

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f87k90-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TMR10MD ⁽¹⁾	TMR8MD	TMR7MD ⁽¹⁾	TMR6MD	TMR5MD	CMP3MD	CMP2MD	CMP1MD
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	TMR10MD: T	MR10MD Disa	ble bit ⁽¹⁾				
	1 = Periphera 0 = PMD is d	al Module Disal lisabled and TM	ble (PMD) is e /R10MD is en	enabled and all abled	TMR10MD clo	ck sources are	disabled
bit 6	TMR8MD: TN	/R8MD Disable	e bit				
	1 = PMD is e	enabled and all	TMR8MD clo	ck sources are	disabled		
	0 = PMD is d	lisabled and TM	IR8MD is ena	bled			
bit 5	TMR7MD: TN	/R7MD Disable	e bit ⁽¹⁾				
	1 = PMD is e	enabled and all	TMR7MD clo	ck sources are	disabled		
bit 4				ibieu			
DIL 4	1 = PMD is e	anabled and all	, DIL TMR6MD clov	ck sources are	disabled		
	0 = PMD is c	lisabled and TN	IR6MD is ena	ibled	disabled		
bit 3	TMR5MD: TN	/R5MD Disable	e bit				
	1 = PMD is e	enabled and all	TMR5MD clo	ck sources are	disabled		
	0 = PMD is c	lisabled and TM	/R5MD is ena	bled			
bit 2	CMP3MD: PN	MD Comparato	3 Enable/Dis	able bit			
	1 = PMD is e 0 = PMD is c	enabled for Con lisabled for Cor	nparator 3, dis nparator 3	sabling all of its	clock sources		
bit 1	CMP2MD: PN	MD Comparato	3 Enable/Dis	able bit			
	1 = PMD is e	enabled for Con	nparator 2, dis	abling all of its	clock sources		
	0 = PMD is c	lisabled for Cor	nparator 2				
bit 0	CMP1MD: PN	MD Comparato	3 Enable/Dis	able bit			
	1 = PMD is e	enabled for Con	nparator 1, dis	sabling all of its	s clock sources		
		isabled for Cor	nparator 1				

REGISTER 4-2: PMD2: PERIPHERAL MODULE DISABLE REGISTER 2

Note 1: Unimplemented in devices with a program memory of 32 Kbytes (PIC18FX5K90).

TADLE 3-2:	INITIALIZA	TION CONDIT	IONS FOR ALL RE	וטב		
Register	Applicabl	le Devices	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets, CM Resets	Wake-up via WDT or Interrupt	
EEADR	PIC18F6XK90	PIC18F8XK90	0000 0000	0000 0000	นนนน นนนน	
EEDATA	PIC18F6XK90	PIC18F8XK90	0000 0000	0000 0000	սսսս սսսս	
PIE6	PIC18F6XK90	PIC18F8XK90	0 -000	0 -000	u -uuu	
RTCCFG	PIC18F6XK90	PIC18F8XK90	0-00 0000	u-uu uuuu	u-uu uuuu	
RTCCAL	PIC18F6XK90	PIC18F8XK90	0000 0000	uuuu uuuu	uuuu uuuu	
RTCVALH	PIC18F6XK90	PIC18F8XK90	xxxx xxxx	uuuu uuuu	uuuu uuuu	
RTCVALL	PIC18F6XK90	PIC18F8XK90	xxxx xxxx	uuuu uuuu	uuuu uuuu	
ALRMCFG	PIC18F6XK90	PIC18F8XK90	0000 0000	uuuu uuuu	uuuu uuuu	
ALRMRPT	PIC18F6XK90	PIC18F8XK90	0000 0000	uuuu uuuu	uuuu uuuu	
ALRMVALH	PIC18F6XK90	PIC18F8XK90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
ALRMVALL	PIC18F6XK90	PIC18F8XK90	xxxx xxxx	uuuu uuuu	uuuu uuuu	
CTMUCONH	PIC18F6XK90	PIC18F8XK90	0-00 0000	0-00 0000	u-uu uuuu	
CTMUCONL	PIC18F6XK90	PIC18F8XK90	0000 0000	0000 00xx	uuuu uuuu	
CTMUICON	PIC18F6XK90	PIC18F8XK90	0000 0000	0000 0000	սսսս սսսս	
CM1CON	PIC18F6XK90	PIC18F8XK90	0001 1111	0001 1111	սսսս սսսս	
PADCFG1	PIC18F6XK90	PIC18F8XK90	00000-	uuuuu-	uuuuu-	
ECCP2AS	PIC18F6XK90	PIC18F8XK90	0000 0000	0000 0000	սսսս սսսս	
ECCP2DEL	PIC18F6XK90	PIC18F8XK90	0000 0000	0000 0000	սսսս սսսս	
CCPR2H	PIC18F6XK90	PIC18F8XK90	xxxx xxxx	սսսս սսսս	սսսս սսսս	
CCPR2L	PIC18F6XK90	PIC18F8XK90	xxxx xxxx	սսսս սսսս	սսսս սսսս	
CCP2CON	PIC18F6XK90	PIC18F8XK90	0000 0000	0000 0000	սսսս սսսս	
ECCP3AS	PIC18F6XK90	PIC18F8XK90	0000 0000	0000 0000	uuuu uuuu	
ECCP3DEL	PIC18F6XK90	PIC18F8XK90	0000 0000	0000 0000	uuuu uuuu	
CCPR3H	PIC18F6XK90	PIC18F8XK90	xxxx xxxx	uuuu uuuu	uuuu uuuu	
CCPR3L	PIC18F6XK90	PIC18F8XK90	xxxx xxxx	uuuu uuuu	uuuu uuuu	
CCP3CON	PIC18F6XK90	PIC18F8XK90	0000 0000	0000 0000	uuuu uuuu	
CCPR8H	PIC18F6XK90	PIC18F8XK90	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCPR8L	PIC18F6XK90	PIC18F8XK90	XXXX XXXX	սսսս սսսս	սսսս սսսս	
CCP8CON	PIC18F6XK90	PIC18F8XK90	00 0000	00 0000	uu uuuu	
CCPR9H	PIC18F6XK90	PIC18F8XK90	XXXX XXXX	սսսս սսսս	uuuu uuuu	
CCPR9L	PIC18F6XK90	PIC18F8XK90	xxxx xxxx	սսսս սսսս	uuuu uuuu	
CCP9CON	PIC18F6XK90	PIC18F8XK90	00 0000	00 0000	uu uuuu	
CCPR10H	PIC18F6XK90	PIC18F8XK90	XXXX XXXX	uuuu uuuu	uuuu uuuu	

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt, and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

4: See Table 5-1 for the Reset value for a specific condition.

	REGISTER 11-3:	ODCON3: PERIPHERAL	OPEN-DRAIN CONTROL	REGISTER 3
--	----------------	--------------------	--------------------	------------

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
U2OD	U10D	—		—	—	—	CTMUDS			
bit 7							bit 0			
Legend:										
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 7	bit 7 U20D: EUSART2 Open-Drain Output Enable bit									
	1 = Open-drain capability is enabled									
	0 = Open-dra	ain capability is	disabled							
bit 6	U10D: EUSA	RT1 Open-Dra	in Output Ena	able bit						
	1 = Open-dra	ain capability is	enabled							
	0 = Open-drain capability is disabled									
bit 5-1	bit 5-1 Unimplemented: Read as '0'									
bit 0	bit 0 CTMUDS: CTMU Pulse Delay Enable bit									
	1 = Pulse del	lay input for CT	MU is enable	d on pin, RF1						
	0 = Pulse del	lay input for CT	MU is disable	d on pin, RF1						

11.1.4 ANALOG AND DIGITAL PORTS

Many of the ports multiplex analog and digital functionality, providing a lot of flexibility for hardware designers. PIC18F87K90 family devices can make any analog pin, analog or digital, depending on an application's needs. The ports' analog/digital functionality is controlled by the registers: ANCON0, ANCON1 and ANCON2. Setting these registers makes the corresponding pins analog and clearing the registers makes the ports digital. For details on these registers, see Section 23.0 "12-Bit Analog-to-Digital Converter (A/D) Module".

14.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (TMR2 to PR2 match) provides the input for the 4-bit output counter/postscaler. This counter generates the TMR2 match interrupt flag, which is latched in TMR2IF (PIR1<1>). The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE (PIE1<1>).

A range of 16 postscaler options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0> (T2CON<6:3>).

14.3 Timer2 Output

The unscaled output of TMR2 is available primarily to the ECCP modules, where it is used as a time base for operations in PWM mode.

Timer2 can optionally be used as the shift clock source for the MSSP modules operating in SPI mode. Additional information is provided in Section 21.0 "Master Synchronous Serial Port (MSSP) Module".

TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	75
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	TMR1GIF	TMR2IF	TMR1IF	77
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	TMR1GIE	TMR2IE	TMR1IE	77
IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	TMR1GIP	TMR2IP	TMR1IP	77
TMR2	Timer2 Register								
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	76
PR2	Timer2 Pe	riod Register							76

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

15.5.4 TIMER3/5/7 GATE SINGLE PULSE MODE

When Timer3/5/7 Gate Single Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer3/5/7 Gate Single Pulse mode is first enabled by setting the TxGSPM bit (TxGCON<4>). Next, the TxGGO/TxDONE bit (TxGCON<3>) must be set.

The Timer3/5/7 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the TxGGO/TxDONE bit will automatically be cleared. No other gate events will <u>be allowed</u> to increment Timer3/5/7 until the TxGGO/TxDONE bit is once again set in software.

<u>Clearing</u> the TxGSPM bit also will clear the TxGGO/ TxDONE bit. (For timing details, see Figure 15-4.)

Simultaneously enabling the Toggle mode and the Single Pulse mode will permit both sections to work together. This allows the cycle times on the Timer3/5/7 gate source to be measured. (For timing details, see Figure 15-5.)

FIGURE 15-4: TIMER3/5/7 GATE SINGLE PULSE MODE

The outputs of TMRx (before the postscaler) are used

only as a PWM time base for the ECCP modules. They

are not used as baud rate clocks for the MSSP

Output of TMRx

modules as is the Timer2 output.

16.2 Timer4/6/8/10/12 Interrupt

The Timer4/6/8/10/12 modules have 8-bit Period registers, PRx, that are both readable and writable. Timer4/6/8/10/12 increment from 00h until they match PR4/6/8/10/12 and then reset to 00h on the next increment cycle. The PRx registers are initialized to FFh upon Reset.

FIGURE 16-1: TIMER4/6/8/10/12 BLOCK DIAGRAM

16.3

TABLE 16-3: REGISTERS ASSOCIATED WITH TIMER4/6/8/10/12 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	75
IPR5	TMR7GIP ⁽¹⁾	TMR12IP ⁽¹⁾	TMR10IP ⁽¹⁾	TMR8IP	TMR7IP ⁽¹⁾	TMR6IP	TMR5IP	TMR4IP	76
PIR5	TMR7GIF ⁽¹⁾	TMR12IF ⁽¹⁾	TMR10IF ⁽¹⁾	TMR8IF	TMR7IF ⁽¹⁾	TMR6IF	TMR5IF	TMR4IF	77
PIE5	TMR7GIE ⁽¹⁾	TMR12IE ⁽¹⁾	TMR10IE ⁽¹⁾	TMR8IE	TMR7IE ⁽¹⁾	TMR6IE	TMR5IE	TMR4IE	77
TMR4	Timer4 Regis	ter							82
T4CON	_	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0	82
PR4	Timer4 Period	d Register							82
TMR6	Timer6 Register							81	
T6CON	_	T6OUTPS3	T6OUTPS2	T6OUTPS1	T6OUTPS0	TMR6ON	T6CKPS1	T6CKPS0	81
PR6	Timer6 Period Register								
TMR8	Timer8 Regis	ter							81
T8CON		T8OUTPS3	T8OUTPS2	T8OUTPS1	T8OUTPS0	TMR8ON	T8CKPS1	T8CKPS0	81
PR8	Timer8 Period	d Register							81
TMR10	Timer10 Regi	ster							81
T10CON	_	T10OUTPS3	T10OUTPS2	T10OUTPS1	T10OUTPS0	TMR100N	T10CKPS1	T10CKPS0	81
PR10	Timer10 Perio	od Register							81
TMR12	Timer12 Regi	ster							81
T12CON	_	T12OUTPS3	T12OUTPS2	T12OUTPS1	T12OUTPS0	TMR12ON	T12CKPS1	T12CKPS0	81
PR12	Timer12 Perio	od Register							81
CCPTMRS0	C3TSEL1	C3TSEL0	C2TSEL2	C2TSEL1	C2TSEL0	C1TSEL2	C1TSEL1	C1TSEL0	81
CCPTMRS1	C7TSEL1	C7TSEL0	_	C6TSEL0	_	C5TSEL0	C4TSEL1	C4TSEL0	81
CCPTMRS2	_	_	_	C10TSEL0 ⁽¹⁾	_	C9TSEL0 ⁽¹⁾	C8TSEL1	C8TSEL0	81

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer4/6/8/10/12 module.

Note 1: Unimplemented in devices with a program memory of 32 Kbytes (PIC18FX5K22).

18.1.2 OPEN-DRAIN OUTPUT OPTION

When operating in Output mode (the Compare or PWM modes), the drivers for the CCPx pins can be optionally configured as open-drain outputs. This feature allows the voltage level on the pin to be pulled to a higher level through an external pull-up resistor and allows the output to communicate with external circuits without the need for additional level shifters.

The open-drain output option is controlled by the CCPxOD bits (ODCON2<7:2>). Setting the appropriate bit configures the pin for the corresponding module for open-drain operation.

18.1.3 PIN ASSIGNMENT FOR CCP6, CCP7, CCP8 AND CCP9

The pin assignment for CCP6/7/8/9 (Capture input, Compare and PWM output) can change, based on the device configuration.

The ECCPMX Configuration bit (CONFIG3H<1>) determines the pin to which CCP6/7/8/9 is multiplexed. The pin assignments for these CCP modules are given in Table 18-4.

TABLE 18-4: CCP PIN ASSIGNMENT

ЕССРМХ	Pin Mapped To						
Value	CCP6 CCP7 CCP8 CC9						
1 (Default)	RE6	RE5	RE4	RE3			
0	RH7	RH6	RH5	RH4			

18.2 Capture Mode

In Capture mode, the CCPR4H:CCPR4L register pair captures the 16-bit value of the TMR1 or TMR3 register when an event occurs on the CCP4 pins. An event is defined as one of the following:

- · Every falling edge
- Every rising edge
- · Every 4th rising edge
- · Every 16th rising edge

The event is selected by the mode select bits, CCP4M<3:0> (CCP4CON<3:0>). When a capture is made, the interrupt request flag bit, CCP4IF (PIR4<1>), is set. (It must be cleared in software.) If another capture occurs before the value in CCPR4 is read, the old captured value is overwritten by the new captured value.

Figure 18-1 shows the Capture mode block diagram.

18.2.1 CCP PIN CONFIGURATION

In Capture mode, the appropriate CCPx pin should be configured as an input by setting the corresponding TRIS direction bit.

Note:	If RC1 or RE7 is configured as a CCP4
	output, a write to the PORT causes a
	capture condition.

18.2.2 TIMER1/3/5/7 MODE SELECTION

For the available timers (1/3/5/7) to be used for the capture feature, the used timers must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work.

The timer to be used with each CCP module is selected in the CCPTMRSx registers. (See Section 18.1.1 "CCP Modules and Timer Resources".)

Details of the timer assignments for the CCP modules are given in Table 18-2 and Table 18-3.

TABLE 20-2: LCDDATA REGISTERS AND BITS FOR SEGMENT AND COM COMBINATIONS

Commonto	COM Lines						
Segments	0	1	2	3			
0 through 7	LCDDATA0	LCDDATA6	LCDDATA12	LCDDATA18			
0 through 7	S00C0:S07C0	S00C1:S07C1	S00C2:S07C2	S00C3:S07C3			
9 through 15	LCDDATA1	LCDDATA7	LCDDATA13	LCDDATA19			
8 through 15	S08C0:S15C0	S08C1:S15C1	S08C2:S15C2	S08C0:S15C3			
16 through 22	LCDDATA2	LCDDATA8	LCDDATA14	LCDDATA20			
10 through 25	S16C0:S23C0	S16C1:S23C1	S16C2:S23C2	S16C3:S23C3			
24 through 21	LCDDATA3	LCDDATA9	LCDDATA15	LCDDATA21			
24 through 51	S24C0:S31C0	S24C1:S31C1	S24C2:S31C2	S24C3:S31C3			
22 through 20	LCDDATA4 ⁽¹⁾	LCDDATA10 ⁽¹⁾	LCDDATA16 ⁽¹⁾	LCDDATA22 ⁽¹⁾			
52 through 59	S32C0:S39C0	S32C1:S39C1	S32C2:S39C2	S32C3:S39C3			
40 through 47	LCDDATA5 ⁽²⁾	LCDDATA11 ⁽²⁾	LCDDATA17 ⁽²⁾	LCDDATA23 ⁽²⁾			
40 through 47	S40C0:S47C0	S40C1:S47C1	S40C2:S47C2	S40C3:S47C3			

Note 1: Bits<7:1> of these registers are not implemented in PIC18F6XK90 devices. Bit 0 of these registers (SEG32Cy) is always implemented.

2: These registers are not implemented in PIC18F6XK90 devices.

REGISTER 20-6: LCDDATAX: LCD DATAX REGISTER

R/W-0	R/W-0						
S(n + 7)Cy	S(n + 6)Cy	S(n + 5)Cy	S(n + 4)Cy	S(n + 3)Cy	S(n + 2)Cy	S(n + 1)Cy	S(n)Cy
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0	S(n + 7)Cy:S(n)Cy: Pixel On bits
	For registers, LCDDATA0 through LCDDATA5: n = (8x), y = 0
	<u>For registers, LCDDATA6 through LCDDATA11: n = (8(x – 6)), y = 1</u>
	For registers, LCDDATA12 through LCDDATA17: n = (8(x – 12)), y = 2
	For registers, LCDDATA18 through LCDDATA23: n = (8(x - 18)), y = 3
	1 = Pixel on (dark) 0 = Pixel off (clear)

20.2 LCD Clock Source Selection

The LCD driver module has three possible clock sources:

- (Fosc/4)/8192
- SOSC Clock/32
- INTRC/32

The first clock source is the system clock divided by 8,192 ((Fosc/4)/8192). This divider ratio is chosen to provide about 1 kHz output when the system clock is 8 MHz. The divider is not programmable. Instead, the LCD prescaler bits, LCDPS<3:0>, are used to set the LCD frame clock rate.

The second clock source is the SOSC oscillator/32. This also outputs about 1 kHz when a 32.768 kHz crystal is used with the SOSC oscillator. To use the SOSC oscillator as a clock source, set the SOSCEN (T1CON<3>) bit.

The third clock source is a 31.25 kHz internal RC oscillator/32 that provides approximately 1 kHz output.

The second and third clock sources may be used to continue running the LCD while the processor is in Sleep.

These clock sources are selected through the bits CS<1:0> (LCDCON<3:2>).

20.2.1 LCD PRESCALER

A 16-bit counter is available as a prescaler for the LCD clock. The prescaler is not directly readable or writable. Its value is set by the LP<3:0> bits (LCDPS<3:0>) that determines the prescaler assignment and prescale ratio.

Selectable prescale values are from 1:1 through 1:32,768, in power-of-2 increments.

FIGURE 20-2: LCD CLOCK GENERATION

21.4.9 I²C[™] MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPxCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPxADD<5:0> and begins counting. The SDAx pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, and if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<6:0> and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. Following this, the RSEN bit (SSPxCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit (SSPxSTAT<3>) will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDAx is sampled low when SCLx goes from low-to-high.
 - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.

Immediately following the SSPxIF bit getting set, the user may write the SSPxBUF with the 7-bit address in 7-bit mode or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

21.4.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPxCON2 is disabled until the Repeated Start condition is complete.

FIGURE 21-22: REPEATED START CONDITION WAVEFORM

		SYNC = 0, BRGH = 0, BRG16 = 1										
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	0.300	-0.04	1665
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1.201	-0.16	415
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2.403	-0.16	207
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_

TABLE 22-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Foso	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz					
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)			
0.3	0.300	0.04	832	0.300	-0.16	415	0.300	-0.16	207			
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51			
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25			
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_			
19.2	19.231	0.16	12	_	_	_	_	_	_			
57.6	62.500	8.51	3	_	_	_	_	_	_			
115.2	125.000	8.51	1	—	_	—	—	_	_			

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	0.300	-0.01	6665
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1.200	-0.04	1665
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2.400	-0.04	832
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9.615	-0.16	207
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19.230	-0.16	103
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57.142	0.79	34
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117.647	-2.12	16

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1									
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	Fosc = 1.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	0.300	0.01	3332	0.300	-0.04	1665	0.300	-0.04	832		
1.2	1.200	0.04	832	1.201	-0.16	415	1.201	-0.16	207		
2.4	2.404	0.16	415	2.403	-0.16	207	2.403	-0.16	103		
9.6	9.615	0.16	103	9.615	-0.16	51	9.615	-0.16	25		
19.2	19.231	0.16	51	19.230	-0.16	25	19.230	-0.16	12		
57.6	58.824	2.12	16	55.555	3.55	8	—	_	_		
115.2	111.111	-3.55	8	—	_	_	—	_	—		

27.2 CTMU Operation

The CTMU works by using a fixed current source to charge a circuit. The type of circuit depends on the type of measurement being made.

In the case of charge measurement, the current is fixed and the amount of time the current is applied to the circuit is fixed. The amount of voltage read by the A/D becomes a measurement of the circuit's capacitance.

In the case of time measurement, the current, as well as the capacitance of the circuit, is fixed. In this case, the voltage read by the A/D is representative of the amount of time elapsed from the time the current source starts and stops charging the circuit.

If the CTMU is being used as a time delay, both capacitance and current source are fixed, as well as the voltage supplied to the comparator circuit. The delay of a signal is determined by the amount of time it takes the voltage to charge to the comparator threshold voltage.

27.2.1 THEORY OF OPERATION

The operation of the CTMU is based on the equation for charge:

 $C = I \bullet \frac{dV}{dT}$

More simply, the amount of charge measured in coulombs in a circuit is defined as current in amperes (I) multiplied by the amount of time in seconds that the current flows (t). Charge is also defined as the capacitance in farads (C) multiplied by the voltage of the circuit (V). It follows that:

 $I \bullet t = C \bullet V$

The CTMU module provides a constant, known current source. The A/D Converter is used to measure (V) in the equation, leaving two unknowns: capacitance (C) and time (t). The above equation can be used to calculate capacitance or time, by either the relationship using the known fixed capacitance of the circuit:

 $t = (C \bullet V)/I$

or by:

 $\mathbf{C} = (\mathbf{I} \bullet \mathbf{t}) / \mathbf{V}$

using a fixed time that the current source is applied to the circuit.

27.2.2 CURRENT SOURCE

At the heart of the CTMU is a precision current source, designed to provide a constant reference for measurements. The level of current is user-selectable across three ranges or a total of two orders of magnitude, with the ability to trim the output in $\pm 2\%$ increments (nominal). The current range is selected by the IRNG<1:0> bits (CTMUICON<1:0>), with a value of '00' representing the lowest range.

Current trim is provided by the ITRIM<5:0> bits (CTMUICON<7:2>). These six bits allow trimming of the current source in steps of approximately 2% per step. Half of the range adjusts the current source positively and the other half reduces the current source. A value of '000000' is the neutral position (no change). A value of '100000' is the maximum negative adjustment (approximately -62%) and '011111' is the maximum positive adjustment (approximately +62%).

27.2.3 EDGE SELECTION AND CONTROL

CTMU measurements are controlled by edge events occurring on the module's two input channels. Each channel, referred to as Edge 1 and Edge 2, can be configured to receive input pulses from one of the edge input pins (CTED1 and CTED2) or CCPx Special Event Triggers. The input channels are level-sensitive, responding to the instantaneous level on the channel rather than a transition between levels. The inputs are selected using the EDG1SEL and EDG2SEL bit pairs (CTMUCONL<3:2, 6:5>).

In addition to source, each channel can be configured for event polarity using the EDGE2POL and EDGE1POL bits (CTMUCONL<7,4>). The input channels can also be filtered for an edge event sequence (Edge 1 occurring before Edge 2) by setting the EDGSEQEN bit (CTMUCONH<2>).

27.2.4 EDGE STATUS

The CTMUCON register also contains two status bits, EDG2STAT and EDG1STAT (CTMUCONL<1:0>). Their primary function is to show if an edge response has occurred on the corresponding channel. The CTMU automatically sets a particular bit when an edge response is detected on its channel. The level-sensitive nature of the input channels also means that the status bits become set immediately if the channel's configuration is changed and matches the channel's current state.

The module uses the edge status bits to control the current source output to external analog modules (such as the A/D Converter). Current is only supplied to external modules when only one (not both) of the status bits is set. Current is shut off when both bits are either set or cleared. This allows the CTMU to measure current only during the interval between edges. After both status bits are set, it is necessary to clear them before another measurement is taken. Both bits should be cleared simultaneously, if possible, to avoid re-enabling the CTMU current source.

In addition to being set by the CTMU hardware, the edge status bits can also be set by software. This permits a user application to manually enable or disable the current source. Setting either (but not both) of the bits enables the current source. Setting or clearing both bits at once disables the source.

DEC	FSZ	Decrement f, Skip if 0			DCF	SNZ	Decrement f, Skip if Not 0			
Synt	ax:	DECFSZ f	{,d {,a}}		Synt	ax:	DCFSNZ	f {,d {,a}}		
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0 , 1] \\ a \in [0 , 1] \end{array}$			Oper	ands:	0 ≤ f ≤ 255 d ∈ [0 , 1] a ∈ [0 , 1]			
Ope	ration:	(f) – $1 \rightarrow de$ skip if result	est, t = 0		Oper	ation:	(f) – $1 \rightarrow d$ skip if resu	est, It ≠ 0		
Statu	is Affected:	None			Statu	is Affected:	None			
Enco	oding:	0010	11da ffi	ff ffff	Enco	oding:	0100	f ffff		
Description:		The content decremente placed in W placed back	ts of register ' ed. If 'd' is '0', /. If 'd' is '1', th < in register 'f'	f' are the result is ne result is	Desc	ription:	The conter decrement placed in V placed bac	nts of register 'f ed. If 'd' is '0', f V. If 'd' is '1', th k in register 'f'.	' are he result is e result is	
		If the result which is alre and a NOP i it a two-cycl If 'a' is '0', th	is '0', the nex eady fetched in s executed in: le instruction. ne Access Bar	t instruction is discarded stead, making nk is selected.			If the result instruction discarded instead, ma instruction.	t is not '0', the i which is alreac and a NOP is e aking it a two-c	next ly fetched is kecuted ycle	
		If 'a' is '1', th GPR bank.	ne BSR is use	d to select the			If 'a' is '0', t If 'a' is '1', t GPR bank	he Access Bar he BSR is used	ik is selected. d to select the	
in a is 0 and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					If 'a' is '0' a set is enab in Indexed mode when Section 29 Bit-Oriente	Ind the extende led, this instruct Literal Offset A never f ≤ 95 (5F 0.2.3 "Byte-Ori ed Instruction	ed instruction tion operates addressing ⁻ h). See ented and s in Indexed			
Wor	ds:	1					Literal Off	set Mode" for	details.	
Cycl	es:	1(2) Note: 3 cy by a	cles if skip an 2-word instru	d followed iction.	Word	ls: es:	1 1(2) Note: 3 (cycles if skip ar	nd followed	
QC	vcle Activity:						by	a 2-word instru	uction.	
	Q1	Q2	Q3	Q4	Q C	ycle Activity:	~~~	~~	<u>.</u>	
	Decode	Read	Process Data	Write to		Q1 Decode	Q2 Read	Q3 Process	Q4 Write to	
lf sł	kip:	register i	Data	destination	1	Decoue	register 'f'	Data	destination	
	Q1	Q2	Q3	Q4	lf sk	ip:				
	No	No	No	No		Q1	Q2	Q3	Q4	
	operation	operation	operation	operation		No	No	No	No	
IT SH	and followe	d by 2-word in:	struction:	04	lfsk	in and followe	d by 2-word in		operation	
	No	Q2 No	Q3 No	Q4 No]	Q1	Q2	Q3	Q4	
	operation	operation	operation	operation		No	No	No	No	
	No	No	No	No		operation	operation	operation	operation	
	operation	operation	operation	operation		No	No	No	No	
<u>Exar</u>	<u>nple:</u>	HERE CONTINUE	DECFSZ GOTO	CNT, 1, 1 LOOP	Exar	nple:	HERE	DCFSNZ TEM	operation ₽, 1, 0	
	Before Instruc	tion					NZERO	:		
PC = Address (HERE) After Instruction CNT = CNT = 1			Before Instruct TEMP After Instruction	tion =	?					
	If CNT	= 0;		1 \			=	TEMP – 1,		
	If CNT PC	= Address \neq 0; = Address	GONTINUE	2)		IT LEMP = 0; PC = Address (ZERO) If TEMP \neq 0; PC = Address (NZERO)			ZERO) JZERO)	
								```	· ·	

NEGF	Negate f							
Syntax:	NEGF f	{,a}						
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in \left[0,1\right] \end{array}$							
Operation:	$(\overline{f}) + 1 \rightarrow f$							
Status Affected:	N, OV, C, DC, Z							
Encoding:	0110 110a ffff ffff							
Description: Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'.								
If 'a' is '0', the Access Bank is select If 'a' is '1', the BSR is used to select GPR bank.								
	If 'a' is '0' and the extended instruction set is enabled, this instruction operat in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexe Literal Offset Mode" for details.							
Words:	1							
Cycles:	1							
Q Cycle Activity:								

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example:	NEGF	REG,	1
----------	------	------	---

Before Instruc	ction			
REG	=	0011	1010	[3Ah]
After Instruction	on			
REG	=	1100	0110	[C6h]

NOP		No Operation							
Synta	ax:	NOP							
Oper	ands:	None							
Oper	ation:	No operati	No operation						
Status Affected: None									
Enco	ding:	0000	0000	000	0	0000			
		1111	1111 xxxx xxxx xxx						
Desc	ription:	No operation.							
Word	ls:	1	1						
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q	3		Q4			
	Decode	No	No No		No				
		operation	operation operation operation						

Example:

None.

# 31.3 DC Characteristics: PIC18F87K90 Family (Industrial/Extended) (Continued)

DC CHA	DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions			
	Vol	Output Low Voltage							
D080		I/O Ports:							
		PORTA,PORTB,PORTC	_	0.6	V	IoL = 8.5 mA, VDD = 4.5V, -40°C to +125°C			
		PORTD, PORTE, PORTF, PORTG, PORTH, PORTJ	—	0.6	V	IoL = 3.5 mA, VDD = 4.5V, -40°C to +125°C			
D083		OSC2/CLKO (EC modes)	—	0.6	V	IOL = 1.6 mA, VDD = 5.5V, -40°C to +125°C			
	Vон	Output High Voltage ⁽¹⁾							
D090		I/O Ports:							
		PORTA,PORTB,PORTC	Vdd - 0.7	—	V	IOH = -3 mA, VDD = 4.5V, -40°С to +125°С			
		PORTD, PORTE, PORTF, PORTG, PORTH, PORTJ	Vdd - 0.7	—	V	lон = -2 mA, VDD = 4.5V, -40°С to +125°С			
D092		OSC2/CLKO (INTOSC, EC modes)	Vdd - 0.7	—	V	lон = -1 mA, VDD = 5.5V, -40°С to +125°С			
		Capacitive Loading Specs on Output Pins							
D100	COSC2	OSC2 Pin	_	20	pF	In HS mode when external clock is used to drive OSC1			
D101	Сю	All I/O Pins and OSC2	_	50	pF	To meet the AC Timing Specifications			
D102	Св	SCLx, SDAx	—	400	pF	I ² C [™] Specification			

**Note 1:** Negative current is defined as current sourced by the pin.

# 31.4 DC Characteristics: CTMU Current Source Specifications

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
	IOUT1	CTMU Current Source, Base Range	_	550	_	nA	CTMUICON<1:0> = 01	
	IOUT2	CTMU Current Source, 10x Range	—	5.5		μA	CTMUICON<1:0> = 10	
	IOUT3	CTMU Current Source, 100x Range	_	55	_	μA	CTMUICON<1:0> = 11	

**Note 1:** Nominal value at center point of current trim range (CTMUICON<7:2> = 000000).

### 64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N	64			
Pitch	е	0.50 BSC			
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	9.00 BSC			
Exposed Pad Width	E2	7.05	7.15	7.50	
Overall Length	D	9.00 BSC			
Exposed Pad Length	D2	7.05	7.15	7.50	
Contact Width	b	0.18	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149B Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			7.35
Optional Center Pad Length	T2			7.35
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

#### Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A