

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f67k90t-i-ptrsl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.2 PIC18 Instruction Cycle

6.2.1 CLOCKING SCHEME

The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four non-overlapping, quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the Program Counter is incremented on every Q1, with the instruction fetched from the program memory and latched into the Instruction Register (IR) during Q4.

The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 6-4.

6.2.2 INSTRUCTION FLOW/PIPELINING

An "Instruction Cycle" consists of four Q cycles, Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction (such as GOTO) causes the Program Counter to change, two cycles are required to complete the instruction. (See Example 6-3.)

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 6-4: CLOCK/INSTRUCTION CYCLE

EXAMPLE 6-3: INSTRUCTION PIPELINE FLOW

	TCY0	TCY1	TCY2	Tcy3	TCY4	Tcy5
1. MOVLW 55h	Fetch 1	Execute 1			•	
2. MOVWF PORTB		Fetch 2	Execute 2		_	
3. BRA SUB_1			Fetch 3	Execute 3		
4. BSF PORTA, BIT3 (Forced NOP)			Fetch 4	Flush (NOP)	
5. Instruction @ addre	ss SUB_1				Fetch SUB_1	Execute SUB_1

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

NOTES:

8.0 DATA EEPROM MEMORY

The data EEPROM is a nonvolatile memory array, separate from the data RAM and program memory, that is used for long-term storage of program data. The PIC18F87K90 family of devices has a 1024-byte data EEPROM. It is not directly mapped in either the register file or program memory space, but is indirectly addressed through the Special Function Registers (SFRs). The EEPROM is readable and writable during normal operation over the entire VDD range.

Five SFRs are used to read and write to the data EEPROM, as well as the program memory. They are:

- EECON1
- EECON2
- EEDATA
- EEADR
- EEADRH

The data EEPROM allows byte read and write. When interfacing to the data memory block, EEDATA holds the 8-bit data for read/write and the EEADRH:EEADR register pair holds the address of the EEPROM location being accessed.

The EEPROM data memory is rated for high erase/write cycle endurance. A byte write automatically erases the location and writes the new data (erase-before-write). The write time is controlled by an on-chip timer; it will vary with voltage and temperature, as well as from chip-to-chip. Please refer to Parameter D122 (Table 31-1 in **Section 31.0 "Electrical Characteristics"**) for exact limits.

8.1 EEADR and EEADRH Registers

The EEADRH:EEADR register pair is used to address the data EEPROM for read and write operations. EEADRH holds the two MSbs of the address; the upper 6 bits are ignored. The 10-bit range of the pair can address a memory range of 1024 bytes (00h to 3FFh).

8.2 EECON1 and EECON2 Registers

Access to the data EEPROM is controlled by two registers: EECON1 and EECON2. These are the same registers which control access to the program memory and are used in a similar manner for the data EEPROM.

The EECON1 register (Register 8-1) is the control register for data and program memory access. Control bit, EEPGD, determines if the access will be to program memory or data EEPROM memory. When clear, operations will access the data EEPROM memory. When set, program memory is accessed.

Control bit, CFGS, determines if the access will be to the Configuration registers or to program memory/data EEPROM memory. When set, subsequent operations access Configuration registers. When CFGS is clear, the EEPGD bit selects either program Flash or data EEPROM memory.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set in hardware when the WREN bit is set, and cleared, when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR is								
	read as '1'. This can indicate that a write								
	operation was prematurely terminated by								
	a Reset, or a write operation was								
	attempted improperly.								

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software; it is cleared in hardware at the completion of the write operation.

Note:	The EEIF interrupt flag bit (PIR6<4>) is
	set when the write is complete. It must be
	cleared in software.

Control bits, RD and WR, start read and erase/write operations, respectively. These bits are set by firmware and cleared by hardware at the completion of the operation.

The RD bit cannot be set when accessing program memory (EEPGD = 1). Program memory is read using table read instructions. See **Section 7.1 "Table Reads and Table Writes"** regarding table reads.

The EECON2 register is not a physical register. It is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	75
EEADRH	—	—	—	—	—	—	EEPROM A Register Hig	ddress jh Byte	79
EEADR	EADR EEPROM Address Register Low Byte								
EEDATA	DATA EEPROM Data Register								80
EECON2	ON2 EEPROM Control Register 2 (not a physical register)								79
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	79

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 TMR12IP⁽¹⁾ TMR7GIP⁽¹⁾ TMR10IP⁽¹⁾ TMR8IP TMR7IP⁽¹⁾ TMR5IP TMR4IP TMR6IP bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

REGISTER 10-20: IPR5: PERIPHERAL INTERRUPT PRIORITY REGISTER 5

bit 7	TMR7GIP: TMR7 Gate Interrupt Priority bit ⁽¹⁾
	1 = High priority
	0 = Low priority
bit 6	TMR12IP: TMR12 to PR12 Match Interrupt Priority bit ⁽¹⁾
	1 = High priority
	0 = Low priority
bit 5	TMR10IP: TMR10 to PR10 Match Interrupt Priority bit ⁽¹⁾
	1 = High priority
	0 = Low priority
bit 4	TMR8IP: TMR8 to PR8 Match Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 3	TMR7IP: TMR7 Overflow Interrupt Priority bit ⁽¹⁾
	1 = High priority
	0 = Low priority
bit 2	TMR6IP: TMR6 to PR6 Match Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 1	TMR5IP: TMR5 Overflow Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 0	TMR4IP: TMR4 to PR4 Match Interrupt Priority bit
	1 = High priority
	0 = Low priority

Note 1: Unimplemented in devices with a program memory of 32 Kbytes (PIC18FX5K90).

bit 0

13.1 Timer1 Gate Control Register

The Timer1 Gate Control register (T1GCON), displayed in Register 13-2, is used to control the Timer1 gate.

REGISTER 13-2: T1GCON: TIMER1 GATE CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-x	R/W-0	R/W-0			
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/T1DONE	T1GVAL	T1GSS1	T1GSS0			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplementee	d bit, read as	'0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkn	own			
bit 7	TMR1GE: Ti	mer1 Gate Ena	ble bit							
	If TMR10N =	<u>= 0</u> :								
	This bit is ign	lored.								
	$\frac{\text{If IMR10N}}{1 = \text{Timer1 c}}$	<u>= 1</u> : ounting is contr	olled by the .	Timer1 date function						
	0 = Timer1 c	ounts regardles	s of the Time	er1 gate function						
bit 6	T1GPOL: Tir	ner1 Gate Pola	rity bit							
	1 = Timer1 g	ate is active-hig	gh (Timer1 co	ounts when gate is hi	gh)					
	0 = Timer1 g	ate is active-low	w (Timer1 co	unts when gate is lov	v)					
bit 5	TIGTM: Time	er1 Gate Toggl	e Mode bit							
	1 = 1 imer 1 = 1 imer 1 0 = 1 imer 1 0	Sate Toggle mo	ide is enable ide is disable	a d and togale flin-flon	is cleared					
	Timer1 gate	flip-flop toggles	on every risi	ing edge.						
bit 4	T1GSPM: Tir	mer1 Gate Sing	gle Pulse Mo	de bit						
	1 = Timer1 G	ate Single Puls	e Single Pulse mode is enabled and is controlling Timer1 gate							
	0 = Timer1 G	Sate Single Puls	se mode is di	sabled						
bit 3	T1GGO/T1D	ONE: Timer1 (Bate Single P	ulse Acquisition Stat	us bit					
	1 = 1 imer1	ate single puls	e acquisition	is ready, waiting for	an edge as not been st	arted				
	This bit is au	tomatically clea	ared when T1	GSPM is cleared.						
bit 2	T1GVAL: Tin	ner1 Gate Curr	ent State bit							
	Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L; unaffected by the Timer1 Gate Enable (TMR1GE) bit.									
bit 1-0	T1GSS<1:0>	: Timer1 Gate	Source Sele	ct bits						
	11 = Compar	rator 2 output								
	10 = Compai	rator 1 output	utout							
	01 - Timer1	aate pin	սւրսւ							
		U . L								

Note 1: Programming the T1GCON register prior to T1CON is recommended.

20.1 LCD Registers

The LCD driver module has 32 registers:

- LCD Control Register (LCDCON)
- LCD Phase Register (LCDPS)
- LCD Reference Ladder Register (LCDRL)
- LCD Reference Voltage Control Register (LCDREF)
- Six LCD Segment Enable Registers (LCDSE5:LCDSE0)
- 24 LCD Data Registers (LCDDATA23:LCDDATA0)

The LCDCON register, shown in Register 20-1, controls the overall operation of the module. Once the module is configured, the LCDEN (LCDCON<7>) bit is used to enable or disable the LCD module. The LCD panel can also operate during Sleep by clearing the SLPEN (LCDCON<6>) bit.

The LCDPS register, shown in Register 20-2, configures the LCD clock source prescaler and the type of waveform, Type-A or Type-B. For details on these features, see Section 20.2 "LCD Clock Source Selection", Section 20.3 "LCD Bias Types" and Section 20.8 "LCD Waveform Generation".

R/W-0	R/W-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
LCDEN	SLPEN	WERR	—	CS1	CS0	LMUX1	LMUX0
bit 7							bit 0

REGISTER 20-1: LCDCON: LCD CONTROL REGISTER

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	LCDEN: LCD Driver Enable bit 1 = LCD driver module is enabled 0 = LCD driver module is disabled
bit 6	SLPEN: LCD Driver Enable in Sleep mode bit 1 = LCD driver module is disabled in Sleep mode 0 = LCD driver module is enabled in Sleep mode
bit 5	WERR: LCD Write Failed Error bit 1 = LCDDATAx register is written while WA (LCDPS<4>) = 0 (must be cleared in software) 0 = No LCD write error
bit 4	Unimplemented: Read as '0'
bit 3-2	CS<1:0>: Clock Source Select bits 00 = (Fosc/4)/8192 01 = SOSC oscillator/32 1x = INTRC (31.25 kHz)/32
bit 1-0	LMUX<1:0>: Commons Select bits

LMUX<1:0>	Multiplex	Maximum Number of Pixels (PIC18F6X90)	Maximum Number of Pixels (PIC18F8X90)	Bias
0.0	Static (COM0)	33	48	Static
01	1/2 (COM<1:0>)	66	96	1/2 or 1/3
10	1/3 (COM<2:0>)	99	144	1/2 or 1/3
11	1/4 (COM<3:0>)	132	192	1/3

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	P ⁽¹⁾	S ⁽¹⁾	R/W ^(2,3)	UA	BF
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	DIt	U = Unimpler	nented bit, read		
-n = Value	at POR	1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
h:+ 7		ata Cantral hit					
DIL 7	SIMP: SIEW R	ate Control bit					
	1 = Slew rate	<u>control is disat</u>	oled for Standa	ard Speed mod	e (100 kHz and	1 MHz)	
	0 = Slew rate	control is enab	led for High-S	peed mode (40	0 kHz)		
bit 6	CKE: SMBus	Select bit					
	In Master or S	<u>Slave mode:</u>					
	1 = Enable SI	MBus-specific i	nputs				
	0 = Disable S	MBus-specific	inputs				
bit 5	D/A: Data/Ad	dress bit					
	In Master mod	<u>de:</u>					
	In Slave mode	e.					
	1 = Indicates	that the last by	te received or	transmitted wa	s data		
	0 = Indicates	that the last by	te received or	transmitted wa	s an address		
bit 4	P: Stop bit ⁽¹⁾						
	1 = Indicates	that a Stop bit I	has been dete	cted last			
h:: 0	0 = Stop bit w	as not detected	dlast				
bit 3	S: Start bit"			-4			
	1 = indicates 0 = Start bit w	inal a Start bit i	nas been dete 1 last	cied last			
bit 2	R/W: Read/W	/rite Information	_{1 bit} (2,3)				
	In Slave mode	e:					
	1 = Read	_					
	0 = Write						
	In Master mo	<u>de:</u> ia in prograss					
	1 = Transmit 0 = Transmit i	is not in progress	ss				
bit 1	UA: Update A	Address bit (10-	Bit Slave mod	le only)			
	1 = Indicates	that the user ne	eeds to update	e the address ir	the SSPxADD	reaister	
	0 = Address of	does not need t	o be updated			0	
bit 0	BF: Buffer Fu	III Status bit					
	<u>In Transmit m</u>	<u>iode:</u>					
	1 = SSPxBUF	is full					
		- is empty					
	1 = SSPxBUF	oue. F is full (does no	ot include the	ACK and Stop I	bits)		
	0 = SSPxBUF	is empty (doe	s not include t	he ACK and St	op bits)		
Note 1	This bit is closered	on Docat and		in cloared			
Note 1: 2:	This bit holds the	R/W bit inform:	when SSPEN	is cleared. I the last addres	ss match. This I	bit is onlv valid	from the

REGISTER 21-3: SSPxSTAT: MSSPx STATUS REGISTER (I²C[™] MODE)

- 2: This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit or not ACK bit.
- 3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Active mode.

21.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPxCON1 and by setting the SSPEN bit. In Master mode, the SCLx and SDAx lines are manipulated by the MSSP hardware if the TRIS bits are set.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on Start and Stop bit conditions.

Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDAx and SCLx.
- 2. Assert a Repeated Start condition on SDAx and SCLx.
- 3. Write to the SSPxBUF register, initiating transmission of data/address.
- 4. Configure the I^2C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDAx and SCLx.

Note: The MSSPx module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur.

The following events will cause the MSSPx Interrupt Flag bit, SSPxIF, to be set (and MSSP interrupt, if enabled):

- · Start condition
- · Stop condition
- Data transfer byte transmitted/received
- Acknowledge transmitted
- Repeated Start

21.4.9 I²C[™] MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPxCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPxADD<5:0> and begins counting. The SDAx pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, and if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<6:0> and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. Following this, the RSEN bit (SSPxCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit (SSPxSTAT<3>) will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- **Note 1:** If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDAx is sampled low when SCLx goes from low-to-high.
 - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.

Immediately following the SSPxIF bit getting set, the user may write the SSPxBUF with the 7-bit address in 7-bit mode or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

21.4.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPxCON2 is disabled until the Repeated Start condition is complete.

FIGURE 21-22: REPEATED START CONDITION WAVEFORM

R/W_0	R/W/-0	R/W-0	R/W/-1	R/W-1	R/W_1	R/M-1	R/W-1
CON		CPOI	EVPOI 1	FVPOL0	CREE	ССН1	CCH0
bit 7	UOL	OFOL	LVIOLI	LVIOLO	ONLI	00111	bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	CON: Compa 1 = Compara 0 = Compara	arator Enable b tor is enabled tor is disabled	it				
bit 6	COE: Compara 1 = Compara 0 = Compara	arator Output E tor output is protor output is int	nable bit esent on the C: ernal only	xOUT pin			
bit 5	CPOL: Comparator Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted						
bit 4-3 EVPOL<1:0>: Interrupt Polarity Select bits 11 = Interrupt generation on any change of the output ⁽¹⁾ 10 = Interrupt generation only on high-to-low transition of the output 01 = Interrupt generation only on low-to-high transition of the output 00 = Interrupt generation is disabled							
bit 2	bit 2 CREF: Comparator Reference Select bit (non-inverting input) 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CxINA pin						
bit 1-0	CCH<1:0>: (Comparator Cha	annel Select bi	ts			
	11 = Inverting 10 = Inverting 01 = Inverting 00 = Inverting	g input of the co g input of the co g input of the co g input of the co	omparator conr omparator conr omparator conr omparator conr	nects to VBG nects to the C2I nects to the CxI nects to the CxI	NB or C2IND NC pin ⁽³⁾ NB pin	pin ^(2,3)	
Note 1:	The CMPxIF bit i after the initial co	s automatically nfiguration.	set any time th	is mode is sele	cted and must	t be cleared by t	he application
2:	Comparators, 1 a	and 3, use C2IN	NB as an input	to the inverting	terminal; Corr	nparator 2 uses	C2IND.

REGISTER 24-1: CMxCON: COMPARATOR CONTROL x REGISTER

3: C1INC, C2INC and C2IND are all unavailable for 64-pin devices (PIC18F6XK90).

24.5 Comparator Control and Configuration

Each comparator has up to eight possible combinations of inputs: up to four external analog inputs and one of two internal voltage references.

All of the comparators allow a selection of the signal from pin, CxINA, or the voltage from the Comparator Voltage Reference (CVREF) on the non-inverting channel. This is compared to either CxINB, CxINC, C2INB/C2IND or the microcontroller's fixed internal reference voltage (VBG, 1.024V nominal) on the inverting channel. The comparator inputs and outputs are tied to fixed I/O pins, defined in Table 24-1. The available comparator configurations and their corresponding bit settings are shown in Figure 24-4.

TABLE 24-1:	COMPARATOR INPUTS AND
	OUTPUTS

Comparator	Input or Output	I/O Pin
	C1INA (VIN+)	RF6
	C1INB (VIN-)	RF5
1	C1INC ⁽¹⁾ (VIN-)	RH6
	C2INB (VIN-)	RF3
	C1OUT	RF2
	C2INA (VIN+)	RF4
	C2INB (VIN-)	RF3
2	C2INC ⁽¹⁾ (VIN-)	RH4
	C2IND ⁽¹⁾ (VIN-)	RH5
	C2OUT	RF1
	C3INA (VIN+)	RG2
	C3INB (VIN-)	RG3
3	C3INC (VIN-)	RG4
	C2INB (VIN-)	RF3
	C3OUT	RG1

Note 1: C1INC, C2INC and C2IND are all unavailable for 64-pin devices (PIC18F6XK90).

24.5.1 COMPARATOR ENABLE AND INPUT SELECTION

Setting the CON bit of the CMxCON register (CMxCON<7>) enables the comparator for operation. Clearing the CON bit disables the comparator, resulting in minimum current consumption.

The CCH<1:0> bits in the CMxCON register (CMxCON<1:0>) direct either one of three analog input pins, or the Internal Reference Voltage (VBG), to the comparator, VIN-. Depending on the comparator

operating mode, either an external or internal voltage reference may be used. For external analog pins that are unavailable in 64-pin devices (C1INC, C2INC and C2IND), the corresponding configurations that use them as inputs are unavailable.

The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly.

The external reference is used when CREF = 0 (CMxCON<2>) and VIN+ is connected to the CxINA pin. When external voltage references are used, the comparator module can be configured to have the reference sources externally. The reference signal must be between Vss and VDD, and can be applied to either pin of the comparator.

The comparator module also allows the selection of an internally generated voltage reference from the Comparator Voltage Reference (CVREF) module. This module is described in more detail in **Section 25.0 "Comparator Voltage Reference Module**". The reference from the comparator voltage reference module is only available when CREF = 1. In this mode, the internal voltage reference is applied to the comparator's VIN+ pin.

Note:	The comparator input pin, selected by
	CCH<1:0>, must be configured as an input
	by setting both the corresponding TRISF,
	TRISG or TRISH bit and the corresponding
	ANSELx bit in the ANCONx register.

24.5.2 COMPARATOR ENABLE AND OUTPUT SELECTION

The comparator outputs are read through the CMSTAT register. The CMSTAT<5> bit reads the Comparator 1 output, CMSTAT<6> reads Comparator 2 output and CMSTAT<7> reads Comparator 3 output. These bits are read-only.

The comparator outputs may also be directly output to the RF2, RF1 and RG1 I/O pins by setting the COE bit (CMxCON<6>). When enabled, multiplexers in the output path of the pins switch to the output of the comparator. While in this mode, the TRISF<2:1> and TRISG<1> bits still function as the digital output enable bits for the RF2, RF1 and RG1 pins.

By default, the comparator's output is at logic high whenever the voltage on VIN+ is greater than on VIN-. The polarity of the comparator outputs can be inverted using the CPOL bit (CMxCON<5>).

The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications, as discussed in **Section 24.2 "Comparator Operation"**.

LFSF	R	Load FSR						
Synta	ax:	LFSR f, k	LFSR f, k					
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 409 \end{array}$	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 4095 \end{array}$					
Oper	ation:	$k\toFSRf$						
Statu	s Affected:	None						
Enco	ding:	1110 1111	1110 0000	00ff k ₇ kkk	k ₁₁ kkk kkkk			
Desc	ription:	The 12-bit file select r	The 12-bit literal 'k' is loaded into the file select register pointed to by 'f'.					
Word	ls:	2	2					
Cycle	es:	2	2					
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k' MSB	Proce Data	ss a li	Write teral 'k' MSB to FSRfH			
	Decode	Read literal 'k' LSB	Proce Data	ss Wi a 'k'	ite literal to FSRfL			
Example: LFSR 2, 3ABh After Instruction FSR2H = 03h FSR2L = ABh								

MOVE	Move f					
Svotav:	MOVE f	d (a)]				
Operande:		,u (,ajj				
Operands:	$0 \le 1 \le 255$ $d \in [0, 1]$					
	$a \in [0, 1]$ $a \in [0, 1]$					
Operation:	$f \rightarrow dest$					
Status Affected:	N, Z					
Encoding:	0101	00da	ffff	ffff		
Description:	The conten a destination status of 'd placed in V placed bac can be any 256-byte bac	The contents of register 'f' are moved to a destination dependent upon the status of 'd'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'. Location 'f' can be anywhere in the 256-byte back				
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.					
If 'a' is '0' and the extended instruction set is enabled, this instruction operat in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details						
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Proce Data	SS 1	Write W		
Example:	MOVF R	EG, 0,	0			
Before Instruc REG W	tion = 22 = FF	h ħ				
REG W	= 22 = 22	h h				

30.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

30.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

30.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K90 Family (Industrial/Extended) (Continued)

PIC18F87K90 Family		$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array} $							
Param No.	Device	Тур	Max	Units		Conditions			
	Supply Current (IDD) Cont	(2,3)							
	All devices	2.1	5.5	μA	-40°C				
		2.1	5.7	μA	+25°C	VDD = 1.8V ⁽⁴⁾			
		2.2	6.0	μA	+85°C	Regulator Disabled			
		10	20	μA	+125°C				
	All devices	3.7	7.5	μA	-40°C				
		3.9	7.8	μA	+25°C	VDD = 3.3V ⁽⁴⁾	FOSC = 31 KHZ		
		3.9	8.5	μA	+85°C	Regulator Disabled	LE-INTOSC)		
		12	24	μA	+125°C				
	All devices	70	180	μA	-40°C				
		80	190	μA	+25°C	VDD = 5V ⁽⁵⁾			
		80	200	μA	+85°C	Regulator Enabled			
		200	420	μA	+125°C				
	All devices	330	650	μA	-40°C				
		330	640	μA	+25°C	VDD = 1.8V ⁽⁴⁾			
		330	630	μA	+85°C	Regulator Disabled			
		500	850	μA	+125°C				
	All devices	520	850	μA	-40°C				
		520	900	μA	+25°C	VDD = 3.3V ⁽⁴⁾	FOSC = T MHZ		
		520	850	μA	+85°C	Regulator Disabled	HF-INTOSC)		
		800	1200	μA	+125°C				
	All devices	590	940	μA	-40°C				
		600	960	μA	+25°C	VDD = 5V ⁽⁵⁾			
		620	990	μA	+85°C	Regulator Enabled			
		1000	1400	μA	+125°C				
	All devices	470	770	μA	-40°C				
		470	770	μA	+25°C	VDD = 1.8V ⁽⁴⁾			
		460	760	μA	+85°C	Regulator Disabled			
		700	1000	μA	+125°C				
	All devices	800	1400	μA	-40°C		$E_{OSC} = 4 MH_{7}$		
		800	1350	μA	+25°C	VDD = 3.3V ⁽⁴⁾	(RC IDLF mode		
		790	1300	μA	+85°C	Regulator Disabled	internal HF-INTOSC)		
		1100	1400	μΑ	+125°C				
	All devices	880	1600	μA	-40°C				
		890	1700	μΑ	+25°C	VDD = 5V ⁽⁵⁾			
		910	1800	μA	+85°C	Regulator Enabled			
		1200	2200	μA	+125°C				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or Vss, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).

5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).

- 6: LCD glass is not connected; resistor current is not included.
- **7:** 48 MHz maximum frequency at 125°C.

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K90 Family (Industrial/Extended) (Continued)

PIC18F87K90 Family		Standard (Operating t	Operatin temperat	g Cond ture	itions (unless o -40°C ≤ TA ≤ -40°C ≤ TA ≤	therwise stated) +85°C for industrial +125°C for extended		
Param No.	Device	Тур	Max	Units	Conditions			
D025B	LCD External Biasing							
$(\Delta ILCD)$	PIC18FXXK90	0.3	1.4	μA	-40°C			
		0.3	1.4	μA	+25°C	VDD = 1.8V ⁽⁴⁾		
		0.7	1.7	μA	+85°C	Regulator Disabled		
		0.8	2.3	μA	+125°C			
	PIC18FXXK90	0.7	2.9	μA	-40°C		External biasing ⁽⁶⁾	
		0.7	3.5	μA	+25°C	VDD = 3.3V ⁽⁴⁾	1/4 Multiplex mode	
		1.1	3.9	μΑ	+85°C	Regulator Disabled	Type-A wave form LCD clock is internal RC	
		1.2	5.8	μA	+125°C			
	PIC18FXXK90	0.8	3.3	3.3 μA -40°C				
		1.1	4.1	μA	+25°C	Vdd = 5V		
		1.1	4.2	μA	+85°C	Regulator Enabled		
		1.3	6.2	μA	+125°C			

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).

- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).
- 6: LCD glass is not connected; resistor current is not included.
- **7:** 48 MHz maximum frequency at 125°C.

TABLE 31-26: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
130	Tad	A/D Clock Period	0.8	12.5 ⁽¹⁾	μS	Tosc based, VREF \geq 3.0V
			1.4	25 ⁽¹⁾	μS	VDD = 3.0V; Tosc based, VREF full range
				1	μS	A/D RC mode
				3	μS	VDD = 3.0V; A/D RC mode
131	TCNV	Conversion Time (not including acquisition time) ⁽²⁾	14	15	Tad	
132	TACQ	Acquisition Time ⁽³⁾	1.4	—	μS	-40°C to +125°C
135	Tswc	Switching Time from Convert \rightarrow Sample		(Note 4)		
137	TDIS	Discharge Time	0.2	—	μS	

Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

2: ADRES registers may be read on the following TCY cycle.

3: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD). The source impedance (Rs) on the input channels is 50 Ω .

4: On the following cycle of the device clock.

Synchronous Slave Mode	371
Associated Registers Receive	372
Associated Registers, Transmit	371
Recention	372
Transmission	
Extended Instruction Set	
ADDFSR	
	494
CALLW	495
MOVSE	495
MOVSS	496
PUSH	496
SUBESR	497
SUBLINK	497
External Oscillator Modes	
Clock Input (EC. ECPLI Modes)	48
	40

F

Fail-Safe Clock Monitor	425, 445
Exiting Operation	
Interrupts in Power-Managed Modes	
POR or Wake from Sleep	
WDT During Oscillator Failure	
Fast Register Stack	
Firmware Instructions	
Flash Program Memory	
Associated Registers	
Control Registers	
EECON1, EECON2	
TABLAT (Table Latch)	
TBLPTR (Table Pointer)	
Erasing	
Sequence	
Operation During Code-Protect	
Protection Against Spurious Writes	
Reading	
Table Pointer	
Boundaries Based on Operation	
Table Pointer Boundaries	
Table Reads, Table Writes	
Writing	
Unexpected Termination	
Verify	
Writing To	
Sequence	
FSCM. See Fail-Safe Clock Monitor.	

G

-	
GOTO	472
н	
Hardware Multiplier	
8 x 8 Multiplication Algorithms	
Operation	
Performance Comparison (table)	
High/Low-Voltage Detect	
Applications	
Associated Registers	
Current Consumption	
Effects of a Reset	
Operation	
During Sleep	

Setup	403
Start-up Time	403
Typical Low-Voltage Detect Application	404
HLVD. See High/Low-Voltage Detect.	
1	
I/O Ports	153
Open-Drain Outputs	154
Output Pin Drive	153
Pin Capabilities	153
Pull-up Configuration	153
I ² C Mode (MSSP)	
Acknowledge Sequence Timing	342
Associated Registers	348
Baud Rate Generator	335
Bus Collision	~
During a Repeated Start Condition	346
During a Stop Condition	347
Clock Arbitration	336
	328
10-Bit Slave Receive Mode (SEN = 1)	328
10-Bit Slave Transmit Mode	328
7-Bit Slave Receive Mode (SEN = 1)	328
7-Bit Slave Transmit Mode	328
Clock Synchronization and the CKP bit	329
	343
General Call Address Support	332
I ⁻ C Clock Rate w/BRG	335
Master Mode	333
	334
Reception	339
Repeated Start Condition Timing	338
	331
Multi Master Communication, Due Colligion	339
Multi-Master Communication, Bus Collision	040
and Arbitration	343
	343
Deed/Write Dit Information (D/W Dit) 219	310
Read/while bit information (R/W bit)	321
Reyisters	313
Serial Clock (SCLX)	321
Slave Would Magling Madea	310
Address Masking Modes	240
3-Dil	219
/-Dil	320
Addressing	318
Tranamiasian	321
Place Operation	321
Steep Operation	343
	342
ID LOCATIONS	450
	472
INCESZ	413
In Circuit Debugger	450
Indexed Literal Offset Addressing	450
and Standard PIC18 Instructions	<u>40</u> 2
Indexed Literal Offeet Mode	100
Indirect Addressing	105
INESN7	100
Instruction Cycle	00
Clocking Scheme	00 00
Flow/Pipelining	90 00
	30