

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f86k90-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	PIC18F65K90	PIC18F66K90	PIC18F67K90			
Operating Frequency		DC – 64 MHz				
Program Memory (Bytes)	32K	64K	128K			
Program Memory (Instructions)	16,384	32,768	65,536			
Data Memory (Bytes)	2K	4K	4K			
Interrupt Sources	42	4	8			
I/O Ports		Ports A, B, C, D, E, F, G				
LCD Driver (available pixels to drive)		132 (33 SEGs x 4 COMs)			
Timers	8	1	1			
Comparators	3					
СТМИ	Yes					
RTCC		Yes				
Capture/Compare/PWM (CCP) Modules	5	7	7			
Enhanced CCP (ECCP) Modules	3					
Serial Communications	Two MSSP and two Enhanced USART (EUSART)					
12-Bit Analog-to-Digital Module	16 Input Channels					
Resets (and Delays)	POR, BOR, RESET Inst	POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLF (PWRT, OST)				
Instruction Set	75 Instructions, 83 with Extended Instruction Set Enabled					
Packages	64-Pin QFN, 64-Pin TQFP					

TABLE 1-1: DEVICE FEATURES FOR THE PIC18F6XK90 (64-PIN DEVICES)

TABLE 1-2: DEVICE FEATURES FOR THE PIC18F8XK90 (80-PIN DEVICES)

Features	PIC18F85K90	PIC18F86K90	PIC18F87K90	
Operating Frequency		DC – 64 MHz		
Program Memory (Bytes)	32K	64K	128K	
Program Memory (Instructions)	16,384	32,768	65,536	
Data Memory (Bytes)	2K	4K	4K	
Interrupt Sources	42	4	8	
I/O Ports	P	orts A, B, C, D, E, F, G, H	, J	
LCD Driver (available pixels to drive)		192 (48 SEGs x 4 COMs)	
Timers	8	1	1	
Comparators		3		
СТМИ	Y	es		
RTCC	Y	es		
Capture/Compare/PWM (CCP) Modules	5	7	7	
Enhanced CCP (ECCP) Modules	3			
Serial Communications	Two MSSP a	and two Enhanced USAR	T (EUSART)	
12-Bit Analog-to-Digital Module	24 Input Channels			
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR, (PWRT, OST)			
Instruction Set	75 Instructions,	83 with Extended Instruc	tion Set Enabled	
Packages		80-Pin TQFP		

TABLE 1-3:	PIC18F6XK90 PINOUT I/O DESCRIPTIONS (C	CONTINUED)	

Pin Name	Pin Number	Pin	Buffer	Description
Fin Name	QFN/TQFP	Туре	Туре	Description
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT0/SEG30/FLTO RB0 INT0 SEG30 FLTO	48	I/O I O I	TTL ST Analog ST	Digital I/O. External Interrupt 0. SEG30 output for LCD. Enhanced PWM Fault input for ECCP1/2/3.
RB1/INT1/SEG8 RB1 INT1 SEG8	47	I/O I O	TTL ST Analog	Digital I/O. External Interrupt 1. SEG8 output for LCD.
RB2/INT2/SEG9/CTED1 RB2 INT2 CTED1 SEG9	46	I/O I I O	TTL ST ST Analog	Digital I/O. External Interrupt 2. CTMU Edge 1 input. SEG9 output for LCD.
RB3/INT3/SEG10/CTED2/ ECCP2/P2A RB3 INT3 SEG10 CTED2 ECCP2 P2A	45	I/O I 0 I I/O 0	TTL ST Analog ST ST —	Digital I/O. External Interrupt 3. SEG10 output for LCD. CTMU Edge 2 input. Capture 2 input/Compare 2 output/PWM2. Enhanced PWM2 Output A.
RB4/KBI0/SEG11 RB4 KBI0 SEG11	44	I/O I O	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. SEG11 output for LCD.
RB5/KBI1/SEG29/T3CKI/ T1G RB5 KBI1 SEG29 T3CKI T1G	43	I/O I O I	TTL TTL Analog ST ST	Digital I/O. Interrupt-on-change pin. SEG29 output for LCD. Timer3 clock input. Timer1 external clock gate input.
RB6/KBI2/PGC RB6 KBI2 PGC	42	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP™ programming clock pin.
RB7/KBI3/PGD RB7 KBI3 PGD	37	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.
ST = Schm I = Input P = Powe $I^2C^{TM} = I^2C/SN$	MBus	with C		CMOS = CMOS compatible input or output els Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K90 and PIC18F85K90 devices.

2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 3.0 "Oscillator Configurations"** for details).

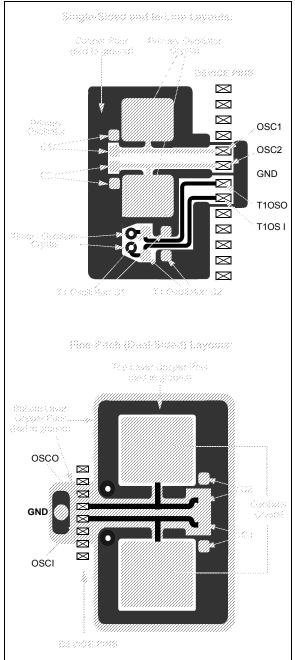
The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

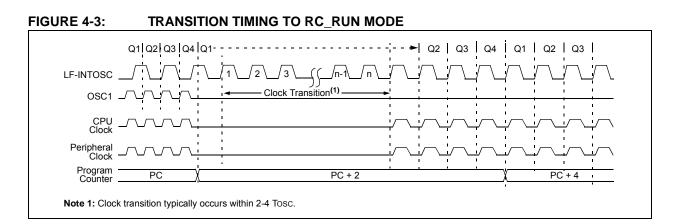
Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-4. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):


- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"


2.7 Unused I/Os


Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

FIGURE 2-5:

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

TABLE 4-4:EXIT DELAY ON WAKE-UP BY RESET FROM SLEEP MODE OR ANY IDLE MODE
(BY CLOCK SOURCES)

Power-Managed Mode	Clock Source ⁽⁵⁾	Exit Delay	Clock Ready Status Bits
	LP, XT, HS		
	HSPLL		OSTS
	EC, RC	Tcsp ⁽¹⁾	
PRI_IDLE mode	HF-INTOSC ⁽²⁾		HFIOFS
	MF-INTOSC ⁽²⁾		MFIOFS
	LF-INTOSC		None
SEC_IDLE mode	SOSC	TCSD ⁽¹⁾	SOSCRUN
	HF-INTOSC ⁽²⁾		HFIOFS
RC_IDLE mode	MF-INTOSC ⁽²⁾	TCSD ⁽¹⁾	MFIOFS
	LF-INTOSC		None
	LP, XT, HS	Tost ⁽³⁾	
	HSPLL	Tost + t _{rc} (3)	OSTS
Sloop mode	EC, RC	TCSD ⁽¹⁾	
Sleep mode	HF-INTOSC ⁽²⁾		HFIOFS
	MF-INTOSC ⁽²⁾	TIOBST ⁽⁴⁾	MFIOFS
	LF-INTOSC		None

Note 1: TCSD (Parameter 38, Table 31-10) is a required delay when waking from Sleep and all Idle modes, and runs concurrently with any other required delays (see **Section 4.4 "Idle Modes"**).

2: Includes postscaler derived frequencies. On Reset, INTOSC defaults to HF-INTOSC at 8 MHz.

3: TOST is the Oscillator Start-up Timer (Parameter 32, Table 31-10). TRC is the PLL Lock-out Timer (Parameter F12, Table 31-7); it is also designated as TPLL.

4: Execution continues during TIOBST (Parameter 39, Table 31-10), the INTOSC stabilization period.

5: The clock source is dependent upon the settings of the SCS (OSCCON<1:0>), IRCF (OSCCON<6:4>) and FOSC (CONFIG1H<3:0>) bits.

REGISTER 7-1: EECON1: EEPROM CONTROL REGISTER 1

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD
bit 7							bit 0

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EEPGD: Flash Program or Data EEPROM Memory Select bit
	1 = Access Flash program memory
	0 = Access data EEPROM memory
bit 6	CFGS: Flash Program/Data EEPROM or Configuration Select bit
	1 = Access Configuration registers
	0 = Access Flash program or data EEPROM memory
bit 5	Unimplemented: Read as '0'
bit 4	FREE: Flash Block Erase Enable bit
	1 = Erase the program memory row addressed by TBLPTR on the next WR command
	(cleared by completion of erase operation)
	0 = Perform write-only
bit 3	WRERR: Flash Program/Data EEPROM Error Flag bit ⁽¹⁾
	1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal
	operation or an improper write attempt)
	0 = The write operation completed
bit 2	WREN: Flash Program/Data EEPROM Write Enable bit
	1 = Allows write cycles to Flash program/data EEPROM
	0 = Inhibits write cycles to Flash program/data EEPROM
bit 1	WR: Write-Control bit
	1 = Initiates a data EEPROM erase/write cycle, or a program memory erase cycle or write cycle
	(The operation is self-timed and the bit is cleared by hardware once write is complete.
	The WR bit can only be set (not cleared) in software.)
	0 = Write cycle to the EEPROM is complete
bit 0	RD: Read Control bit
	1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only
	be set (not cleared) in software. The RD bit cannot be set when EEPGD = 1 or CFGS = 1.)
	0 = Does not initiate an EEPROM read

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 TMR12IP⁽¹⁾ TMR7GIP⁽¹⁾ TMR10IP⁽¹⁾ TMR8IP TMR7IP⁽¹⁾ TMR5IP TMR4IP TMR6IP bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

REGISTER 10-20: IPR5: PERIPHERAL INTERRUPT PRIORITY REGISTER 5

bit 7	TMR7GIP: TMR7 Gate Interrupt Priority bit ⁽¹⁾ 1 = High priority 0 = Low priority
bit 6	TMR12IP: TMR12 to PR12 Match Interrupt Priority bit ⁽¹⁾ 1 = High priority 0 = Low priority
bit 5	TMR10IP: TMR10 to PR10 Match Interrupt Priority bit ⁽¹⁾ 1 = High priority 0 = Low priority
bit 4	TMR8IP: TMR8 to PR8 Match Interrupt Priority bit 1 = High priority 0 = Low priority
bit 3	TMR7IP: TMR7 Overflow Interrupt Priority bit ⁽¹⁾ 1 = High priority 0 = Low priority
bit 2	TMR6IP: TMR6 to PR6 Match Interrupt Priority bit 1 = High priority 0 = Low priority
bit 1	TMR5IP: TMR5 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority
bit 0	TMR4IP: TMR4 to PR4 Match Interrupt Priority bit 1 = High priority 0 = Low priority

Note 1: Unimplemented in devices with a program memory of 32 Kbytes (PIC18FX5K90).

bit 0

13.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates these features:

- Software-selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable clock source (internal or external) with device clock or SOSC oscillator internal options
- Interrupt-on-overflow
- Reset on ECCP Special Event Trigger
- Timer with gated control

Figure 13-1 displays a simplified block diagram of the Timer1 module.

The SOSC oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation. Timer1 can also work on the SOSC oscillator.

Timer1 is controlled through the T1CON Control register (Register 13-1), which also contains the SOSC Oscillator Enable bit (SOSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

The FOSC clock source should not be used with the ECCP capture/compare features. If the timer will be used with the capture or compare features, always select one of the other timer clocking options.

REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	SOSCEN	T1SYNC	RD16	TMR10N
bit 7	•						bit 0

Legend:				
R = Readable bit W		Readable bit W = Writable bit U		read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7-6	10 = The <u>SOSCEN</u> External of <u>SOSCEN</u> Crystal of fuse, COI 01 = Time	= 0: clock is from the T1CKI pin (c = 1:	a pin or an oscillator dependi on the rising edge). SCO pins or an extended clock n clock (Fosc) ⁽¹⁾	ng on the SOSCEN bit. < on SCKLI (depends on SOSCEL
bit 5-4	T1CKPS 11 = 1:8 10 = 1:4 01 = 1:2	x 1:0>: Timer1 Input Clock Pro Prescale value Prescale value Prescale value Prescale value Prescale value		
bit 3	1 = SOS0 0 = SOS0	: SOSC Oscillator Enable bit C is enabled for Timer1 (base C is disabled for Timer1 ator inverter and feedback re		te power drain.
bit 2	<u>TMR1CS</u> 1 = Do no 0 = Syncl <u>TMR1CS</u>	Timer1 External Clock Input <1:0> = 10: to synchronize the external clored for onize the external clock inp <1:0> = 0x: ignored. Timer1 uses the int	ock input	0> = 1x.
bit 1	RD16: 16 1 = Enat	-Bit Read/Write Mode Enable les register read/write of Tim les register read/write of Tim	e bit er1 in one 16-bit operation	
bit 0	TMR1ON	: Timer1 On bit les Timer1		

Note 1: The Fosc clock source should not be selected if the timer will be used with the ECCP capture/compare features.

13.7 Resetting Timer1 Using the ECCP Special Event Trigger

If ECCP modules are configured to use Timer1 and to generate a Special Event Trigger in Compare mode (CCPxM<3:0> = 1011), this signal will reset Timer1. The trigger from ECCP2 will also start an A/D conversion, if the A/D module is enabled. (For more information, see **Section 19.3.4 "Special Event Trigger"**.)

To take advantage of this feature, the module must be configured as either a timer or a synchronous counter. When used this way, the CCPRxH:CCPRxL register pair effectively becomes a Period register for Timer1.

If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a Special Event Trigger, the write operation will take precedence.

Note:	The Special Event Trigger from the
	ECCPx module will only clear the TMR1
	register's content, but not set the TMR1IF
	interrupt flag bit (PIR1<0>).

13.8 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using the Timer1 gate circuitry. This is also referred to as Timer1 gate count enable.

Timer1 gate can also be driven by multiple selectable sources.

13.8.1 TIMER1 GATE COUNT ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit (T1GCON<6>).


When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 13-4 for timing details.

TABLE 13-3:	TIMER1 GATE ENABLE
	SELECTIONS

T1CLK ^(†)	T1GPOL (T1GCON<6>)	T1G Pin	Timer1 Operation
\uparrow	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

† The clock on which TMR1 is running. For more information, see Figure 13-1.

Note: The CCP and ECCP modules use Timers, 1 through 8, for some modes. The assignment of a particular timer to a CCP/ECCP module is determined by the Timer to CCP enable bits in the CCPTMRSx registers. For more details, see Register 18-2, Register 18-3 and Register 19-2

© 2009-2011 Microchip Technology Inc.

REGISTER 17-5: ALRMRPT: ALARM REPEAT REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ARPT7 | ARPT6 | ARPT5 | ARPT4 | ARPT3 | ARPT2 | ARPT1 | ARPT0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The counter decrements on any alarm event. The counter is prevented from rolling over from 00h to FFh unless CHIME = 1.

17.1.2 RTCVALH AND RTCVALL REGISTER MAPPINGS

REGISTER 17-6: RESERVED REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 Unimplemented: Read as '0'

18.0 CAPTURE/COMPARE/PWM (CCP) MODULES

PIC18F87K90 family devices have seven CCP (Capture/Compare/PWM) modules, designated CCP4 through CCP10. All the modules implement standard Capture, Compare and Pulse-Width Modulation (PWM) modes.

Note: Throughout this section, generic references are used for register and bit names that are the same, except for an 'x' variable that indicates the item's association with the specific CCP module. For example, the control register is named CCPxCON and refers to CCP4CON through CCP10CON.

Each CCP module contains a 16-bit register that can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. For the sake of clarity, all CCP module operation in the following sections is described with respect to CCP4, but is equally applicable to CCP5 through CCP10.

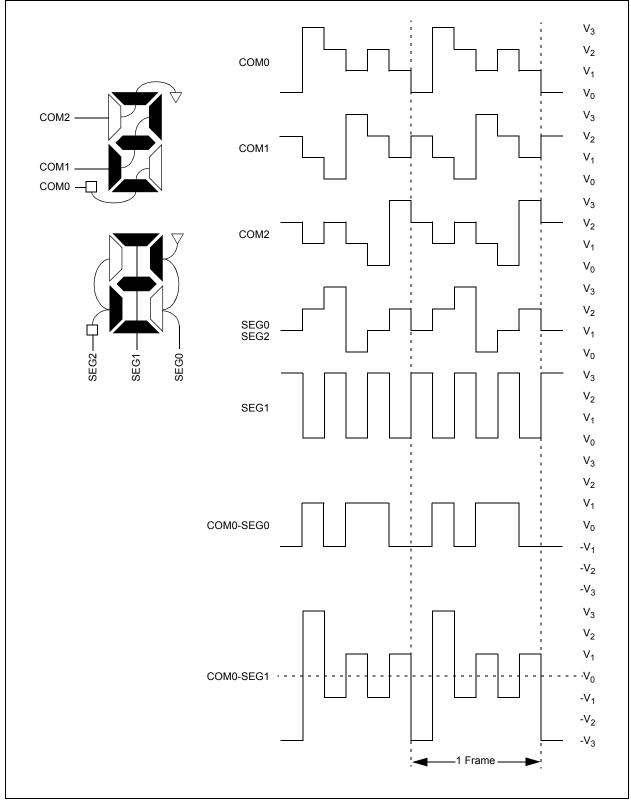
Note: The CCP9 and CCP10 modules are disabled on the devices with 32 Kbytes of program memory (PIC18FX5K90).

REGISTER 18-1: CCPxCON: CCPx CONTROL REGISTER (CCP4-CCP10 MODULES)⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7			·			- -	bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6	Unimplemen	ted: Read as '	כי				
bit 5-4	DCxB<1:0>:	PWM Duty Cyc	le for CCPx N	1odule bits (bit 1	, bit 0)		
	Capture mod	<u>e:</u>			· ·		
	Unused.						
	Compare mo	<u>de</u> :					
	Unused.						
	<u>PWM mode:</u>			he (hit 1 and hit)	0) of the 10 hit		la Tha airtht
				ts (bit 1 and bit (uty cycle are for			ie. The eight
bit 3-0	•	: CCPx Module					
	0000 = Cap	ture/Compare/F	WM disabled	(resets CCPx n	nodule)		
	0001 = Res						
			gle output on	match (CCPxIF	bit is set)		
	0011 = Res		. falling adap				
		ture mode: ever					
		0101 = Capture mode: every rising edge 0110 = Capture mode: every 4th rising edge					
		ture mode: ever					
	1000 = Com is se	·	ialize CCPx p	in low; on comp	are match, for	ce CCPx pin hi	gh (CCPxIF bit
		pare mode: init	ialize CCPx p	in high; on com	pare match, fo	rce CCPx pin lo	w (CCPxIF bit
	1010 = Com	,	nerate softwa	re interrupt on c	compare match	(CCPxIF bit is	set, CCPx pin
		npare mode: Sp	ecial Event Tr	igger; reset time	er on CCPx ma	atch (CCPxIF bi	t is set) ⁽²⁾
Note 1:	The CCP9 and C (PIC18FX5K90).	CP10 modules	are not availa	ble on devices	with 32 Kbytes	s of program me	emory

2: CCPxM<3:0> = 1011 will only reset the timer and not start the A/D conversion on a CCPx match.

REGISTER 18-3: CCPTMRS2: CCPx TIMER SELECT REGISTER 2


U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
—	—	_	C10TSEL0 ⁽¹⁾	—	C9TSEL0 ⁽¹⁾	C8TSEL1	C8TSEL0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
-n = Value at POR	1^{\prime} = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	Unimplemented: Read as '0'
bit 4	C10TSEL0: CCP10 Timer Selection bit ⁽¹⁾
	0 = CCP10 is based off of TMR1/TMR2
	1 = CCP10 is based off of TMR7/TMR2
bit 3	Unimplemented: Read as '0'
bit 2	C9TSEL0: CCP9 Timer Selection bit ⁽¹⁾
	0 = CCP9 is based off of TMR1/TMR2
	1 = CCP9 is based off of TMR7/TMR4
bit 1-0	C8TSEL<1:0>: CCP8 Timer Selection bits
	On non 32-Kbyte device variants:
	00 = CCP8 is based off of TMR1/TMR2
	01 = CCP8 is based off of TMR7/TMR4
	10 = CCP8 is based off of TMR7/TMR6
	11 = Reserved; do not use
	On 32-Kbyte device variants (PIC18F85K90/65K90:
	00 = CCP8 is based off of TMR1/TMR2
	01 = CCP8 is based off of TMR1/TMR4
	10 = CCP8 is based off of TMR1/TMR6

11 = Reserved; do not use

Note 1: This bit is unimplemented and reads as '0' on devices with 32 Kbytes of program memory (PIC18FX5K90).

FIGURE 20-14: TYPE-A WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE

21.4 I²C[™] Mode

FIGURE 21-7.

The MSSP module in I²C mode fully implements all master and slave functions (including general call support), and provides interrupts on Start and Stop bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer:

- Serial Clock (SCLx) RC3/SCK1/SCL1/SEG17 or RD6/SEG6/SCK2/SCL2
- Serial Data (SDAx) RC4/SDI1/SDA1/SEG16 or RD5/SEG5/SDI2/SDA2

The user must configure these pins as inputs by setting the associated TRIS bits.

MSSPY BLOCK DIAGRAM

FIGURE 21-7:	MSSPx BLOCK DIAGRAM (I ² C™ MODE)
Read -	k↓ SSPxSR reg ◀
	Start and Stop bit Detect S, P bits (SSPxSTAT reg)
) names are used in this diagram for revity. Refer to the text for a full list of functions.

21.4.1 REGISTERS

The MSSP module has seven registers for ${\rm I}^2{\rm C}$ operation. These are:

- MSSPx Control Register 1 (SSPxCON1)
- MSSPx Control Register 2 (SSPxCON2)
- MSSPx Status Register (SSPxSTAT)
- Serial Receive/Transmit Buffer Register (SSPxBUF)
- MSSPx Shift Register (SSPxSR) Not directly accessible
- MSSPx Address Register (SSPxADD)
- I²C Slave Address Mask Register (SSPxMSK)

SSPxCON1, SSPxCON2 and SSPxSTAT are the control and status registers in I²C mode operation. The SSPxCON1 and SSPxCON2 registers are readable and writable. The lower 6 bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

SSPxSR is the shift register used for shifting data in or out. SSPxBUF is the buffer register to which data bytes are written to or read from.

SSPxADD contains the slave device address when the MSSP is configured in I^2C Slave mode. When the MSSP is configured in Master mode, the lower seven bits of SSPxADD act as the Baud Rate Generator reload value.

SSPxMSK holds the slave address mask value when the module is configured for 7-Bit Address Masking mode. While it is a separate register, it shares the same SFR address as SSPxADD. It is only accessible when the SSPM<3:0> bits are specifically set to permit access. Additional details are provided in Section 21.4.3.4 "7-Bit Address Masking Mode".

In receive operations, SSPxSR and SSPxBUF together, create a double-buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not double-buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

REGISTER	21-6: SSPx	CON2: MSSI	Px CONTRO	L REGISTER	2 (I ² C™ SLA	VE MODE)			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
GCEN	ACKSTAT	ADMSK5	ADMSK4	ADMSK3	ADMSK2	ADMSK1	SEN ⁽¹⁾		
bit 7							bit C		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 7	GCEN: General Call Enable bit 1 = Enables interrupt when a general call address (0000h) is received in the SSPxSR 0 = General call address is disabled								
bit 6	ACKSTAT: Acknowledge Status bit Unused in Slave mode.								
bit 5-2	ADMSK<5:2>: Slave Address Mask Select bits (5-Bit Address Masking mode) 1 = Masking of corresponding bits of SSPxADD is enabled 0 = Masking of corresponding bits of SSPxADD is disabled								
bit 1	ADMSK1: Slave Address Least Significant bit(s) Mask Select bit In 7-Bit Addressing mode: 1 = Masking of SSPxADD<1> only is enabled 0 = Masking of SSPxADD<1> only is disabled In 10-Bit Addressing mode:								
bit 0	 1 = Masking of SSPxADD<1:0> is enabled 0 = Masking of SSPxADD<1:0> is disabled SEN: Stretch Enable bit⁽¹⁾ 								
	 1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled) 0 = Clock stretching is disabled 								

Note 1: If the I²C module is active, this bit may not be set (no spooling) and the SSPxBUF may not be written to (or writes to the SSPxBUF are disabled).

REGISTER 21-7:	SSPxMSK: I ² C [™] SLAVE ADDRESS MASK REGISTER (7-BIT MASKING MODE) ⁽¹⁾
----------------	--

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0 ⁽²⁾
bit 7 bit 0							

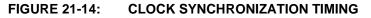
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

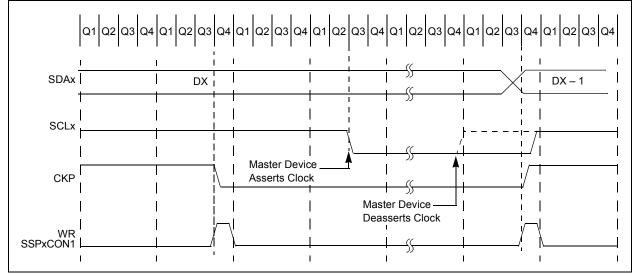
bit 7-0 MSK<7:0>: Slave Address Mask Select bit

1 = Masking of the corresponding bit of SSPxADD is enabled

0 = Masking of the corresponding bit of SSPxADD is disabled

Note 1: This register shares the same SFR address as SSPxADD and is only addressable in select MSSPx operating modes. See Section 21.4.3.4 "7-Bit Address Masking Mode" for more details.


2: MSK0 is not used as a mask bit in 7-bit addressing.


© 2009-2011 Microchip Technology Inc.

21.4.4.5 Clock Synchronization and the CKP bit

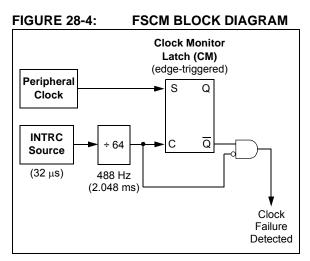
When the CKP bit is cleared, the SCLx output is forced to '0'. However, clearing the CKP bit will not assert the SCLx output low until the SCLx output is already sampled low. Therefore, the CKP bit will not assert the SCLx line until an external I^2C master device has

already asserted the SCLx line. The SCLx output will remain low until the CKP bit is set and all other devices on the I^2C bus have deasserted SCLx. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCLx (see Figure 21-14).

TABLE 21-4:	REGISTERS ASSOCIATED WITH I²C™ OPERATION
-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	75
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	TMR1GIF	TMR2IF	TMR1IF	77
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	TMR1GIE	TMR2IE	TMR1IE	77
IPR1	_	ADIP	RC1IP	TX1IP	SSP1IP	TMR1GIP	TMR2IP	TMR1IP	77
PIR2	OSCFIF		SSP2IF	BLC2IF	BCL1IF	HLVDIF	TMR3IF	TMR3GIF	77
PIE2	OSCFIE	_	SSP2IE	BLC2IE	BCL1IE	HLVDIE	TMR3IE	TMR3GIE	77
IPR2	OSCFIP	_	SSP2IP	BLC2IP	BCL1IP	HLVDIP	TMR3IP	TMR3GIP	77
PIR3	TMR5GIF	LCDIF	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	RTCCIF	77
PIE3	TMR5GIE	LCDIE	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE	77
IPR3	TMR5GIP	LCDIP	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP	77
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	78
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	78
SSP1BUF	MSSP1 Receive Buffer/Transmit Register							76	
SSP1ADD	MSSP1 Address Register (I ² C™ Slave mode), MSSP1 Baud Rate Reload Register (I ² C Master mode)							76	
SSP1MSK ⁽¹⁾	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	_
SSP1CON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	76
	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	76
SSP1CON2	GCEN	ACKSTAT	ADMSK5(2)	ADMSK4(2)	ADMSK3(2)	ADMSK2(2)	ADMSK1(2)	SEN	
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	76
SSP2BUF	MSSP2 Receive Buffer/Transmit Register							82	
SSP2ADD	MSSP2 Address Register (I ² C Slave mode), MSSP2 Baud Rate Reload Register (I ² C Master mode)							82	
SSP2MSK ⁽¹⁾	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	—
SSP2CON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	82
SSP2CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	- 83
	GCEN	ACKSTAT	ADMSK5 ⁽²⁾	ADMSK4 ⁽²⁾	ADMSK3(2)	ADMSK2(2)	ADMSK1(2)	SEN	
SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	82

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the MSSP module in I^2C^{TM} mode.


Note 1: SSPxMSK shares the same address in SFR space as SSPxADD, but is only accessible in certain I²C[™] Slave operating modes in 7-Bit Masking mode. See Section 21.4.3.4 "7-Bit Address Masking Mode" for more details.

2: Alternate bit definitions for use in I²C Slave mode operations only.

28.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the microcontroller to continue operation in the event of an external oscillator failure by automatically switching the device clock to the internal oscillator block. The FSCM function is enabled by setting the FCMEN Configuration bit.

When FSCM is enabled, the LF-INTOSC oscillator runs at all times to monitor clocks to peripherals and provide a backup clock in the event of a clock failure. Clock monitoring (shown in Figure 28-4) is accomplished by creating a sample clock signal, which is the output from the LF-INTOSC, divided by 64. This allows ample time between FSCM sample clocks for a peripheral clock edge to occur. The peripheral device clock and the sample clock are presented as inputs to the Clock Monitor (CM) latch. The CM is set on the falling edge of the device clock source, but cleared on the rising edge of the sample clock.

Clock failure is tested for on the falling edge of the sample clock. If a sample clock falling edge occurs while CM is still set, a clock failure has been detected (Figure 28-5). This causes the following:

- The FSCM generates an oscillator fail interrupt by setting bit, OSCFIF (PIR2<7>)
- The device clock source switches to the internal oscillator block (OSCCON is not updated to show the current clock source – this is the Fail-Safe condition)
- The WDT is reset

During switchover, the postscaler frequency from the internal oscillator block may not be sufficiently stable for timing-sensitive applications. In these cases, it may be desirable to select another clock configuration and enter an alternate power-managed mode. This can be done to attempt a partial recovery or execute a controlled shutdown. See Section 4.1.4 "Multiple Sleep Commands" and Section 28.4.1 "Special Considerations for Using Two-Speed Start-up" for more details.

To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IRCF<2:0>, immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting the IRCF<2:0> bits prior to entering Sleep mode.

The FSCM will detect only failures of the primary or secondary clock sources. If the internal oscillator block fails, no failure would be detected nor would any action be possible.

28.5.1 FSCM AND THE WATCHDOG TIMER

Both the FSCM and the WDT are clocked by the INTOSC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTOSC oscillator when the FSCM is enabled.

As already noted, the clock source is switched to the INTOSC clock when a clock failure is detected. Depending on the frequency selected by the IRCF<2:0> bits, this may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, Fail-Safe Clock events also reset the WDT and postscaler, allowing it to start timing from when execution speed was changed, and decreasing the likelihood of an erroneous time-out.

28.5.2 EXITING FAIL-SAFE OPERATION

The Fail-Safe condition is terminated by either a device Reset or by entering a power-managed mode. On Reset, the controller starts the primary clock source specified in Configuration Register 1H (with any required start-up delays that are required for the oscillator mode, such as the OST or PLL timer). The INTOSC multiplexer provides the device clock until the primary clock source becomes ready (similar to a Two-Speed Start-up). The clock source is then switched to the primary clock (indicated by the OSTS bit in the OSCCON register becoming set). The Fail-Safe Clock Monitor then resumes monitoring the peripheral clock.

The primary clock source may never become ready during start-up. In this case, operation is clocked by the INTOSC multiplexer. The OSCCON register will remain in its Reset state until a power-managed mode is entered.

29.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

Note:	Enabling the PIC18 instruction set exten-					
	sion may cause legacy applications to					
	behave erratically or fail entirely.					

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing (Section 6.6.1 "Indexed Addressing with Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank (a = 0) or in a GPR bank designated by the BSR (a = 1). When the extended instruction set is enabled and a = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bit-oriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between C and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 29.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind, that when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types.

29.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument, 'f', in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value, 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within the brackets, will generate an error in the MPASM[™] Assembler.

If the index argument is properly bracketed for Indexed Literal Offset Addressing, the Access RAM argument is never specified; it will automatically be assumed to be '0'. This is in contrast to standard operation (extended instruction set disabled), when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM Assembler.

The destination argument, 'd', functions as before.

In the latest versions of the MPASM Assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, $/_{Y}$, or the PE directive in the source listing.

29.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18F87K90 family, it is very important to consider the type of code. A large, re-entrant application that is written in C and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3180 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

05/02/11