ≤ 9.2.3 "By ed Instru	ffset A 95 (5F te-Ori	h). See ented and s in Indexed
					uetalis.
		Г		egister	
Word	is:	1			
		1			
Cycle	es:				
Cycle				egister	
Cycle	es: ycle Activity:	1	► re	egister	f
Cycle	es: ycle Activity: Q1	1 Q2	► re Q3	egister	f A
Cycle Q C <u>Exan</u>	es: ycle Activity: Q1 Decode nple 1:	1 Q2 Read register 'f'	Q3 Proce	egister	f Q4 Write to
Cycle Q C <u>Exan</u>	es: ycle Activity: Q1 Decode nple 1: Before Instruc REG	1 Q2 Read register 'f' RRNCF tion = 1101	Q3 Proce Data REG, 1,	egister	f Q4 Write to
Cycle Q C <u>Exan</u>	es: ycle Activity: Q1 Decode nple 1: Before Instruc	1 Q2 Read register 'f' RRNCF tion = 1101	► re Q3 Proce Data REG, 1, 0111	egister	f Q4 Write to
Cycle Q C <u>Exan</u>	es: ycle Activity: Q1 Decode nple 1: Before Instruct REG After Instruction	1 Q2 Read register 'f' RRNCF tion = 1101 on	Q3 Proce Data REG, 1, 0111	egister 3 ess a	f Q4 Write to
Cycle Q C <u>Exan</u>	es: ycle Activity: Q1 Decode nple 1: Before Instruct REG After Instruction REG nple 2: Before Instruct W	1 Q2 Read register 'f' RRNCF tion = 1101 on = 1110 RRNCF tion = ?	Q3 Proce Data REG, 1, 0111 1011 REG, 0,	egister 3 ess a	f Q4 Write to
Cycle Q C <u>Exan</u>	es: ycle Activity: Q1 Decode nple 1: Before Instruct REG After Instruction REG nple 2: Before Instruc	1 Q2 Read register 'f' RRNCF tion = 1101 RRNCF tion = ? = 1101	Q3 Proce Data REG, 1, 0111 1011 REG, 0,	egister 3 ess a	f Q4 Write to

SETF	Set f			
Syntax:	SETF f{,;	a}		
Operands:	$0 \leq f \leq 255$			
	a ∈ [0,1]			
Operation:	$FFh\tof$			
Status Affected:	None			
Encoding:	0110	100a	ffff	ffff
Description:	The conten are set to F		specified	register
	lf 'a' is '0', t lf 'a' is '1', t GPR bank.			
	If 'a' is '0' a set is enabl in Indexed mode wher Section 29 Bit-Oriente Literal Offs	led, this i Literal O never f ≤ .2.3 "By ed Instru	nstruction ffset Addre 95 (5Fh). te-Oriente ctions in	operates essing See ed and Indexed
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	1	Q4
Decode	Read register 'f'	Proce Data		Write gister 'f'
Example: Before Instruct REG After Instruction REG	= 5A	h	G,1	

MOVSS	Move Indexed to Indexed					
Syntax:	MOVSS [z _s], [z _d]					
Operands:	$\begin{array}{l} 0 \leq z_s \leq 127 \\ 0 \leq z_d \leq 127 \end{array}$					
Operation:	$((FSR2) + z_s) \rightarrow ((FSR2) + z_d)$					
Status Affected:	None					
Encoding: 1st word (source) 2nd word (dest.)	1110 1011 1zzz zzzz _s 1111 xxxx xzzz zzzz _d					
Description	The contents of the source register are moved to the destination register. The addresses of the source and destination registers are determined by adding the 7-bit literal offsets, ' z_s ' or ' z_d ', respectively, to the value of FSR2. Both registers can be located anywhere in the 4096-byte data memory space (000h to FFFh). The MOVSS instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.					
	If the resultant source address points to an Indirect Addressing register, the value returned will be 00h. If the resultant destination address points to an Indirect Addressing register, the instruction will execute as a NOP.					
Words:	2					
Cycles:	2					
Q Cycle Activity:						

/CIE	es:	2		
Q C	ycle Activity:			
	Q1	Q2	Q3	
	Decode	Determine	Determine	F

Decode	Determine	Determine	Read	
	source addr	source addr	source reg	
Decode	Determine	Determine	Write	
	dest addr	dest addr	to dest reg	

Q4

Before Instruction		
FSR2	=	80h
Contents of 85h Contents	=	33h
of 86h	=	11h
After Instruction		
FSR2	=	80h
Contents of 85h Contents	=	33h
of 86h	=	33h

PUSHL	Store Literal at FSR2, Decrement FSR2					
Syntax:	PUSHL k					
Operands:	$0 \le k \le 255$					
Operation:	$k \rightarrow (FSR2)$ FSR2 – 1 –	,,				
Status Affected:	None					
Encoding:	1110	1010	kkkk	kkkk		
Description:	The 8-bit literal 'k' is written to the data memory address specified by FSR2. FSR2 is decremented by 1 after the operation.					
	This instruction allows users to push values onto a software stack.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	C	Q4			
Decode	Read 'k'	Proc da		Write to destination		
Example:	PUSHL 0	8h				

Before Instruction FSR2H:FSR2L Memory (01ECh)	= =	01ECh 00h
After Instruction FSR2H:FSR2L Memory (01ECh)	= =	01EBh 08h

31.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	-40°C to +125°C
Storage temperature	
Voltage on any digital only I/O pin with respect to Vss (except VDD)	0.3V to 7.5V
Voltage on MCLR with respect to Vss	0.3V to +9.0V
Voltage on any combined digital and analog pin with respect to VSS (except VDD and MCLR)0).3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss (regulator enabled)	0.3V to 5.5V
Voltage on VDD with respect to Vss (regulator disabled)	0.3V to 3.6V
Total power dissipation (Note 1)	1W
Maximum current out of Vss pin	300 mA
Maximum current into Vod pin	250 mA
Input clamp current, Iıк (Vı < 0 or Vı > Vɒɒ)	±20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by PORTA<7:6> and any PORTB and PORTC I/O pins	25 mA
Maximum output current sunk by any PORTD, PORTE and PORTJ I/O pins	8 mA
Maximum output current sunk by PORTA<5:0> and any PORTF, PORTG and PORTH I/O pins	2 mA
Maximum output current sourced by PORTA<7:6> and any PORTB and PORTC I/O pins	25 mA
Maximum output current sourced by any PORTD, PORTE and PORTJ I/O pins	8 mA
Maximum output current sourced by PORTA<5:0> and any PORTF, PORTG and PORTH I/O pins	2 mA
Maximum current sunk by all ports combined	200 mA
Note 1: Power dissipation is calculated as follows:	

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOL x IOL)

NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

t

31.3 DC Characteristics: PIC18F87K90 Family (Industrial/Extended) (Continued)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$			
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
	Vol	Output Low Voltage				
D080		I/O Ports:				
		PORTA,PORTB,PORTC	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +125°C
		PORTD, PORTE, PORTF, PORTG, PORTH, PORTJ	_	0.6	V	IOL = 3.5 mA, VDD = 4.5V, -40°C to +125°C
D083		OSC2/CLKO (EC modes)	_	0.6	V	IOL = 1.6 mA, VDD = 5.5V, -40°C to +125°C
	Vон	Output High Voltage ⁽¹⁾				
D090		I/O Ports:				
		PORTA,PORTB,PORTC	VDD - 0.7	—	V	ІОн = -3 mA, VDD = 4.5V, -40°C to +125°C
		PORTD, PORTE, PORTF, PORTG, PORTH, PORTJ	VDD - 0.7	—	V	ІОн = -2 mA, VDD = 4.5V, -40°C to +125°C
D092		OSC2/CLKO (INTOSC, EC modes)	Vdd - 0.7	—	V	ІОн = -1 mA, VDD = 5.5V, -40°C to +125°C
		Capacitive Loading Specs on Output Pins				
D100	COSC2	OSC2 Pin	_	20	pF	In HS mode when external clock is used to drive OSC1
D101	Сю	All I/O Pins and OSC2	_	50	pF	To meet the AC Timing Specifications
D102	Св	SCLx, SDAx	_	400	pF	I ² C™ Specification

Note 1: Negative current is defined as current sourced by the pin.

31.4 DC Characteristics: CTMU Current Source Specifications

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
	IOUT1	CTMU Current Source, Base Range	_	550	_	nA	CTMUICON<1:0> = 01
	IOUT2	CTMU Current Source, 10x Range	—	5.5	—	μA	CTMUICON<1:0> = 10
	IOUT3	CTMU Current Source, 100x Range	—	55	_	μA	CTMUICON<1:0> = 11

Note 1: Nominal value at center point of current trim range (CTMUICON<7:2> = 000000).