

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f85k90t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description
RH6/SEG42/	RH6	0	0	DIG	LATH<6> data output.
CCP7/P1C/		1	Ι	ST	PORTH<6> data input.
AN14/C1INC	SEG42	1	0	ANA	LCD Segment 42 output; disables all other pin functions.
	CCP7	0	0	DIG	CCP7 compare/PWM output; takes priority over port data.
		1	Ι	ST	CCP7 capture input.
	P1C	0	0		ECCP1 PWM Output C. May be configured for tri-state during Enhanced PWM.
	AN14	1	I	ANA	A/D Input Channel 14. Default input configuration on POR; does not affect digital input.
	C1INC	x	Ι	ANA	Comparator 1 Input C.
RH7/SEG43/	RH7	0	0	DIG	LATH<7> data output.
CCP6/P1B/		1	Ι	ST	PORTH<7> data input.
AN15	SEG43	1	0	ANA	LCD Segment 43 output; disables all other pin functions.
	CCP6	0	0	DIG	CCP6 compare/PWM output; takes priority over port data.
		1	Ι	ST	CCP6 capture input.
	P1B	0	0	_	ECCP1 PWM Output B. May be configured for tri-state during Enhanced PWM.
	AN15	1	Ι	ANA	A/D Input Channel 15. Default input configuration on POR; does not affect digital input.

TABLE 11-16: PORTH FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

TABLE 11-17: SUMMARY OF REGISTERS ASSOCIATED WITH PORTH

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTH	RH7	RH6	RH5	RH4	RH3	RH2	RH1	RH0	78
LATH	LATH7	LATH6	LATH5	LATH4	LATH3	LATH2	LATH1	LATH0	78
TRISH	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0	78
LCDSE5	SE47	SE46	SE45	SE44	SE43	SE42	SE41	SE40	83
ANCON1	ANSEL15	ANSEL14	ANSEL13	ANSEL12	ANSEL11	ANSEL10	ANSEL9	ANSEL8	81
ANCON2	ANSEL23	ANSEL22	ANSEL21	ANSEL20	ANSEL19	ANSEL18	ANSEL17	ANSEL16	81
ODCON2	CCP100D ⁽¹⁾	CCP9OD ⁽¹⁾	CCP8OD	CCP7OD	CCP6OD	CCP5OD	CCP4OD	CCP3OD	81

Note 1: Unimplemented in devices with a program memory of 32 Kbytes (PIC18FX5K90).

FIGURE 13-7:	TIMER1 GATE SINGLE	E PULSE AND TOGGLE COMBI	NED MODE
TMR1GE			
T1GPOL			
T1GSPM			
T1GTM			
T1GGO/ T1DONE T1G_IN	✓ Set by Software Counting Enabled Rising Edge of T1	on G	Cleared by Hardware on Falling Edge of T1GVAL
Т1СКІ			
T1GVAL			
Timer1	Ν	N + 1 N + 2 N + 3	N + 4
RTCCIF	— Cleared by Software	Set by Hardware on Falling Edge of T1GVAL —	Cleared by Software

TABLE 13-5: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	75
PIR1		ADIF	RC1IF	TX1IF	SSP1IF	TMR1GIF	TMR2IF	TMR1IF	77
PIE1		ADIE	RC1IE	TX1IE	SSP1IE	TMR1GIE	TMR2IE	TMR1IE	77
IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	TMR1GIP	TMR2IP	TMR1IP	77
TMR1L	Timer1 Register Low Byte							76	
TMR1H	Timer1 Reg	gister High B	yte						76
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	SOSCEN	T1SYNC	RD16	TMR10N	76
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ T1DONE	T1GVAL	T1GSS1	T1GSS0	77
OSCCON2		SOSCRUN	_	—	SOSCGO	_	MFIOFS	MFIOSEL	79
CCPTMRS0	C3TSEL1	C3TSEL0	C2TSEL2	C2TSEL1	C2TSEL0	C1TSEL2	C1TSEL1	C1TSEL0	81
CCPTMRS1	C7TSEL1	C7TSEL0	_	C6TSEL0	_	C5TSEL0	C4TSEL1	C4TSEL0	81
CCPTMRS2		—	_	C10TSEL0	_	C9TSEL0	C8TSEL1	C8TSEL0	81

Legend: Shaded cells are not used by the Timer1 module.

 $[\]ensuremath{\textcircled{}^\circ}$ 2009-2011 Microchip Technology Inc.

REGISTER 18-4: CCPRxL: CCPx PERIOD LOW BYTE REGISTER

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CCPRxL7 | CCPRxL6 | CCPRxL5 | CCPRxL4 | CCPRxL3 | CCPRxL2 | CCPRxL1 | CCPRxL0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 CCPRxL<7:0>: CCPx Period Register Low Byte bits <u>Capture Mode:</u> Capture register low byte. <u>Compare Mode:</u> Compare register low byte. <u>PWM Mode:</u> Duty Cycle register low byte.

REGISTER 18-5: CCPRxH: CCPx PERIOD HIGH BYTE REGISTER

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CCPRxH7 | CCPRxH6 | CCPRxH5 | CCPRxH4 | CCPRxH3 | CCPRxH2 | CCPRxH1 | CCPRxH0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 CCPRxH<7:0>: CCPx Period Register High Byte bits <u>Capture Mode:</u> Capture register high byte. <u>Compare Mode:</u> Compare register high byte. <u>PWM Mode:</u> Duty Cycle Buffer register high byte.

18.3 Compare Mode

In Compare mode, the 16-bit CCPR4 register value is constantly compared against either the TMR1 or TMR3 register pair value. When a match occurs, the CCP4 pin can be:

- Driven high
- Driven low
- Toggled (high-to-low or low-to-high)
- Unchanged (that is, reflecting the state of the I/O latch)

The action on the pin is based on the value of the mode select bits (CCP4M<3:0>). At the same time, the interrupt flag bit, CCP4IF, is set.

Figure 18-2 shows the Compare mode block diagram

18.3.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the appropriate TRIS bit.

Note:	Clearing the CCP4CON register will force				
	the RC1 or RE7 compare output latch				
	(depending on device configuration) to the				
	default low level. This is not the PORTC or				
	PORTE I/O data latch.				

18.3.2 TIMER1/3/5/7 MODE SELECTION

If the CCP module is using the compare feature in conjunction with any of the Timer1/3/5/7 timers, the timers must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the compare operation may not work.

Note: Details of the timer assignments for the CCP modules are given in Table 18-2 and Table 18-3.

18.3.3 SOFTWARE INTERRUPT MODE

When the Generate Software Interrupt mode is chosen (CCP4M<3:0> = 1010), the CCP4 pin is not affected. Only a CCP interrupt is generated, if enabled, and the CCP4IE bit is set.

18.3.4 SPECIAL EVENT TRIGGER

Both CCP modules are equipped with a Special Event Trigger. This is an internal hardware signal generated in Compare mode to trigger actions by other modules. The Special Event Trigger is enabled by selecting the Compare Special Event Trigger mode (CCP4M<3:0> = 1011).

For either CCP module, the Special Event Trigger resets the timer register pair for whichever timer resource is currently assigned as the module's time base. This allows the CCPRx registers to serve as a programmable Period register for either timer.

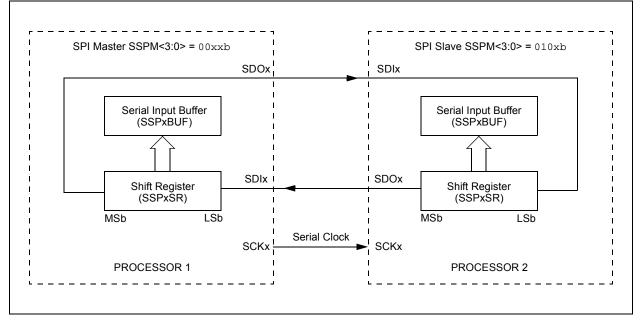
The Special Event Trigger for CCP4 cannot start an A/D conversion.

Note: The Special Event Trigger of ECCP1 can start an A/D conversion, but the A/D Converter needs to be enabled. For more information, see Section 19.0 "Enhanced Capture/Compare/PWM (ECCP) Module".

21.3.4 ENABLING SPI I/O

To enable the serial port, MSSP Enable bit, SSPEN (SSPxCON1<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, reinitialize the SSPxCON registers and then set the SSPEN bit. This configures the SDIx, SDOx, SCKx and SSx pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- SDIx must have TRISC<4> or TRISD<5> bit set
- SDOx must have the TRISC<5> or TRISD<4> bit cleared
- SCKx (Master mode) must have the TRISC<3> or TRISD<6>bit cleared
- SCKx (Slave mode) must have the TRISC<3> or TRISD<6> bit set
- SSx must have the TRISF<7> or TRISD<7> bit set


Any serial port function that is not desired may be overridden by programming the corresponding Data Direction (TRIS) register to the opposite value.

21.3.5 TYPICAL CONNECTION

Figure 21-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCKx signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- · Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

FIGURE 21-2: SPI MASTER/SLAVE CONNECTION

REGISTER 2	21-6: SSPx	CON2: MSSF	Px CONTRO	L REGISTER	2 (I ² C™ SLA	VE MODE)	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GCEN	ACKSTAT	ADMSK5	ADMSK4	ADMSK3	ADMSK2	ADMSK1	SEN ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7	1 = Enables ir	ral Call Enable nterrupt when a all address is c	a general call a	ddress (0000h)) is received in	the SSPxSR	
bit 6	ACKSTAT: Ac Unused in Sla	knowledge Sta	atus bit				
bit 5-2	ADMSK<5:2>: Slave Address Mask Select bits (5-Bit Address Masking mode) 1 = Masking of corresponding bits of SSPxADD is enabled 0 = Masking of corresponding bits of SSPxADD is disabled						
bit 1	<u>In 7-Bit Addre</u> 1 = Masking c 0 = Masking c	 0 = Masking of corresponding bits of SSPxADD is disabled ADMSK1: Slave Address Least Significant bit(s) Mask Select bit In 7-Bit Addressing mode: 1 = Masking of SSPxADD<1> only is enabled 0 = Masking of SSPxADD<1> only is disabled 					
bit 0	In 10-Bit Addressing mode: 1 = Masking of SSPxADD<1:0> is enabled 0 = Masking of SSPxADD<1:0> is disabled SEN: Stretch Enable bit ⁽¹⁾ 1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)						

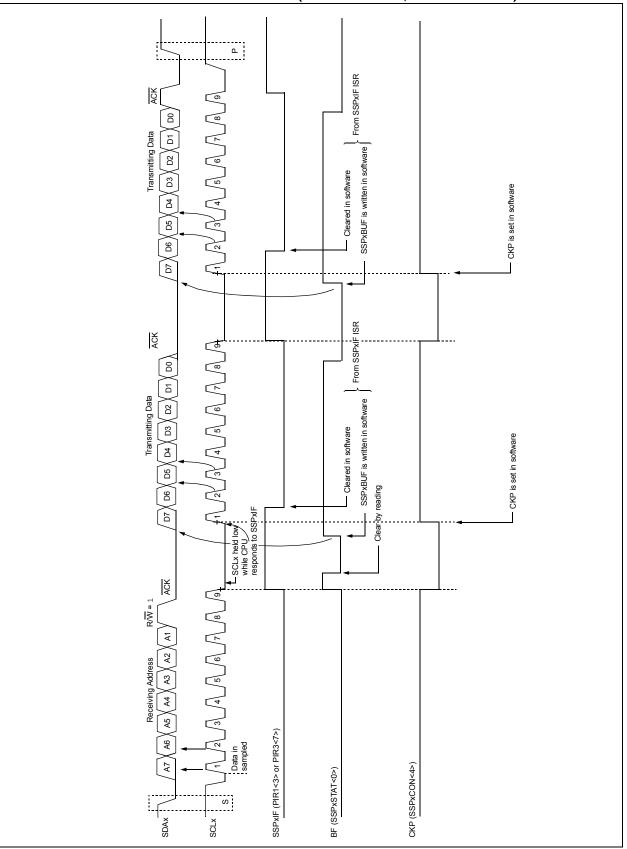
Note 1: If the I²C module is active, this bit may not be set (no spooling) and the SSPxBUF may not be written to (or writes to the SSPxBUF are disabled).

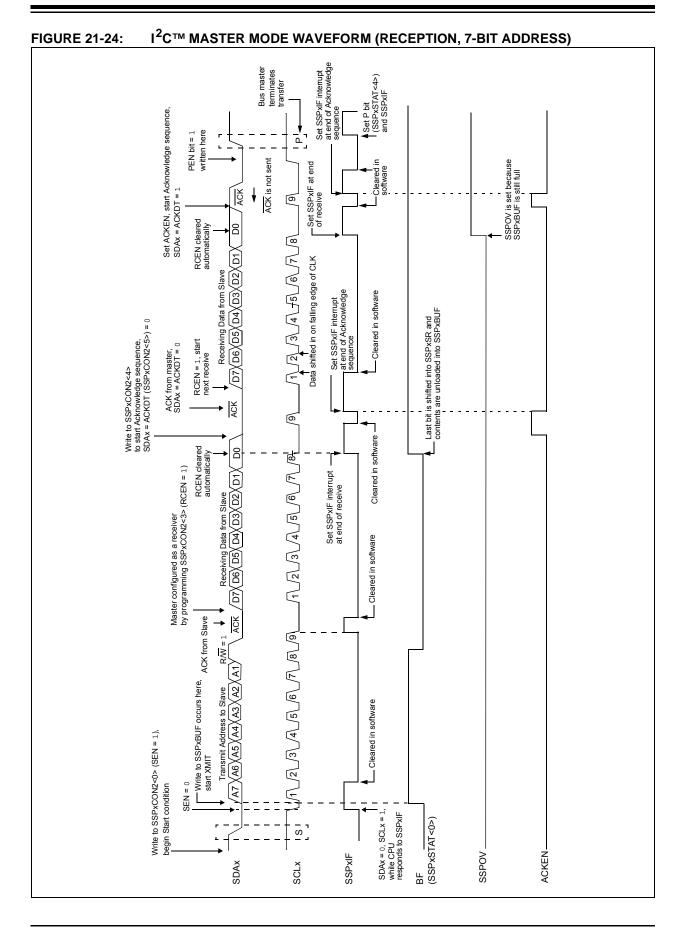
REGISTER 21-7: SSPxM	SK: $I^2 C^{TM}$ SLAVE ADDRESS MASK REGISTER (7-BIT MASKING MODE) ⁽¹⁾
----------------------	--

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|---------------------|
| MSK7 | MSK6 | MSK5 | MSK4 | MSK3 | MSK2 | MSK1 | MSK0 ⁽²⁾ |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 MSK<7:0>: Slave Address Mask Select bit


1 = Masking of the corresponding bit of SSPxADD is enabled


0 = Masking of the corresponding bit of SSPxADD is disabled

Note 1: This register shares the same SFR address as SSPxADD and is only addressable in select MSSPx operating modes. See Section 21.4.3.4 "7-Bit Address Masking Mode" for more details.

2: MSK0 is not used as a mask bit in 7-bit addressing.

22.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of two serial I/O modules. (Generically, the EUSART is also known as a Serial Communications Interface or SCI.) The EUSART can be configured as a full-duplex, asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The Enhanced USART module implements additional features, including automatic baud rate detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These make it ideally suited for use in Local Interconnect Network bus (LIN/J2602 bus) systems.

All members of the PIC18F87K90 family are equipped with two independent EUSART modules, referred to as EUSART1 and EUSART2. They can be configured in the following modes:

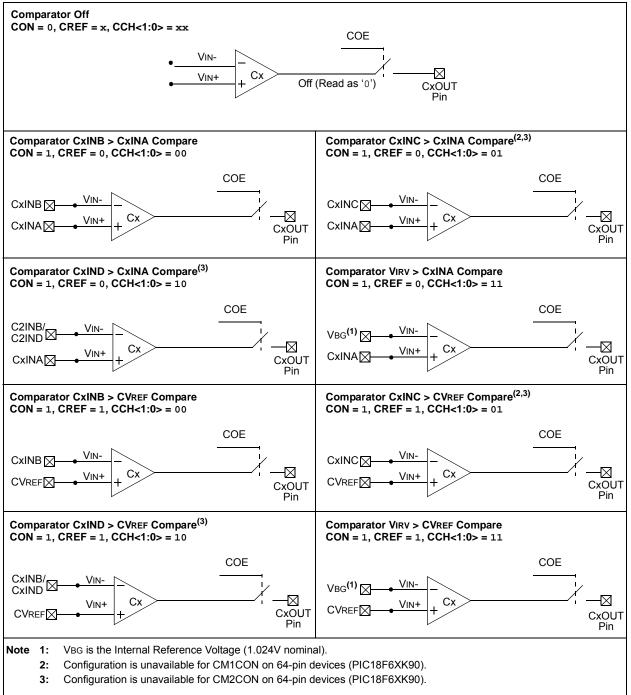
- Asynchronous (full duplex) with:
 - Auto-wake-up on character reception
 - Auto-baud calibration
 - 12-bit Break character transmission
- Synchronous Master (half duplex) with selectable clock polarity
- Synchronous Slave (half duplex) with selectable clock polarity

The pins of EUSART1 and EUSART2 are multiplexed with the functions of PORTC (RC6/TX1/CK1/ SEG27 and RC7/RX1/DT1/SEG28) and PORTG (RG1/TX2/CK2/AN19/C3OUT and RG2/RX2/DT2/ AN18/C3INA), respectively. In order to configure these pins as an EUSART:

- For EUSART1:
 - SPEN (RCSTA1<7>) bit must be set (= 1)
 - TRISC<7> bit must be set (= 1)
 - TRISC<6> bit must be cleared (= 0) for Asynchronous and Synchronous Master modes
 - TRISC<6> bit must be set (= 1) for Synchronous Slave mode
- For EUSART2:
 - SPEN (RCSTA2<7>) bit must be set (= 1)
 - TRISG<2> bit must be set (= 1)
 - TRISG<1> bit must be cleared (= 0) for Asynchronous and Synchronous Master modes
 - TRISC<6> bit must be set (= 1) for Synchronous Slave mode

The operation of each Enhanced USART module is controlled through three registers:

- Transmit Status and Control (TXSTAx)
- Receive Status and Control (RCSTAx)
- Baud Rate Control (BAUDCONx)


These are detailed in Register 22-1, Register 22-2 and Register 22-3, respectively, on the following pages.

Note: Throughout this section, references to register and bit names that may be associated with a specific EUSART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "RCSTAx" might refer to the Receive Status register for either EUSART1 or EUSART2.

Note: The EUSART control will automatically reconfigure the pin from input to output as needed.

R/W-0	R-1	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16		WUE	ABDEN
bit 7	•		•				bit
<u> </u>							
Legend: R = Readabl	o hit	M = Mritabla	hit	II – Unimplom	onted hit read	L a a 'O'	
-n = Value at		W = Writable '1' = Bit is set		U = Unimplem '0' = Bit is clea			2014/2
	PUR	I = DILIS SEL		U = BILIS CIEA	reu	x = Bit is unki	IOWI
bit 7	ABDOVF: A	uto-Baud Acqui	sition Rollover	Status bit			
		ollover has occ rollover has oc	•	uto-Baud Rate [Detect mode (n	nust be cleare	d in software)
bit 6	RCIDL: Rece	eive Operation I	dle Status bit				
		operation is Idle operation is act					
bit 5	RXDTP: Dat	a/Receive Polar	ity Select bit				
		<u>ıs mode:</u> data (RXx) is in data (RXx) is no					
	<u>Synchronous</u> 1 = Data (DT		ctive-low)				
bit 4	-	chronous Clock					
	Asynchronou						
	1 = Idle state	e for transmit (T) e for transmit (T)	,				
	Synchronous		, ,				
		e for clock (CKx) e for clock (CKx)					
bit 3	BRG16: 16-	Bit Baud Rate R	egister Enable	bit			
				Hx and SPBRG> only (Compatibl		RGHx value is	ignored
bit 2	Unimpleme	nted: Read as '	כי				
bit 1	WUE: Wake	up Enable bit					
	cleared		the following ri		rupt is generat	ed on the falli	ng edge; bit
	Synchronous Unused in th						
bit 0	ABDEN: Aut	o-Baud Detect	Enable bit				
	cleared		on completion.	e next characte	r. Requires rec	ception of a Sy	vnc field (55h
	Synchronous			compicted			

FIGURE 24-4: COMPARATOR CONFIGURATIONS

NOTES:

REGISTER 28-13: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)⁽¹⁾

U-0	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
—	EBTRB		_	—		—	—
bit 7				•			bit 0
Legend: C = Clearable bit							
R = Readable b	Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at Po	= Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown		

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 Unimplemented: Read as '0'

bit 6	EBTRB: Boot Block Table Read Protection bit
-------	---

1 = Boot block is not protected from table reads executed in other blocks

0 = Boot block is protected from table reads executed in other blocks

bit 5-0 Unimplemented: Read as '0'

Note 1: For the memory size of the blocks, refer to Figure 28-6.

GOTO	Unconditio	onal Brai	nch						
Syntax:	yntax: GOTO k								
Operands:	$0 \le k \le 104$	$0 \leq k \leq 1048575$							
Operation:	$k \rightarrow PC<20$):1>							
Status Affected:	None								
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111	1111 k ₁₉ kkk	k ₇ kkk kkkk	kkkk ₀ kkkk ₈					
Description: GOTO allows an unconditional b anywhere within entire 2-Mbyte range. The 20-bit value 'k' is loa PC<20:1>. GOTO is always a tw instruction.									
Words:	2								
Cycles:	2	2							
Q Cycle Activity:									
Q1	Q2	Q3		Q4					
Decode	Read literal 'k'<7:0>,	No operat	ion '	ead literal k'<19:8>, /rite to PC					
No operation	No operation			No operation					
operation operation operation Example: GOTO THERE After Instruction PC = Address (THERE)									

INCF	Increment	f		
Syntax:	INCF f{,c	l {,a}}		
Operands:	$0 \leq f \leq 255$			
	d ∈ [0,1] a ∈ [0,1]			
Operation:	(f) + 1 \rightarrow de	est		
Status Affected:	C, DC, N,	OV, Z		
Encoding:	0010	10da	fff	f ffff
Description:	The conten incremente placed in W placed bac	d. lf 'd' is /. lf 'd' is	'0', th '1', the	e result is
	,			k is selected. to select the
		ed, this i Literal Of	nstruct fset Ad	0
	Section 29	.2.3 "By ed Instru	te-Orie ctions	ented and in Indexed
Words:	Section 29 Bit-Oriente	.2.3 "By ed Instru	te-Orie ctions	ented and in Indexed
	Section 29 Bit-Oriente Literal Offs	.2.3 "By ed Instru	te-Orie ctions	ented and in Indexed
	Section 29 Bit-Oriente Literal Offs 1	.2.3 "By ed Instru	te-Orie ctions	ented and in Indexed
Cycles: Q Cycle Activity: Q1	Section 29 Bit-Oriente Literal Offs 1 1 Q2	.2.3 "By ed Instru set Mode	te-Orie ctions " for d	ented and i in Indexed letails. Q4
Cycles: Q Cycle Activity:	Section 29 Bit-Oriente Literal Offs 1 1	.2.3 "By ed Instru set Mode	te-Orie ctions :" for d	ented and in Indexed letails.
Q1	Section 29 Bit-Oriente Literal Offs 1 1 Q2 Read	2.3 "Byted Instru set Mode Q3 Proce Data	te-Orie ctions :" for d	ented and in Indexed letails. Q4 Write to

29.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

Note:	Enabling the PIC18 instruction set exten-								
	sion may cause legacy applications to								
	behave erratically or fail entirely.								

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing (Section 6.6.1 "Indexed Addressing with Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank (a = 0) or in a GPR bank designated by the BSR (a = 1). When the extended instruction set is enabled and a = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bit-oriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between C and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 29.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind, that when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types.

29.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument, 'f', in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value, 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within the brackets, will generate an error in the MPASM[™] Assembler.

If the index argument is properly bracketed for Indexed Literal Offset Addressing, the Access RAM argument is never specified; it will automatically be assumed to be '0'. This is in contrast to standard operation (extended instruction set disabled), when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM Assembler.

The destination argument, 'd', functions as before.

In the latest versions of the MPASM Assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, $/_{Y}$, or the PE directive in the source listing.

29.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18F87K90 family, it is very important to consider the type of code. A large, re-entrant application that is written in C and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.

29.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set for the PIC18F87K90 family family. This includes the MPLAB C18 C Compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option or dialog box within the environment that allows the user to configure the language tool and its settings for the project
- · A command line option
- · A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K90 Family (Industrial/Extended) (Continued)

PIC18F87K90 Family		$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$							
Param No.	Device	Тур	Max	Units		Conditions			
	Supply Current (IDD) Cont	(2,3)							
	All devices	3.7	8.5	μA	-40°C				
		5.4	10	μA	+25°C	VDD = 1.8V ⁽⁴⁾			
		6.6	13	μA	+85°C	Regulator Disabled			
		13	30	μA	+125°C				
	All devices	8.7	18	μA	-40°C		E		
		10	20	μA	+25°C	VDD = 3.3V ⁽⁴⁾	Fosc = 32 kHz ⁽³⁾		
		12	23	μA	+85°C	Regulator Disabled	(SEC_RUN mode, SOSCSEL = 01)		
		25	60	μA	+125°C		00000EE - 01)		
	All devices	60	160	μA	-40°C				
		90	190	μA	+25°C	VDD = 5V ⁽⁵⁾			
		100	240	μA	+85°C	Regulator Enabled			
		200	450	μA	+125°C				
	All devices	1.2	4	μA	-40°C				
		1.7	5	μA	+25°C	VDD = 1.8V ⁽⁴⁾			
		2.6	6	μA	+85°C	Regulator Disabled			
		9	20	μA	+125°C				
	All devices	1.6	7	μA	-40°C		Fosc = 32 kHz ⁽³⁾		
		2.8	9	μA	+25°C	VDD = 3.3V ⁽⁴⁾	(SEC IDLE mode,		
		4.1	10	μA	+85°C	Regulator Disabled	SOSCSEL = 01)		
		17	40	μA	+125°C				
	All devices	60	150	μA	-40°C				
		80	180	μA	+25°C	VDD = 5V ⁽⁵⁾			
		100	240	μA	+85°C	Regulator Enabled			
		180	440	μA	+125°C				

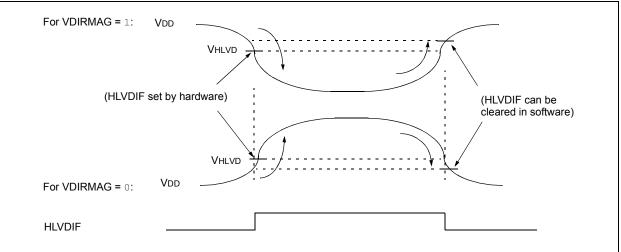
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT enabled/disabled as specified.

3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.


4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).

5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).

6: LCD glass is not connected; resistor current is not included.

7: 48 MHz maximum frequency at 125°C.

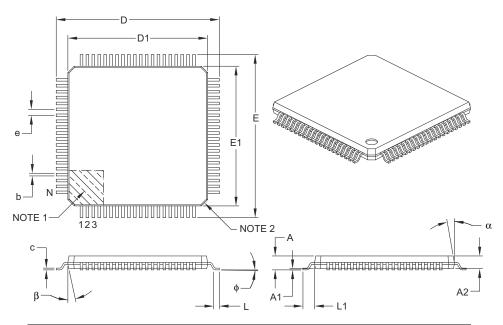
TABLE 31-11: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended									
Param No.	Sym	Charact	eristic	Min	Тур	Max	Units	Conditions	
D420		HLVD Voltage on VDD	HLVDL<3:0> = 0000	1.80	1.86	1.90	V		
		Transition High-to-Low	HLVDL<3:0> = 0001	2.03	2.12	2.13	V		
			HLVDL<3:0> = 0010	2.24	2.33	2.35	V		
			HLVDL<3:0> = 0011	2.40	2.49	2.53	V		
			HLVDL<3:0> = 0100	2.50	2.59	2.62	V		
			HLVDL<3:0> = 0101	2.70	2.75	2.84	V		
			HLVDL<3:0> = 0110	2.82	2.93	2.97	V		
			HLVDL<3:0> = 0111	2.95	3.07	3.10	V		
			HLVDL<3:0> = 1000	3.24	3.30	3.41	V		
			HLVDL<3:0> = 1001	3.42	3.48	3.59	V		
			HLVDL<3:0> = 1010	3.61	3.67	3.79	V		
			HLVDL<3:0> = 1011	3.82	3.87	4.01	V		
			HLVDL<3:0> = 1100	4.06	4.21	4.26	V		
			HLVDL<3:0> = 1101	4.33	4.42	4.55	V		
			HLVDL<3:0> = 1110	4.64	4.77	4.87	V		

32.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-149B Sheet 1 of 2

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits			MAX	
Number of Leads	N		80		
Lead Pitch	e		0.50 BSC		
Overall Height	А	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	_	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	φ	0°	3.5°	7°	
Overall Width	E		14.00 BSC		
Overall Length	D		14.00 BSC		
Molded Package Width	E1		12.00 BSC		
Molded Package Length	D1		12.00 BSC		
Lead Thickness	С	0.09	_	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B