

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f85k90-i-ptrsl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

FIGURE 5-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 5-6: SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)

11.6 PORTE, TRISE and LATE Registers

PORTE is an 8-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISE and LATE.

All pins on PORTE are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output. The RE7 pin is also configurable for open-drain output when ECCP2 is active on this pin. Open-drain configuration is selected by setting the CCP2OD control bit (ODCON1<6>)

Note:	These pins are configured as digital inputs
	on any device Reset.

Each of the PORTE pins has a weak internal pull-up. A single control bit can turn off all the pull-ups. This is performed by clearing bit, REPU (PADCFG1<6>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on any device Reset.

Pins, RE<6:3>, are multiplexed with the LCD common drives. I/O port functions are available only on those PORTE pins according to which commons are active. The configuration is determined by the LMUX<1:0> control bits (LCDCON<1:0>). The availability is summarized in Table 11-9.

TABLE 11-9:PORTE PINS AVAILABLE IN
DIFFERENT LCD DRIVE
CONFIGURATIONS⁽¹⁾

LCDCON <1:0>	Active LCD Commons	PORTE Pins Available for I/O
00	COM0	RE6, RE5, RE4
01	COM0, COM1	RE6, RE5
10	COM0, COM1 and COM2	RE6
11	All (COM0 through COM3)	None

Note 1: If the LCD bias voltages are generated using the internal resistor ladder, the LCDBIASx pins are also available as I/O ports (RE0, RE1 and RE2). Pins, RE2, RE1 and RE0, are multiplexed with the functions of LCDBIAS3, LCDBIAS2 and LCDBIAS1. When LCD bias generation is required (in any application where the device is connected to an external LCD), these pins cannot be used as digital I/O. These pins can be used as digital I/O, however, when the internal resistor ladder is used for bias generation.

PORTE is also multiplexed with the Enhanced PWM Outputs B and C for ECCP1 and ECCP3, and Outputs B, C and D for ECCP2. For all devices, their default assignments are on PORTE<6:0>. On 80-pin devices, the multiplexing for the outputs of ECCP1 and ECCP3 is controlled by the ECCPMX Configuration bit. Clearing this bit reassigns the P1B/P1C and P3B/P3C outputs to PORTH.

RE7 is multiplexed with the LCD segment drive (SEG31) that is controlled by the LCDSE3<7> bit. I/O port function is only available when the segment is disabled. RE7 can also be configured as the alternate peripheral pin for the ECCP2 module. This is done by clearing the CCP2MX Configuration bit.

RE3 can also be configured as the Reference Clock Output (REFO) from the system clock. For further details, refer to **Section 3.7 "Reference Clock Output"**.

CLRF	PORTE	; Initialize PORTE by ; clearing output
		; data latches
CLRF	LATE	; Alternate method
		; to clear output
		; data latches
MOVLW	03h	; Value used to
		; initialize data
		; direction
MOVWF	TRISE	; Set RE<1:0> as inputs
		; RE<7:2> as outputs

15.0 TIMER3/5/7 MODULES

The Timer3/5/7 timer/counter modules incorporate these features:

- Software-selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMRxH and TMRxL)
- Selectable clock source (internal or external) with device clock or SOSC oscillator internal options
- Interrupt-on-overflow
- · Module Reset on ECCP Special Event Trigger

Timer7 is unimplemented for devices with a program memory of 32 Kbytes (PIC18FX5K90).

Note: Throughout this section, generic references are used for register and bit names that are the same, except for an 'x' variable that indicates the item's association with the Timer3, Timer5 or Timer7 module. For example, the control register is named TxCON and refers to T3CON, T5CON and T7CON.

A simplified block diagram of the Timer3/5/7 module is shown in Figure 15-1.

The Timer3/5/7 module is controlled through the TxCON register (Register 15-1). It also selects the clock source options for the ECCP modules. (For more information, see **Section 19.1.1 "ECCP Module and Timer Resources"**.)

The Fosc clock source should not be used with the ECCP capture/compare features. If the timer will be used with the capture or compare features, always select one of the other timer clocking options.

17.1.3 ALRMVALH AND ALRMVALL REGISTER MAPPINGS

REGISTER 17-14: ALRMMNTH: ALARM MONTH VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	Unimplemented: Read as '0'
bit 4	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bits Contains a value of '0' or '1'.
bit 3-0	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 17-15: ALRMDAY: ALARM DAY VALUE REGISTER⁽¹⁾

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0' $-n = Value at POR'1' = Bit is set'0' = Bit is cleared$	Legend:			
n = Value at POR (1) = Bit is set (0) = Bit is cleared x = Bit is unknown	R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
	-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

17.2.4 LEAP YEAR

Since the year range on the RTCC module is 2000 to 2099, the leap year calculation is determined by any year divisible by four in the above range. Only February is affected in a leap year.

February will have 29 days in a leap year and 28 days in any other year.

17.2.5 GENERAL FUNCTIONALITY

All Timer registers containing a time value of seconds or greater are writable. The user configures the time by writing the required year, month, day, hour, minutes and seconds to the Timer registers, via Register Pointers. (See Section 17.2.8 "Register Mapping".)

The timer uses the newly written values and proceeds with the count from the required starting point.

The RTCC is enabled by setting the RTCEN bit (RTCCFG<7>). If enabled, while adjusting these registers, the timer still continues to increment. However, any time the MINSEC register is written to, both of the timer prescalers are reset to '0'. This allows fraction of a second synchronization.

The Timer registers are updated in the same cycle as the write instruction's execution by the CPU. The user must ensure that when RTCEN = 1, the updated registers will not be incremented at the same time. This can be accomplished in several ways:

- By checking the RTCSYNC bit (RTCCFG<4>)
- By checking the preceding digits from which a carry can occur
- By updating the registers immediately following the seconds pulse (or an alarm interrupt)

The user has visibility to the half-second field of the counter. This value is read-only and can be reset only by writing to the lower half of the SECONDS register.

17.2.6 SAFETY WINDOW FOR REGISTER READS AND WRITES

The RTCSYNC bit indicates a time window during which the RTCC Clock Domain registers can be safely read and written without concern about a rollover. When RTCSYNC = 0, the registers can be safely accessed by the CPU.

Whether RTCSYNC = 1 or 0, the user should employ a firmware solution to ensure that the data read did not fall on a rollover boundary, resulting in an invalid or partial read. This firmware solution would consist of reading each register twice and then comparing the two values. If the two values matched, then a rollover did not occur.

17.2.7 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RTCCFG<5>) must be set.

To avoid accidental writes to the RTCC Timer register, it is recommended that the RTCWREN bit (RTCCFG<5>) be kept clear when not writing to the register. For the RTCWREN bit to be set, there is only one instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN. For that reason, it is recommended that users follow the code example in Example 17-1.

EXAMPLE 17-1: SETTING THE RTCWREN BIT

movlw	0x55	
movwf	EECON2	
movlw	0xAA	
movwf	EECON2	
bsf	RTCCFG, RTCWREN	

17.2.8 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Timer registers are accessed through corresponding Register Pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTRx bits (RTCCFG<1:0>) to select the required Timer register pair.

By reading or writing to the RTCVALH register, the RTCC Pointer value (RTCPTR<1:0>) decrements by '1' until it reaches '00'. When '00' is reached, the MINUTES and SECONDS value is accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 17-3:	RTCVALH AND RTCVALL
	REGISTER MAPPING

	RTCC Value Register Window				
RICFIRCI.0>	RTCVALH	RTCVALL			
00	MINUTES	SECONDS			
01	WEEKDAY	HOURS			
10	MONTH	DAY			
11	—	YEAR			

The Alarm Value register windows (ALRMVALH and ALRMVALL) use the ALRMPTR bits (ALRMCFG<1:0>) to select the desired alarm register pair.

By reading or writing to the ALRMVALH register, the Alarm Pointer value, ALRMPTR<1:0>, decrements by one until it reaches '00'. When it reaches '00', the ALRMMIN and ALRMSEC value is accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

20.2 LCD Clock Source Selection

The LCD driver module has three possible clock sources:

- (Fosc/4)/8192
- SOSC Clock/32
- INTRC/32

The first clock source is the system clock divided by 8,192 ((Fosc/4)/8192). This divider ratio is chosen to provide about 1 kHz output when the system clock is 8 MHz. The divider is not programmable. Instead, the LCD prescaler bits, LCDPS<3:0>, are used to set the LCD frame clock rate.

The second clock source is the SOSC oscillator/32. This also outputs about 1 kHz when a 32.768 kHz crystal is used with the SOSC oscillator. To use the SOSC oscillator as a clock source, set the SOSCEN (T1CON<3>) bit.

The third clock source is a 31.25 kHz internal RC oscillator/32 that provides approximately 1 kHz output.

The second and third clock sources may be used to continue running the LCD while the processor is in Sleep.

These clock sources are selected through the bits CS<1:0> (LCDCON<3:2>).

20.2.1 LCD PRESCALER

A 16-bit counter is available as a prescaler for the LCD clock. The prescaler is not directly readable or writable. Its value is set by the LP<3:0> bits (LCDPS<3:0>) that determines the prescaler assignment and prescale ratio.

Selectable prescale values are from 1:1 through 1:32,768, in power-of-2 increments.

FIGURE 20-2: LCD CLOCK GENERATION

REGISTER 21-2: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾
bit 7		•					bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	WCOL: Write Collision Detect bit
	1 = The SSPxBUF register is written while it is still transmitting the previous word (must be cleared in
	software)
	0 = No collision
bit 6	SSPOV: Receive Overflow Indicator bit ⁽¹⁾
	SPI Slave mode:
	1 = A new byte is received while the SSPxBUF register is still holding the previous data. In case of over-
	flow, the data in SSPXSR is lost. Overflow can only occur in Slave mode. The user must read the SSPxPLIE even if only transmitting data, to even destring overflow (must be closed in activera)
	$0 = N_0 \text{ overflow}$
bit 5	SSPEN: Master Synchronous Serial Port Enable bit ⁽²⁾
	1 = Enables serial port and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins
	0 = Disables serial port and configures these pins as I/O port pins
bit 4	CKP: Clock Polarity Select bit
	1 = Idle state for clock is a high level
	0 = Idle state for clock is a low level
bit 3-0	SSPM<3:0>: Master Synchronous Serial Port Mode Select bits ⁽³⁾
	1010 = SPI Master mode: Clock = Fosc/8
	0101 = SPI Slave mode: Clock = SCKx pin; \overline{SSx} pin control is disabled; \overline{SSx} can be used as an I/O pin
	0100 = SPI Slave mode: Clock = SCKx pin; SSx pin control is enabled
	0011 = SPI Master mode: Clock = TMR2 Output/2
	0010 = SPI Master mode: Clock = FOSC/64
	0001 = SPI Master mode: Clock = Fosc/16
	0000 - SFT Master Mode. Clock - POSC/4
Note 1:	In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by
	writing to the SSPxBUF register.

- 2: When enabled, these pins must be properly configured as inputs or outputs.
- **3:** Bit combinations not specifically listed here are either reserved or implemented in I^2C^{TM} mode only.

21.4.8 I²C[™] MASTER MODE START CONDITION TIMING

To initiate a Start condition, the user sets the Start Enable bit, SEN (SSPxCON2<0>). If the SDAx and SCLx pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<6:0> and starts its count. If SCLx and SDAx are both sampled high when the Baud Rate Generator times out (TBRG), the SDAx pin is driven low. The action of the SDAx being driven low while SCLx is high is the Start condition and causes the S bit (SSPxSTAT<3>) to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPxADD<6:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit (SSPxCON2<0>) will be automatically cleared by hardware. The Baud Rate Generator is suspended, leaving the SDAx line held low and the Start condition is complete.

Note: If, at the beginning of the Start condition, the SDAx and SCLx pins are already sampled low, or if during the Start condition, the SCLx line is sampled low before the SDAx line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLxIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.

21.4.8.1 WCOL Status Flag

If the user writes the SSPxBUF when a Start sequence is in progress, the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPxCON2 is disabled until the Start condition is complete.

FIGURE 21-21: FIRST START BIT TIMING

21.4.10 I²C[™] MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address, is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDAx pin after the falling edge of SCLx is asserted (see data hold time specification Parameter 106). SCLx is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCLx is released high (see data setup time specification Parameter 107). When the SCLx pin is released high, it is held that way for TBRG. The data on the SDAx pin must remain stable for that duration and some hold time after the next falling edge of SCLx. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDAx. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared; if not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCLx low and SDAx unchanged (Figure 21-23).

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCLx until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will deassert the SDAx pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDAx pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPxCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPxIF flag is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCLx low and allowing SDAx to float.

21.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPxSTAT<0>) is set when the CPU writes to SSPxBUF and is cleared when all 8 bits are shifted out.

21.4.10.2 WCOL Status Flag

If the user writes the SSPxBUF when a transmit is already in progress (i.e., SSPxSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur) after 2 TCY after the SSPxBUF write. If SSPxBUF is rewritten within 2 TCY, the WCOL bit is set and SSPxBUF is updated. This may result in a corrupted transfer.

The user should verify that the WCOL bit is clear after each write to SSPxBUF to ensure the transfer is correct. In all cases, WCOL must be cleared in software.

21.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPxCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$ and is set when the slave does not Acknowledge $(\overline{ACK} = 1)$. A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

21.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN (SSPxCON2<3>).

Note: The MSSP module must be in an inactive state before the RCEN bit is set or the RCEN bit will be disregarded.

The Baud Rate Generator begins counting, and on each rollover, the state of the SCLx pin changes (high-to-low/low-to-high) and data is shifted into the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCLx low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable bit, ACKEN (SSPxCON2<4>).

21.4.11.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.

21.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.

21.4.11.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

21.4.12 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit. ACKEN (SSPxCON2<4>). When this bit is set, the SCLx pin is pulled low and the contents of the Acknowledge data bit are presented on the SDAx pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCLx pin is deasserted (pulled high). When the SCLx pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG; the SCLx pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into an inactive state (Figure 21-25).

21.4.12.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

21.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPxCON2<2>). At the end of a receive/transmit, the SCLx line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDAx line low. When the SDAx line is sampled low, the Baud Rate Generator is reloaded and counts down to 0. When the Baud Rate Generator times out, the SCLx pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDAx pin will be deasserted. When the SDAx pin is sampled high while SCLx is high, the P bit (SSPxSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (see Figure 21-26).

21.4.13.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 21-26: STOP CONDITION RECEIVE OR TRANSMIT MODE

25.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 25-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in **Section 31.0 "Electrical Characteristics"**.

25.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

25.4 Effects of a Reset

A device Reset disables the voltage reference by clearing bit, CVREN (CVRCON<7>). This Reset also disconnects the reference from the RF5 pin by clearing bit, CVROE (CVRCON<6>).

25.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RF5 pin if the CVROE bit is set. Enabling the voltage reference output onto RF5, when it is configured as a digital input, will increase current consumption. Connecting RF5 as a digital output, with CVRSS enabled, will also increase current consumption.

The RF5 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. Figure 25-2 shows an example buffering technique.

27.2 CTMU Operation

The CTMU works by using a fixed current source to charge a circuit. The type of circuit depends on the type of measurement being made.

In the case of charge measurement, the current is fixed and the amount of time the current is applied to the circuit is fixed. The amount of voltage read by the A/D becomes a measurement of the circuit's capacitance.

In the case of time measurement, the current, as well as the capacitance of the circuit, is fixed. In this case, the voltage read by the A/D is representative of the amount of time elapsed from the time the current source starts and stops charging the circuit.

If the CTMU is being used as a time delay, both capacitance and current source are fixed, as well as the voltage supplied to the comparator circuit. The delay of a signal is determined by the amount of time it takes the voltage to charge to the comparator threshold voltage.

27.2.1 THEORY OF OPERATION

The operation of the CTMU is based on the equation for charge:

 $C = I \bullet \frac{dV}{dT}$

More simply, the amount of charge measured in coulombs in a circuit is defined as current in amperes (I) multiplied by the amount of time in seconds that the current flows (t). Charge is also defined as the capacitance in farads (C) multiplied by the voltage of the circuit (V). It follows that:

 $I \bullet t = C \bullet V$

The CTMU module provides a constant, known current source. The A/D Converter is used to measure (V) in the equation, leaving two unknowns: capacitance (C) and time (t). The above equation can be used to calculate capacitance or time, by either the relationship using the known fixed capacitance of the circuit:

 $t = (C \bullet V)/I$

or by:

 $\mathbf{C} = (\mathbf{I} \bullet \mathbf{t}) / \mathbf{V}$

using a fixed time that the current source is applied to the circuit.

27.2.2 CURRENT SOURCE

At the heart of the CTMU is a precision current source, designed to provide a constant reference for measurements. The level of current is user-selectable across three ranges or a total of two orders of magnitude, with the ability to trim the output in $\pm 2\%$ increments (nominal). The current range is selected by the IRNG<1:0> bits (CTMUICON<1:0>), with a value of '00' representing the lowest range.

Current trim is provided by the ITRIM<5:0> bits (CTMUICON<7:2>). These six bits allow trimming of the current source in steps of approximately 2% per step. Half of the range adjusts the current source positively and the other half reduces the current source. A value of '000000' is the neutral position (no change). A value of '100000' is the maximum negative adjustment (approximately -62%) and '011111' is the maximum positive adjustment (approximately +62%).

27.2.3 EDGE SELECTION AND CONTROL

CTMU measurements are controlled by edge events occurring on the module's two input channels. Each channel, referred to as Edge 1 and Edge 2, can be configured to receive input pulses from one of the edge input pins (CTED1 and CTED2) or CCPx Special Event Triggers. The input channels are level-sensitive, responding to the instantaneous level on the channel rather than a transition between levels. The inputs are selected using the EDG1SEL and EDG2SEL bit pairs (CTMUCONL<3:2, 6:5>).

In addition to source, each channel can be configured for event polarity using the EDGE2POL and EDGE1POL bits (CTMUCONL<7,4>). The input channels can also be filtered for an edge event sequence (Edge 1 occurring before Edge 2) by setting the EDGSEQEN bit (CTMUCONH<2>).

27.2.4 EDGE STATUS

The CTMUCON register also contains two status bits, EDG2STAT and EDG1STAT (CTMUCONL<1:0>). Their primary function is to show if an edge response has occurred on the corresponding channel. The CTMU automatically sets a particular bit when an edge response is detected on its channel. The level-sensitive nature of the input channels also means that the status bits become set immediately if the channel's configuration is changed and matches the channel's current state.

The module uses the edge status bits to control the current source output to external analog modules (such as the A/D Converter). Current is only supplied to external modules when only one (not both) of the status bits is set. Current is shut off when both bits are either set or cleared. This allows the CTMU to measure current only during the interval between edges. After both status bits are set, it is necessary to clear them before another measurement is taken. Both bits should be cleared simultaneously, if possible, to avoid re-enabling the CTMU current source.

In addition to being set by the CTMU hardware, the edge status bits can also be set by software. This permits a user application to manually enable or disable the current source. Setting either (but not both) of the bits enables the current source. Setting or clearing both bits at once disables the source.

REGISTER 28-10: CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah)⁽²⁾

		B / A /		B (B)	-	-	-
R/C-1	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1
WRT7	WRT6 ⁽¹⁾	WRT5 ⁽¹⁾	WRT4 ⁽¹⁾	WRT3	WRT2	WRT1	WRT0
bit 7							bit 0
Legend:		C = Clearable	e bit				
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7	WRT7: Write	Protection bit ⁽¹)				
	1 = Block 7 is	not write-prote	ected				
	0 = Block 7 is	write-protecte	d				
bit 6	WRT6: Write	Protection bit ⁽¹⁾)				
	1 = Block 6 is	not write-prote	ected				
L:1 F		write-protecte					
DIT 5	WRI5: Write	Protection bit	, ,				
	$\perp = Block 5 IS$ 0 = Block 5 is	write-protecte	d				
hit 4	WRT4· Write	Protection hit(1	u)				
bit 4	1 = Block 4 is	not write-prote	ected				
	0 = Block 4 is	write-protecte	d				
bit 3	WRT3: Write	Protection bit					
	1 = Block 3 is	not write-prote	ected				
	0 = Block 3 is	write-protecte	d				
bit 2	WRT2: Write	Protection bit					
	1 = Block 2 is	not write-prote	ected				
	0 = Block 2 is	write-protecte	d				
bit 1	WRT1: Write	Protection bit					
	1 = Block 1 is	not write-prote	ected				
1.11.0		write-protecte	u				
DITU	WKIU: Write	Protection bit	ata d				
	$\perp = Block 0 IS$ 0 = Block 0 is	write-protecte	eciea d				
			u				
Note 1:	This bit is only ava	ilable on PIC18	BF67K90 and	PIC18F87K90			

2: For the memory size of the blocks, refer to Figure 28-6.

ADD W to f

f {,d {,a}}

01da

Add W to register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the

result is stored back in register 'f'.

If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the

If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing

ffff

ffff

ADDWF

 $0 \leq f \leq 255$ $d \in [0\,,1]$

a ∈ [0,1]

0010

GPR bank.

 $(W) + (f) \rightarrow dest$

N, OV, C, DC, Z

29.1.1 STANDARD INSTRUCTION SET

ADD	LW	ADD Litera	l to W				ADDWF
Synt	ax:	ADDLW	k				Syntax:
Oper	ands:	$0 \le k \le 255$					Operands:
Oper	ration:	$(W) + k \rightarrow V$	N				
Statu	is Affected:	N, OV, C, E	C, Z				Operation
Enco	oding:	0000	1111	kkkk	kkkk		
Desc	Description: The contents of W are added to the 8-bit literal 'k' and the result is placed in W.						Encoding: Description:
Word	ds:	1					
Cycle	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'k'	Process Data	s V	Vrite to W		
<u>Exar</u>	nple: Before Instruc W = After Instructio W =	ADDLW 1 tion 10h on 25h	.5h			,	Words:
							Cycles:
							Q Cycle Activity Q1 Decode
						ļ	Example: Before Instr W REG After Instruc
							W REG

mode whenever $f \le 95$ (5Fh). See Section 29.2.3 "Byte-Oriented and **Bit-Oriented Instructions in Indexed** Literal Offset Mode" for details. 1 1 Q4 Q3 Q2 Read Process Write to register 'f Data destination ADDWF REG, 0, 0 uction = 17h = 0C2h tion 0D9h = = 0C2h

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

LFSF	R	Load FSR						
Synta	ax:	LFSR f, k						
$\begin{array}{llllllllllllllllllllllllllllllllllll$			5					
Oper	ation:	$k\toFSRf$	$k \rightarrow FSRf$					
Statu	s Affected:	None						
Enco	ding: 1110 1110 00ff k ₁₁ k 1111 0000 k ₇ kkk kkł		k ₁₁ kkk kkkk					
Desc	ription:	The 12-bit file select r	12-bit literal 'k' is loaded into the select register pointed to by 'f'.					
Word	ls:	2						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k' MSB	Proce Data	ss a li	Write teral 'k' MSB to FSRfH			
	Decode	Read literal 'k' LSB	Proce Data	ss Wi a 'k'	ite literal to FSRfL			
<u>Exan</u>	nple: After Instructi FSR2H FSR2L	LFSR 2, on = 03 = AE	3ABh bh 3h					

MOVE	Move f							
Svotav:	MOVE f	d (a)]						
Operande:		,u (,ajj						
Operands:	$0 \le 1 \le 255$ $d \in [0, 1]$							
	$a \in [0, 1]$ $a \in [0, 1]$							
Operation:	$f \to dest$							
Status Affected:	N, Z	N, Z						
Encoding:	0101	0101 00da ffff ffff						
Description:	The conten a destination status of 'd placed in V placed bac can be any 256-byte bac	The contents of register 'f' are moved to a destination dependent upon the status of 'd'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'. Location 'f' can be anywhere in the 256-byte bank						
	lf 'a' is '0', t If 'a' is '1', t GPR bank.	he Acces he BSR i	s Bank is used to	selected. select the				
	If 'a' is '0' a set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offs	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read register 'f'	Proce Data	SS 1	Write W				
Example:	MOVF R	EG, 0,	0					
Before Instruc REG W	tion = 22 = FF	h ħ						
REG W	= 22 = 22	h h						

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K90 Family (Industrial/Extended)

PIC18F87K90 Family							
Param No.	Device	Тур	Max	Units	Conditions		
	Power-Down Current (IPD)	(1)					
	All devices	10	500	nA	-40°C		
		20	500	nA	+25°C	VDD = 1.8V ⁽⁴⁾	
		120	600	nA	+60°C	(Sleep mode)	
		630	1800	nA	+85°C	Regulator Disabled	
		4	9	μA	+125°C		
	All devices	50	700	μA	-40°C		
		60	700	nA	+25°C	VDD = 3.3V ⁽⁴⁾	
		170	800	nA	+60°C	(Sleep mode)	
		700	2700	nA	+85°C	Regulator Disabled	
		5	11	μA	+125°C		
	All devices	350	1300	nA	-40°C		
		400	1400	nA	+25°C	VDD = 5V ⁽⁵⁾	
		550	1500	nA	+60°C	(Sleep mode)	
		1350	4000	nA	+85°C	Regulator Enabled	
		6	12	μA	+125°C		

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).

- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).
- 6: LCD glass is not connected; resistor current is not included.
- **7:** 48 MHz maximum frequency at 125°C.

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K90 Family (Industrial/Extended) (Continued)

PIC18F8	7K90 Family	$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array} $							
Param No.	Device	Тур	Max	Units		Conditions			
	Supply Current (IDD) Cont	(2,3)							
	All devices	130	390	μA	-40°C				
		130	390	μA	+25°C	VDD = 1.8V ⁽⁴⁾			
		130	390	μA	+85°C	Regulator Disabled			
		250	500	μA	+125°C				
	All devices	270	790	μA	-40°C				
		270	790	μA	+25°C	VDD = 3.3V ⁽⁴⁾	FOSC = 1 MHZ		
		270	790	μA	+85°C	Regulator Disabled	EC oscillator)		
		400	900	μA	+125°C				
	All devices	430	990	μA	-40°C				
		450	980	μA	+25°C	Vdd = 5V ⁽⁵⁾			
		460	980	μA	+85°C	Regulator Enabled			
		600	1300	μA	+125°C				
	All devices	430	860	μA	-40°C				
		530	900	μA	+25°C	VDD = 1.8V ⁽⁴⁾			
		490	880	μA	+85°C	Regulator Disabled			
		750	1600	μA	+125°C				
	All devices	850	1750	μA	-40°C				
		850	1700	μA	+25°C	VDD = 3.3V ⁽⁴⁾	FOSC = 4 MHZ		
		850	1800	μA	+85°C	Regulator Disabled	FC oscillator)		
		1150	2400	μA	+125°C		_0 000		
	All devices	1.1	2.7	mA	-40°C				
		1.1	2.6	mA	+25°C	VDD = 5V ⁽⁵⁾			
		1.1	2.6	mA	+85°C	Regulator Enabled			
		2.0	4.0	mA	+125°C				
	All devices	12	19	mA	-40°C				
		12	19	mA	+25°C	VDD = 3.3V ⁽⁴⁾			
		12	19	mA	+85°C	Regulator Disabled			
		13	22	mA	+125°C ⁽⁷⁾		(PRI RUN mode		
	All devices	13	20	mA	-40°C		EC oscillator)		
		13	20	mA	+25°C	VDD = 5V ⁽⁵⁾			
		13	20	mA	+85°C	Regulator Enabled			
		14	23	mA	+125°C(7)				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- 3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).
- 6: LCD glass is not connected; resistor current is not included.
- 7: 48 MHz maximum frequency at 125°C.

	RC3/SCK1/SCL1/SEG17	. 17,	26
	RC4/SDI1/SDA1/SEG16	. 17,	26
	RC5/SDO1/SEG12	. 17,	26
	RC6/TX1/CK1/SEG27	. 17,	26
	RC7/RX1/DT1/SEG28	. 17,	26
	RD0/SEG0/CTPLS.	. 18.	27
	RD1/SEG1/T5CKI/T7G	. 18.	27
	RD2/SEG2	18	27
	RD3/SEG3	18	27
	RD4/SEC4/SDC2	. 10, 18	27
		. 10, 10	27
		. 10, 40	21
	RD0/SEG0/SCK2/SCL2	. 18,	21
		. 18,	21
	RE0/LCDBIAS1/P2D	. 19,	28
	RE1/LCDBIAS2/P2C	. 19,	28
	RE2/LCDBIAS3/P2B/CCP10	. 19,	28
	RE3/COM0/P3C/CCP9/REFO	. 19,	28
	RE4/COM1/P3B/CCP8	. 19,	28
	RE5/COM2/P1C/CCP7	. 19,	28
	RE6/COM3/P1B/CCP6	. 19,	28
	RE7/ECCP2/P2A/SEG31		28
	RE7/ECCP2/SEG31/P2A		19
	RE1/AN6/C2OUT/SEG19/CTDIN	20	29
	RE2/AN7/C10UT/SEG20	0,	20
			20
			20
			29
			20
	RF4/AN9/SEG22/C2INA	. 20,	29
	RF5/AN10		20
	RF5/AN10/CVREF/SEG23/C1INB		29
	RF6/AN11/SEG24/C1INA	. 20,	29
	DE7/AN5/SS1/SEC25	20	29
	IN //ANJ/001/0E020	. 20,	
	RG0/ECCP3/P3A	. 21,	30
	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT	. 21, . 21, . 21,	30 30
	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA	. 21, . 21, . 21, . 21,	30 30 30
	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB	. 21, . 21, . 21, . 21, . 21,	30 30 30 30 30
	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E	. 21, . 21, . 21, . 21, . 21, . 21,)/	30 30 30 30 30
	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC	. 21, . 21, . 21, . 21, . 21, . 21, . 21,	30 30 30 30 30 30
	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC RH0/SEG47/AN23	. 21, . 21, . 21, . 21, . 21, .)/ . 21,	30 30 30 30 30 30 30
	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA. RG3/CCP4/AN17/P3D/C3INB. RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC. RH0/SEG47/AN23 RH1/SEG46/AN22.	. 21, . 21, . 21, . 21, . 21, . 21, . 21,	30 30 30 30 30 30 31 31
	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA. RG3/CCP4/AN17/P3D/C3INB. RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC. RH0/SEG47/AN23. RH1/SEG46/AN22 RH2/SEG45/AN21.	. 21, . 21, . 21, . 21, . 21, . 21, . 21,	30 30 30 30 30 30 31 31 31
	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20	. 21, . 21, . 21, . 21, . 21, . 21, . 21,	30 30 30 30 30 30 31 31 31 31 31
	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC. RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC.	. 21, . 21, . 21, . 21, . 21, . 21, . 21,	30 30 30 30 30 31 31 31 31 31 31
	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC RH5/SEG41/CCP8/P3B/AN13/C2IND	.21, .21, .21, .21, .21, .21, .21,	30 30 30 30 30 30 31 31 31 31 31 31
	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC RH5/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC	.21, .21, .21, .21, .21, .21, 	30 30 30 30 30 30 31 31 31 31 31 31 31
	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH1/SEG46/AN22 RH3/SEG44/AN20 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC RH5/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC RH5/SEG43/CCP6/P1B/AN15	.21, .21, .21, .21, .21, .21, .21,	30 30 30 30 30 31 31 31 31 31 31 31 31 31 32
	RG//CCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC RH5/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC RH7/SEG43/CCP6/P1B/AN15 P I0	.21, .21, .21, .21, .21, .21, .21,	30 30 30 30 30 31 31 31 31 31 31 31 32 33
	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG44/AN20 RH4/SEG44/CCP9/P3C/AN12/C2INC RH5/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC RH7/SEG43/CCP6/P1B/AN15 RJ0 P 11/SEC33	. 21, . 21, . 21, . 21, . 21, . 21, . 21,	30 30 30 30 30 31 31 31 31 31 31 31 32 33
	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC RH4/SEG40/CCP9/P3C/AN12/C2IND RH6/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC RH7/SEG43/CCP6/P1B/AN15 RJ0 RJ1/SEG33 P12/SEG34	. 21, . 21, . 21, . 21, . 21, . 21, . 21,	30 30 30 30 30 31 31 31 31 31 31 31 32 33 33
	RG//CCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC RH4/SEG40/CCP9/P3C/AN12/C2INC RH5/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC RH7/SEG43/CCP6/P1B/AN15 RJ0 RJ1/SEG33 RJ2/SEG34	.21, .21, .21, .21, .21, .21, 	30 30 30 30 31 31 31 31 31 31 31 31 32 33 33 33 33
	RG//ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC RH5/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC RH7/SEG43/CCP6/P1B/AN15 RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35	.21, .21, .21, .21, .21, .21, 	30 30 30 30 31 31 31 31 31 31 31 31 32 33 33 33 33
	RG//ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC RH5/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC RH7/SEG43/CCP6/P1B/AN15 RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39		30 30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31 32 33 33 33 33 33
	RG//ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC RH5/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC RH7/SEG43/CCP6/P1B/AN15 RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ5/SEG38		30 30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31 32 33 33 33 33 33
	RGI/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC RH5/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC RH7/SEG43/CCP6/P1B/AN15 RJ0 RJ1/SEG33 RJ3/SEG35 RJ4/SEG39 RJ6/SEG37	.21, .21, .21, .21, .21, .21, 	30 30 30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 32 33 33 33 33 33 33 33
	RG//CCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA. RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC. RH0/SEG47/AN23. RH1/SEG46/AN22 RH2/SEG45/AN21. RH3/SEG44/AN20. RH4/SEG40/CCP9/P3C/AN12/C2INC. RH5/SEG41/CCP8/P3B/AN13/C2IND. RH6/SEG42/CCP7/P1C/AN14/C1INC. RH7/SEG43/CCP6/P1B/AN15. RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ5/SEG38. RJ6/SEG37. RJ7/SEG36		30 30 30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 32 33
	RG//CCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA. RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC. RH0/SEG47/AN23. RH1/SEG46/AN22 RH2/SEG45/AN21. RH3/SEG44/AN20. RH4/SEG40/CCP9/P3C/AN12/C2INC. RH5/SEG41/CCP8/P3B/AN13/C2IND. RH6/SEG42/CCP7/P1C/AN14/C1INC. RH7/SEG43/CCP6/P1B/AN15. RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ5/SEG38 RJ6/SEG37 RJ7/SEG36 VDD	. 21, .21, .21, .21, .21, .21, .21, .21,	30 30 30 30 31 32 33
	RG//CCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC. RH0/SEG47/AN23. RH1/SEG46/AN22 RH2/SEG46/AN22 RH2/SEG45/AN21. RH3/SEG44/AN20. RH4/SEG40/CCP9/P3C/AN12/C2INC RH5/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC RH7/SEG43/CCP6/P1B/AN15 RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ5/SEG38 RJ6/SEG37 RJ7/SEG36 VDD	.21, .21, .21, .21, .21, .21, .21, .21,	30 30 30 30 31 32 33
	RG//ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA. RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC. RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC. RH5/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC. RH7/SEG43/CCP6/P1B/AN15. RJ0. RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ5/SEG38 RJ6/SEG37 RJ7/SEG36 VDD VDDCORE/VCAP	. 21, .21, .21, .21, .21, .21, .21, .21,	30 30 30 31 32 33
Pino	RGI/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC. RH0/SEG47/AN23. RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20. RH4/SEG40/CCP9/P3C/AN12/C2INC. RH5/SEG41/CCP8/P3B/AN13/C2IND. RH6/SEG42/CCP7/P1C/AN14/C1INC. RH7/SEG43/CCP6/P1B/AN15. RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ5/SEG38 RJ6/SEG37 RJ7/SEG36 VDD VDDCORE/VCAP Vss		30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 32 33
Pino	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C30UT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P11 C3INC. RH0/SEG47/AN23. RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20. RH4/SEG40/CCP9/P3C/AN12/C2INC. RH5/SEG41/CCP8/P3B/AN13/C2IND. RH6/SEG42/CCP7/P1C/AN14/C1INC. RH7/SEG43/CCP6/P1B/AN15. RJ0 RJ1/SEG33. RJ2/SEG34. RJ3/SEG35. RJ4/SEG37. RJ5/SEG38. RJ6/SEG37. RJ7/SEG36. VDD VDD VDDCORE/VCAP. Vss. ut I/O Descriptions PIC18F6XK90.		30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 32 33
Pino	RG//ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA. RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC. RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC. RH5/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC. RH7/SEG43/CCP6/P1B/AN15. RJ0. RJ1/SEG33 RJ2/SEG34 RJ3/SEG35. RJ4/SEG39 RJ5/SEG38 RJ6/SEG37 RJ7/SEG36. VDD VDDCORE/VCAP. VSS	. 21, . 21, . 21, . 21, . 21, . 21, . 21, . 21, . 22, . 22, . 22, . 22,	30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 32 33
Pino	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC. RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC. RH5/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC. RH7/SEG43/CCP6/P1B/AN15 RJ0. RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG37 RJ5/SEG38 RJ6/SEG37 RJ7/SEG36 VDD VDDCORE/VCAP Vss ut I/O Descriptions PIC18F6XK90 PIC18F8XK90	.21, .21, .21, .21, .21, .21, .21, .21,	30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 32 33
Pino	RG//ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC. RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC. RH5/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC. RH7/SEG43/CCP6/P1B/AN15 RJ0. RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ5/SEG38 RJ6/SEG37 RJ7/SEG36 VDD VDDCORE/VCAP VSS ut I/O Descriptions PIC18F6XK90 PIC18F6XK90 PIC18F8XK90 Register TMR12IF Bit	. 21, . 21, . 21, . 21, . 21, . 21, . 21, . 21, . 22, . 22, . 22, . 22, . 22,	30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 32 33
Pino PIR5 PLL.	RG//ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC. RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC. RH5/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC. RH7/SEG43/CCP6/P1B/AN15. RJ0 RJ1/SEG33. RJ2/SEG34. RJ3/SEG35. RJ4/SEG39. RJ5/SEG38. RJ6/SEG37 RJ7/SEG36. VDD VDDCORE/VCAP VSS ut I/O Descriptions PIC18F6XK90 PIC18F8XK90 Register TMR12IF Bit	. 21, . 21, . 21, . 21, . 21, . 21, . 21, . 21, 	30 30 30 30 31 32 33
Pino PIR5 PLL.	RG//ECCP3/P3A RG1/TX2/CK2/AN19/C3OUT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG45/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC RH5/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC RH7/SEG43/CCP6/P1B/AN15 RJ0 RJ1/SEG33 RJ2/SEG34 RJ3/SEG35 RJ4/SEG39 RJ5/SEG38 RJ6/SEG37 RJ7/SEG36 CDD VDD CORE/VCAP VSS ut I/O Descriptions PIC18F6XK90 PIC18F8XK90 FREST RD RD RD RD RD RD RD RD RD RD RD RD RD	. 21, .21, .21, .21, .21, .21, .21, .21,	30 30 30 30 31 32 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
Pino PIR5 PLL.	RG0/ECCP3/P3A RG1/TX2/CK2/AN19/C30UT RG2/RX2/DT2/AN18/C3INA RG3/CCP4/AN17/P3D/C3INB RG4/SEG26/RTCC/T7CKI/T5G/CCP5/AN16/P1E C3INC RH0/SEG47/AN23 RH1/SEG46/AN22 RH2/SEG46/AN21 RH3/SEG44/AN20 RH4/SEG40/CCP9/P3C/AN12/C2INC RH5/SEG41/CCP8/P3B/AN13/C2IND RH6/SEG42/CCP7/P1C/AN14/C1INC RH7/SEG33 RJ1/SEG34 RJ3/SEG35 RJ3/SEG36 RJ4/SEG39 RJ7/SEG36 VDD VDD VDD VDD VDD VD RG36 RJ4/SEG37 RJ7/SEG36 VD VDD VD VD RJ7/SEG36 Register	. 21, .21, .21, .21, .21, .21, .21, .21,	30 30 30 30 30 31 32 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33

	100
FOF	400
PORTA	450
	109
	157
PORTA Register	157
TRISA Register	157
PORTB	
Associated Registers	162
LATB Register	160
PORTB Register	160
RB7 RB4 Interrupt-on-Change Flag (RBIF Bit)	160
TRISB Register	160
PORTC	100
Associated Registers	165
ASSociated Registers	100
	103
PORIC Register	163
TRISC Register	163
PORTD	
Associated Registers	168
LATD Register	166
PORTD Register	166
TRISD Register	166
	100
Associated Registers	171
LATE Degister	160
LATE Register	109
Pins Available in Different LCD Drives	169
PORIE Register	169
TRISE Register	169
PORTF	
Associated Registers	174
LATF Register	172
PORTE Register	172
TRISE Register	172
	172
	470
	170
LAIG Register	175
PORTG Register	175
TRISG Register	175
PORTH	
Associated Registers	179
LATH Register	177
PORTH Register	177
TRISH Register	177
Associated Registers	181
	101
	100
PORIJ Register	180
I RISJ Register	180
Power-Managed Modes	53
and PWM Operation	271
and SPI Operation	311
Clock Transitions and Status Indicators	. 54
Entering	53
Exiting Idle and Sleen Modes	65
by Interrunt	65
by Report	. 00 65
	. 05
by WDT Time-out	. 65
Without an Oscillator Start-up Delay	. 65
Idle Modes	. 58
PRI_IDLE	. 59
RC_IDLE	. 60
SEC_IDLE	. 59

Multiple cleep communication
Pun Modes 54
RC_RUN
SEC_RUN
Selecting
Sleep Mode
OSC1, OSC2 Pin States
Summary (table)53
Power-on Reset (POR)71
Power-up Delays52
Power-up Timer (PWRT)52, 72
Time-out Sequence72
Prescaler, Timer0
Prescaler, Timer2
PRI IDLE Mode
PRI RUN Mode
Program Counter (PC)
PCL. PCH and PCU Registers
PCI ATH and PCI ATU Registers 87
Program Memory
Extended Instruction Set 106
Hard Memory Vectors
Instructions 01
Two Word 01
Interrupt Vector
Look-up Tables
Memory Maps
Hard Vectors and Configuration Words
Reset Vector
Program Verification
Programming, Device Instructions
Pulse Steering
D = 1 = 2 M = 1 + 1 = 1 + 1 = 1 + 1 = 1 = 0 = 2 D = D = D = M = 1 + 1 = 0 = 1 = 1 = 1 = 1
Pulse-width Modulation. See PWW (CCP Module).
Pulse-Width Modulation. See PWM (CCP Module). PUSH
PUISe-Width Modulation. See PWM (CCP Module). PUSH
Pulse-Width Modulation. See PWM (CCP Module). PUSH
PUIse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 496 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Period 248
PUIse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 496 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 496 Associated Registers with PWM and Timers 249 Duty Cycle. 248 Example Frequencies/Resolutions, 40 MHz 248 Period 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 243 TMRx to PRx Match 213
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 138
Pulse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRX to PRx Match 213 PWM (ECCP Module) Effects of a Reset Effects of a Reset 271
Pulse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRX to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271
Pulse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRX to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271
PUIse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Pulse Steering 268
Pulse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Pulse Steering 268 Steering Synchronization 270
Pulse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Pulse Steering 268 Steering Synchronization 270 PWM Mode See Enhanced Canture/Compare/PWM
PUIse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Pulse Steering 268 Steering Synchronization 270 PWM Mode. See Enhanced Capture/Compare/PWM. 270
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Pulse Steering 268 Steering Synchronization 270 PWM Mode. See Enhanced Capture/Compare/PWM. Q
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 PWM (ECCP Module) 248 Effects of a Reset 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Pulse Steering 268 Steering Synchronization 270 PWM Mode. See Enhanced Capture/Compare/PWM. 248
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Operation with Fail-Safe Clock Monitor 270 PWM Mode. See Enhanced Capture/Compare/PWM. 248 Q Clock 248
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Operation with Fail-Safe Clock Monitor 270 PWM Mode. See Enhanced Capture/Compare/PWM. 248 Q Clock 248 R 248
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Operation with Fail-Safe Clock Monitor 270 PWM Mode. See Enhanced Capture/Compare/PWM. Q Q Clock 248 R RAM. See Data Memory. 248
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Operation with Fail-Safe Clock Monitor 270 PWM Mode. See Enhanced Capture/Compare/PWM. 248 Q Clock 248 R RAM. See Data Memory. 248 RC Oscillator 47
PUISE-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 271 Pulse Steering 268 Steering Synchronization 270 PWM Mode. See Enhanced Capture/Compare/PWM. 248 R RAM. See Data Memory. RC Oscillator 47 RC_IDLE Mode 60
Pulse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle. 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 270 PWM Mode. See Enhanced Capture/Compare/PWM. Q Q Clock 248 R RAM. See Data Memory. 248 RC Oscillator 47 47 RC_IDLE Mode 60 60 RC RUN Mode 55
Pulse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) Effects of a Reset Effects of a Reset 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 270 PWM Mode. See Enhanced Capture/Compare/PWM. Q Q Clock 248 R RAM. See Data Memory. 47 RC_IDLE Mode 60 60 RC_RUN Mode 55 55 RCALL 481
Pulse-Width Modulation. See PWM (CCP Module). PUSH 480 PUSH and POP Instructions 88 PUSHL 496 PWM (CCP Module) 480 Associated Registers with PWM and Timers 249 Duty Cycle 248 Example Frequencies/Resolutions, 40 MHz 248 Setup for Operation 249 TMR12 to PR12 Match Flag (TMR12IF Bit) 138 TMR2 to PR2 Match 248 TMRx to PRx Match 213 PWM (ECCP Module) 213 Effects of a Reset 271 Operation in Power-Managed Modes 271 Operation with Fail-Safe Clock Monitor 270 PWM Mode. See Enhanced Capture/Compare/PWM. Q Q Clock 248 R RAM. See Data Memory. 248 RC Oscillator 47 47 RC_IDLE Mode 60 60 RC_RUN Mode 55 55 RCALL 481 RCON Register

Reader Response	567 217
Alarm	232
Configuring	232
Interrupt	233
Mask Settings	233
Alarm Value Registers (ALRMVAL)	226
Clock Source	230
Control Registers	210
Digit Carry Rules	230
Operation	220
Calibration	232
General Functionality	231
l ean Year	231
Register Manning	231
Register Reads/Writes Safety Window	231
Write Lock	231
Register Interface	229
Register Maps	235
Alarm Value	235
RTCC Control	235
RTCC Value	235
Registers	218
Reset	234
Device	
Power-on Reset (POR).	
RTCEN Bit. Write	
Sleep Mode	234
Value Registers (RTCVAL)	222
Reference Clock Output	51
Register File	94
Register File Summary	7–102
Registers	
ADCON0 (A/D Control 0)	374
ADCON1 (A/D Control 1)	375
ADCON2 (A/D Control 2)	376
ADRESH (A/D Result High Byte Left Justified,	
ADFM = 0)	378
ADRESH (A/D Result High Byte Right Justified,	
ADFM = 1)	379
ADRESL (A/D Result Low Byte Left Justified,	
ADFM = 0)	378
ADRESL (A/D Result Low Byte Right Justified,	
ADFM = 1)	379
ALRMCFG (Alarm Configuration)	221
ALRMDAY (Alarm Day Value)	226
ALRMHR (Alarm Hours Value)	227
ALRMMIN (Alarm Minutes Value)	228
ALRMMNTH (Alarm Month Value)	226
ALRMRPT (Alarm Repeat)	222
ALRMSEC (Alarm Seconds Value)	228
ALRMWD (Alarm Weekday Value)	227
ANCON0 (A/D Port Configuration 0)	380
ANCON1 (A/D Port Configuration 1)	380
ANCON2 (A/D Port Configuration 2)	381
BAUDCONx (Baud Rate Control)	352
CCPRxH (CCPx Period High Byte)	240
CCPRxL (CCPx Period Low Byte)	240
CCPTMRS0 (CCP Timer Select 0)	253
CCPTMRS1 (CCPx Timer Select 1)	238
CCPTMRS2 (CCPx Timer Select 2)	239
CCPxCON (CCPx Control, CCP4-CCP10)	237
CCPxCON (Enhanced Capture/Compare/	
PWM x Control)	252