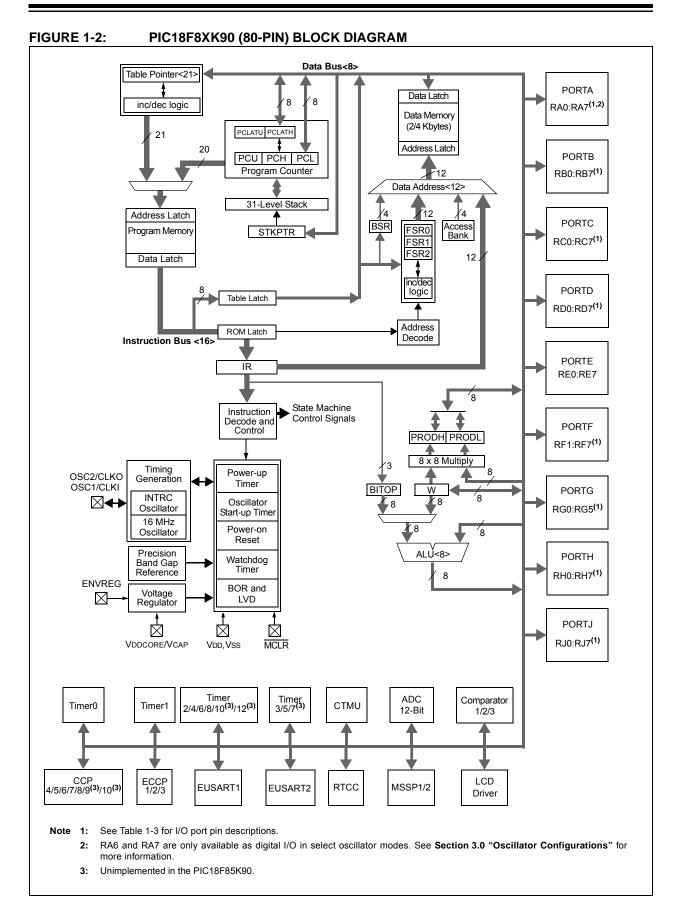


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

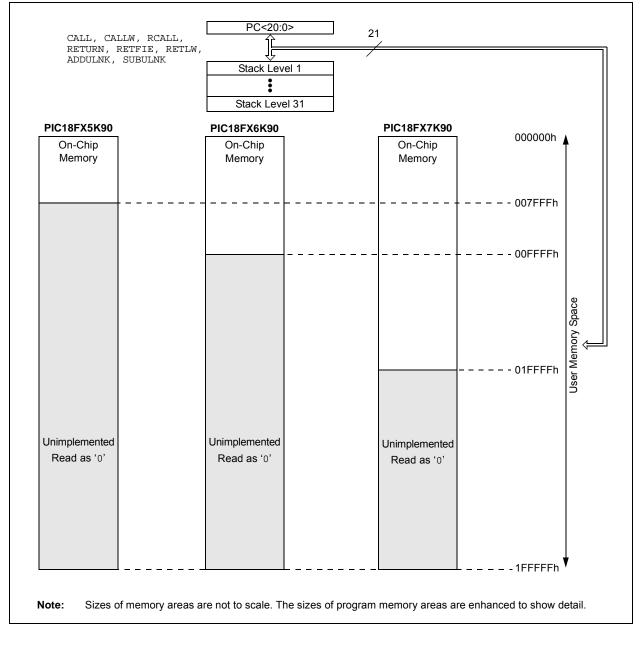
Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f87k90t-i-pt

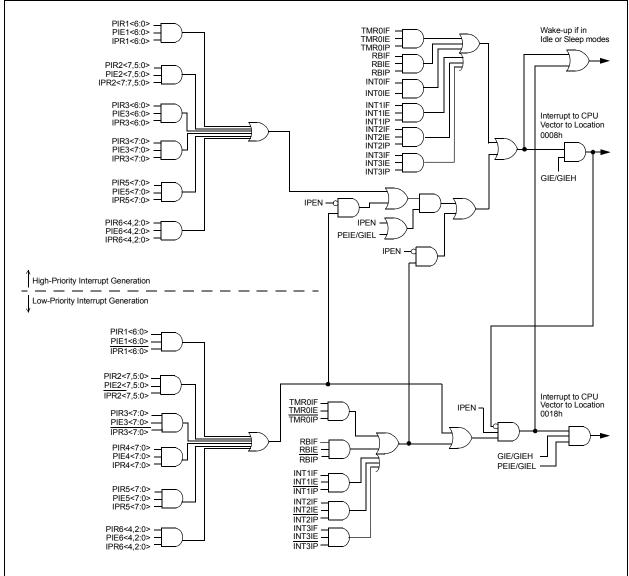
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.0 MEMORY ORGANIZATION


PIC18F87K90 family devices have these types of memory:

- Program Memory
- Data RAM
- Data EEPROM


As Harvard architecture devices, the data and program memories use separate busses. This enables concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be regarded as a peripheral device because it is addressed and accessed through a set of control registers.

Additional detailed information on the operation of the Flash program memory is provided in **Section 7.0 "Flash Program Memory"**. The data EEPROM is discussed separately in **Section 8.0 "Data EEPROM Memory"**.

FIGURE 6-1: MEMORY MAPS FOR PIC18F87K90 FAMILY DEVICES

10.5 RCON Register

bit 3

bit 2

bit 1

bit 0

The RCON register contains the bits used to determine the cause of the last Reset, or wake-up from Idle or Sleep modes. RCON also contains the bit that enables interrupt priorities (IPEN).

REGISTER 10-22: RCON: RESET CONTROL REGISTER

TO: Watchdog Timer Time-out Flag bit

PD: Power-Down Detection Flag bit

POR: Power-on Reset Status bit

BOR: Brown-out Reset Status bit

For details of bit operation, see Register 5-1.

R/W-0	R/W-1	R/W-1	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	SBOREN	CM	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:							
R = Read	able bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 7	IPEN: Int	errupt Priority Enable bit					
	1 = Enat	ole priority levels on interrupt	S				
	0 = Disa	ble priority levels on interrup	ts (PIC16CXXX Compatibility r	node)			
bit 6	SBOREN	I: BOR Software Enable bit					
	If BOREN	\<1:0> = 01:					
		is enabled					
	0 = BOR	is disabled					
		<pre>I<1:0> = 00, 10 or 11:</pre>					
	Bit is disa	abled and read as '0'.					
bit 5	CM: Con	figuration Mismatch Flag bit					
		onfiguration Mismatch Reset					
	0 = A Cc	onfiguration Mismatch Reset	has occurred (must be subsec	quently set in software)			
bit 4	RI: RESE	T Instruction Flag bit					
	For detail	s of bit operation, see Regis	ter 5-1.				

REGISTER 11-3:	ODCON3: PERIPHERAL OPEN-DRAIN CONTROL REGISTER 3
----------------	--

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0
U2OD	U10D	—	—	—	—	—	CTMUDS
bit 7	·						bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7 bit 6	 U2OD: EUSART2 Open-Drain Output Enable bit 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled U1OD: EUSART1 Open-Drain Output Enable bit 						
	 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled 						
bit 5-1	Unimplemented: Read as '0'						
bit 0	CTMUDS: CT	MU Pulse Dela	ay Enable bit				
		lay input for CT lay input for CT					

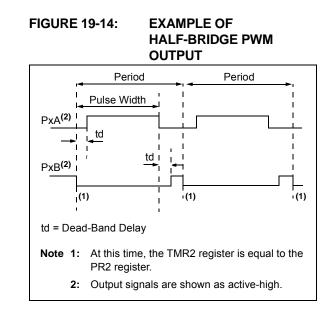
11.1.4 ANALOG AND DIGITAL PORTS

Many of the ports multiplex analog and digital functionality, providing a lot of flexibility for hardware designers. PIC18F87K90 family devices can make any analog pin, analog or digital, depending on an application's needs. The ports' analog/digital functionality is controlled by the registers: ANCON0, ANCON1 and ANCON2. Setting these registers makes the corresponding pins analog and clearing the registers makes the ports digital. For details on these registers, see Section 23.0 "12-Bit Analog-to-Digital Converter (A/D) Module".

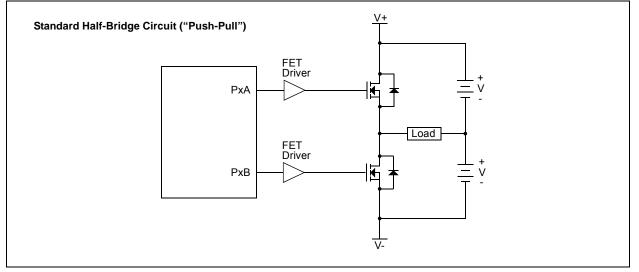
REGISTER 16-1: TxCON: TIMER4/6/8/10/12 CONTROL REGISTER

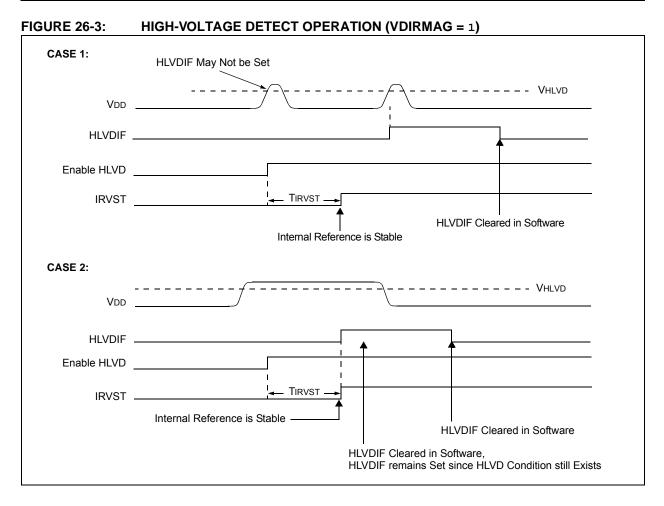
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	TxOUTPS3	TxOUTPS2	TxOUTPS1	TxOUTPS0	TMRxON	TxCKPS1	TxCKPS0	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	oit	U = Unimplem	ented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkn	own	
bit 7	Unimplemen	ted: Read as 'd)'					
bit 6-3	TxOUTPS<3:0>: Timerx Output Postscale Select bits							
	0000 = 1:1 Po	ostscale						
	0001 = 1:2 P	ostscale						
	•							
	•							
	1111 = 1:16 F	Postscale						
bit 2	TMRxON: Tin	nerx On bit						
5.12	1 = Timerx is							
	0 = Timerx is	•••						
bit 1-0	TxCKPS<1:0	>: Timerx Clocl	<pre>< Prescale Sel</pre>	ect bits				
	00 = Prescale	er is 1						
	01 = Prescale	-						
	1x = Prescale	eris 16						

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PxM1	PxM0	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0			
bit 7	•			•	•	•	bit			
Legend: R = Readab	le hit	W = Writable	hit	II = I Inimpler	mented bit, read	d as 'O'				
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown			
			•		arcu					
bit 7-6	PxM<1:0>: E	Enhanced PWM	l Output Confi	guration bits						
	If CCPxM<3:	2> = 00, 01, 10	<u>):</u>	-						
	xx = PxA is	assigned as a c	apture/compar	e input/output; I	PxB, PxC and P	xD are assigned	d as PORT pin			
	If CCPxM<3:									
		output: PxA, P	xB, PxC and	PxD are contro	olled by steerin	g (see Section	19.4.7 "Puls			
		n g Mode") idae output forv	vard [.] PxD is n	odulated [.] PxA	is active: PxB	PxC are inactiv	/e			
		 01 = Full-bridge output forward: PxD is modulated; PxA is active; PxB, PxC are inactive 10 = Half-bridge output: PxA, PxB are modulated with dead-band control; PxC and PxD are 								
		ied as PORT pi								
	11 = Full-br	idge output revo	erse: PxB is m	nodulated; PxC	is active; PxA	and PxD are in	active			
bit 5-4	DCxB<1:0>: PWM Duty Cycle Bit 1 and Bit 0									
	Capture mode:									
	Unused.									
	<u>Compare mo</u> Unused.	<u>de:</u>								
	PWM mode:									
		e the two LSbs	of the 10-bit F	WM duty cycle	e. The eight MS	bs of the duty c	ycle are found			
	in CCPRxL.				C C	-	-			
bit 3-0	CCPxM<3:0	>: ECCPx Mode	e Select bits							
	0000 = Capture/Compare/PWM off (resets ECCPx module)									
	0001 = Reserved									
	0010 = Cor 0011 = Cap	npare mode: to	ggle output or	match						
			erv falling edge	2						
	0100 = Capture mode: every falling edge 0101 = Capture mode: every rising edge									
	0110 = Cap	oture mode: eve	ry fourth rising	g edge						
		oture mode: eve								
		npare mode: ini								
		npare mode: init npare mode: ge								
		npare mode: tri								
	sets	CCxIF bit)								
		M mode: PxA a								
		M mode: PxA a		•						
	1110 = PW	M mode: PxA a	nd PxC are a	ctive-low; PxB a	and PXD are ac	nve-nigh				


REGISTER 19-1: CCPxCON: ENHANCED CAPTURE/COMPARE/PWM x CONTROL

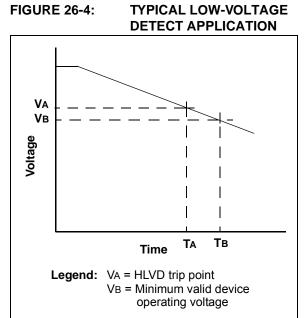
1110 = PWM mode: PxA and PxC are active-low; PxB and PxD are active-high 1111 = PWM mode: PxA and PxC are active-low; PxB and PxD are active-low


19.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE


In half-bridge applications, where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on and the other turned off), both switches may be on for a short period until one switch completely turns off. During this brief interval, a very high current (shoot-through current) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. For an illustration, see Figure 19-14. The lower seven bits of the associated ECCPxDEL register (Register 19-4) set the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 19-15: EXAMPLE OF HALF-BRIDGE APPLICATIONS



26.5 Applications

In many applications, it is desirable to detect a drop below, or rise above, a particular voltage threshold. For example, the HLVD module could be periodically enabled to detect Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a High-Voltage Detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 26-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage, VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an ISR (Interrupt Service Routine), which would allow the application to perform "housekeeping tasks" and a controlled shutdown before the device voltage exits the valid operating range at TB. This would give the application a time window, represented by the difference between TA and TB, to safely exit.

NOTES:

REGISTER 28-3: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_	BORPWR1 ⁽¹⁾	BORPWR0 ⁽¹⁾	BORV1 ⁽¹⁾	BORV0 ⁽¹⁾	BOREN1 ⁽²⁾	BOREN0 ⁽²⁾	PWRTEN ⁽²⁾
bit 7 bit 0							

Legend:	P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-5	BORPWR<1:0>: BORMV Power Level bits ⁽¹⁾
	 11 = ZPBORVMV instead of BORMV is selected 10 = BORMV is set to high-power level 01 = BORMV is set to medium-power level 00 = BORMV is set to low-power level
bit 4-3	BORV<1:0>: Brown-out Reset Voltage bits ⁽¹⁾
	11 = VBORMV is set to 1.8V 10 = VBORMV is set to 2.0V 01 = VBORMV is set to 2.7V 00 = VBORMV is set to 3.0V
bit 2-1	BOREN<1:0>: Brown-out Reset Enable bits ⁽²⁾
	 11 = Brown-out Reset is enabled in hardware only (SBOREN is disabled) 10 = Brown-out Reset is enabled in hardware only and disabled in Sleep mode (SBOREN is disabled) 01 = Brown-out Reset is enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset is disabled in hardware and software
bit 0	PWRTEN: Power-up Timer Enable bit ⁽²⁾
	1 = PWRT is disabled 0 = PWRT is enabled
Note 1:	For the specifications, see Section 31.1 "DC Characteristics: Supply Voltage PIC18F87K90 Family (Industrial/Extended)".

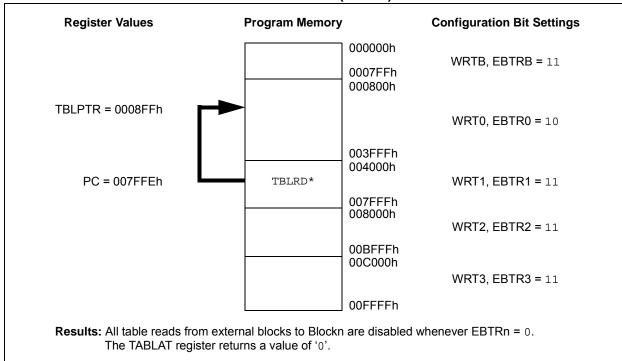
2: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

REGISTER 28-13: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)⁽¹⁾

U-0	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0	
—	EBTRB		_	—		—	—	
bit 7				•			bit 0	
Legend: C = Clearable bit			bit					
R = Readable b	Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					

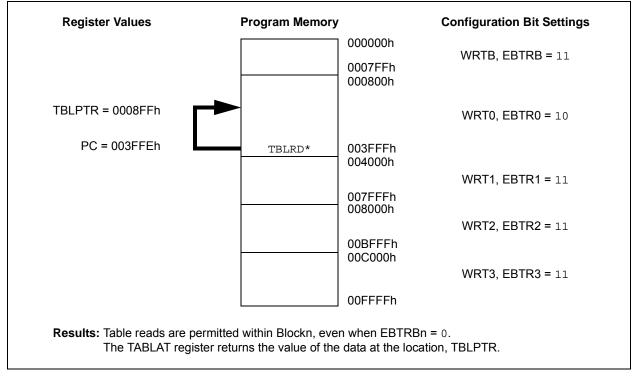
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 Unimplemented: Read as '0'


bit 6	EBTRB: Boot Block Table Read Protection bit
-------	---

1 = Boot block is not protected from table reads executed in other blocks

0 = Boot block is protected from table reads executed in other blocks


bit 5-0 Unimplemented: Read as '0'

Note 1: For the memory size of the blocks, refer to Figure 28-6.

FIGURE 28-8: EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED

FIGURE 28-9: EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED

ADD W to f

f {,d {,a}}

01da

Add W to register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the

result is stored back in register 'f'.

If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the

If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing

ffff

ffff

ADDWF

 $0 \leq f \leq 255$ $d \in [0\,,1]$

a ∈ [0,1]

0010

GPR bank.

 $(W) + (f) \rightarrow dest$

N, OV, C, DC, Z

29.1.1 STANDARD INSTRUCTION SET

ADDLW	ADD Litera	l to W			ADDWF
Syntax:	ADDLW	k			Syntax:
Operands:	$0 \le k \le 255$				Operands:
Operation:	$(W) + k \rightarrow V$	N			
Status Affected:	N, OV, C, D	Ю, Z			Operation:
Encoding:	0000	1111	kkkk	kkkk	Status Affected:
Description:	The conten 8-bit literal W				Encoding: Description:
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		Q4	
Decode	Read literal 'k'	Process Data	V	Vrite to W	
Example: Before Instruct W = After Instructio W =	tion 10h	5h			Words: Cycles: Q Cycle Activity:
					Q1 Decode
					Example: Before Instru W REG After Instruct W REG

mode whenever $f \le 95$ (5Fh). See Section 29.2.3 "Byte-Oriented and **Bit-Oriented Instructions in Indexed** Literal Offset Mode" for details. 1 1 Q4 Q3 Q2 Read Process Write to register 'f Data destination ADDWF REG, 0, 0 uction = 17h = 0C2h tion 0D9h = = 0C2h

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

CLRF	Clear f			CLRWDT		Clear Wate	hdog Timer:	
Syntax:	CLRF f{,	a}		Syntax:		CLRWDT		
Operands:	$0 \leq f \leq 255$			Operands:		None		
	$a \in [0,1]$			Operation:		$000h \rightarrow Wl$	ЭT,	
Operation:	$\begin{array}{l} 000h \rightarrow f, \\ 1 \rightarrow Z \end{array}$			·		$1 \rightarrow \overline{\text{TO}}$,	DT postscale	r,
Status Affected:	Z					$1 \rightarrow PD$		
Encoding:	0110	101a ff:	ff ffff	Status Affect	cted:	TO, PD		I
Description:	Clears the	contents of the	specified	Encoding:		0000	0000 00	000 0100
	register.			Description:	:		struction rese	
	,	he Access Bai he BSR is use					e WDT. Statu	resets <u>the</u> post- s bits, TO and
	lf 'a' is '0' a	nd the extend	ed instruction	Words:		1		
		led, this instrue		Cycles:		1		
		Literal Offset A	0	Q Cycle Ac	ctivity:			
		never f ≤ 95 (5l . 2.3 "Byte-Or		C	ג1	Q2	Q3	Q4
	Bit-Oriente	ed Instruction set Mode" for	s in Indexed	Dec	ode	No operation	Process Data	No operation
Words:	1							
Cycles:	1			Example:		CLRWDT		
Q Cycle Activity:					Instruct		0	
Q1	Q2	Q3	Q4		/DT Cou		?	
Decode	Read	Process	Write		/DT Cou		00h	
	register 'f'	Data	register 'f'		/DT Post		0	
Example:	CLRF	FLAG_REG,	1	Ti P		=	1 1	
Before Instruct FLAG_R After Instruction	EG = 5A on							
FLAG_R	EG = 00	h						

SUBWFB	Subtract	W from f with Borrow	SW
Syntax:	SUBWFB	f {,d {,a}}	Syn
Operands:	$0 \le f \le 25$	5	Ope
	d ∈ [0,1] a ∈ [0,1]		
Operation:		$(\overline{C}) \rightarrow \text{dest}$	
Status Affected:	(I) = (W) = N, OV, C,		Ope
Encoding:	0101		ff Stat
Description:		V and the Carry flag (bor	
	from regis method).	ter 'f' (2's complement If 'd' is '0', the result is stored	bred Des
	in register		
		the Access Bank is select the BSR is used to select c.	
	set is enal in Indexed mode whe Section 2 Bit-Orien	and the extended instruction oper bled, this instruction oper d Literal Offset Addressin enever $f \le 95$ (5Fh). See 9.2.3 "Byte-Oriented ar ted Instructions in Inde fset Mode" for details.	ates g
Words:	1		
Cycles:	1		Wor
Q Cycle Activity:			Сус
Q1	Q2	Q3 Q4	Q (
Decode	Read	Process Write	
	register 'f'	Data destina	tion
Example 1:	SUBWFB	REG, 1, 0	
Before Instruc REG	= 19h	(0001 1001)	Exa
W C	= 0Dh = 1	(0000 1101)	<u></u>
After Instruction	-		
REG	= 0Ch	(0000 1011)	
W			
С	= 0Dh = 1	(0000 1101)	
Z	= 0Dh = 1 = 0	(0000 1101)	
Z N	= 0Dh = 1 = 0 = 0	(0000 1101); result is positive	
Z N <u>Example 2:</u>	= 0Dh = 1 = 0 = 0 SUBWFB	(0000 1101)	
Z N <u>Example 2:</u> Before Instruc REG	= 0Dh = 1 = 0 = 0 SUBWFB :tion = 1Bh	(0000 1101) ; result is positive REG, 0, 0 (0001 1011)	
Z N <u>Example 2:</u> Before Instruc REG W	= 0Dh = 1 = 0 = 0 SUBWFB ction = 1Bh = 1Ah	(0000 1101) ; result is positive REG, 0, 0	
Z N <u>Example 2:</u> Before Instruc REG	= 0Dh = 1 = 0 = 0 SUBWFB ction = 1Bh = 1Ah = 0	(0000 1101) ; result is positive REG, 0, 0 (0001 1011)	
Z N Example 2: Before Instruct REG W C After Instructio REG	= 0Dh = 1 = 0 SUBWFB tion = 1Bh = 1Ah = 0 on = 1Bh	(0000 1101) ; result is positive REG, 0, 0 (0001 1011)	
Z N Example 2: Before Instruct REG W C After Instructio REG W C	= 0Dh = 1 = 0 SUBWFB etion = 1Bh = 1Ah = 0	(0000 1101) ; result is positive REG, 0, 0 (0001 1011) (0001 1010)	
Z N Example 2: Before Instruct REG W C After Instructio REG W C Z	= 0Dh = 1 = 0 SUBWFB etion = 1Bh = 1Ah = 0 on = 1Bh = 00h = 1 = 1	(0000 1101) ; result is positive REG, 0, 0 (0001 1011) (0001 1010)	
Z N Before Instruct REG W C After Instructio REG W C Z N	= 0Dh = 1 = 0 SUBWFB stion = 1Bh = 1Ah = 0 on = 1Bh = 00h = 1 = 1 = 0	(0000 1101) ; result is positive REG, 0, 0 (0001 1011) (0001 1011) (0001 1011) ; result is zero	
Z N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3:	= 0Dh = 1 = 0 SUBWFB stion = 1Bh = 1Ah = 0 on = 1Bh = 0 OOh = 1 = 1 = 0 SUBWFB	(0000 1101) ; result is positive REG, 0, 0 (0001 1011) (0001 1011) (0001 1011) ; result is zero	
Z N Example 2: Before Instruct REG W C After Instructio REG V C Z N Example 3: Before Instruct REG	= 0Dh = 1 = 0 SUBWFB stion = 1Bh = 1Ah = 0 on = 1Bh = 0 OOh = 1 = 1 = 0 SUBWFB	(0000 1101) ; result is positive REG, 0, 0 (0001 1011) (0001 1011) (0001 1011) ; result is zero	
Z N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3: Before Instruc REG W	= 0Dh = 1 = 0 = 0 SUBWFB ction = 1Bh = 0 on = 1Bh = 0 Oh = 1 = 1 = 0 SUBWFB ction = 03h = 0Eh	(0000 1101) ; result is positive REG, 0, 0 (0001 1011) (0001 1011) ; result is zero REG, 1, 0	
Z N Example 2: Before Instruct W C After Instruction REG W C Z N Example 3: Before Instruct REG	= 0Dh = 1 = 0 SUBWFB ction = 1Bh = 1Ah = 0 con = 1Bh = 00h = 1 = 0 SUBWFB ction = 03h = 0Ch = 1	(0000 1101) ; result is positive REG, 0, 0 (0001 1011) (0001 1011) (0001 1011) ; result is zero REG, 1, 0 (0000 0011)	
Z N Example 2: Before Instruct REG W C After Instructio REG W Z N Example 3: Before Instruct REG W C	= 0Dh = 1 = 0 SUBWFB ction = 1Bh = 1Ah = 0 con = 1Bh = 00h = 1 = 0 SUBWFB ction = 03h = 0Ch = 1	(0000 1101) ; result is positive REG, 0, 0 (0001 1011) (0001 1011) (0001 1011) ; result is zero REG, 1, 0 (0000 0011) (0000 1101) (1111 0100)	
Z N Example 2: Before Instruct REG W C After Instruction REG W Example 3: Before Instruct REG W C After Instruction		(0000 1101) ; result is positive REG, 0, 0 (0001 1011) (0001 1011) ; result is zero REG, 1, 0 (0000 0011) (0000 1101) (1111 0100) ; [2's comp]	
Z N Example 2: Before Instruct REG W C After Instruction REG W Example 3: Before Instruct REG W C After Instruction REG	= 0Dh = 1 = 0 SUBWFB etion = 1Bh = 1Ah = 0 on = 1Bh = 0 SUBWFB etion = 0 SUBWFB etion = 0 SUBWFB = 1 = 0 SUBWFB = 1 = 1 = 0 SUBWFB = 1 = 1 = 1 = 0 SUBWFB = 1 = 1 = 1 = 0 = 1 = 1 = 0 = 1 = 1 = 1 = 0 = 0 = 1 = 1 = 1 = 0 = 1 = 1 = 1 = 0 = 1 = 1 = 1 = 0 = 1 = 1 = 1 = 0 = 0 = 1 = 1 = 0 = 0 = 1 = 0 = 0 = 1 = 0 = 1 = 0 = 0 = 0 = 1 = 0 = 0 = 1 = 1 = 0 = 1 = 1 = 1 = 0 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	(0000 1101) ; result is positive REG, 0, 0 (0001 1011) (0001 1011) (0001 1011) ; result is zero REG, 1, 0 (0000 0011) (0000 1101) (1111 0100)	

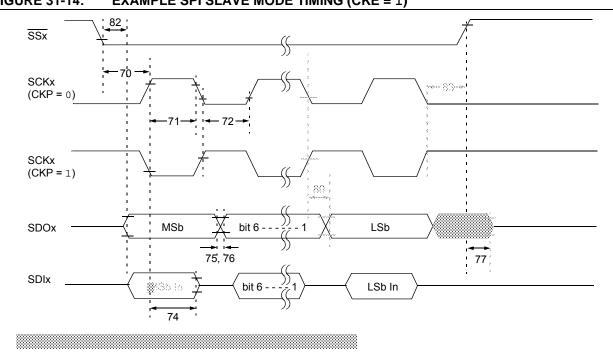
SWA	PF	Swap f				
Synta	ax:	SWAPF f	{,d {,a}}			
Opera	ands:	$0 \le f \le 255$ $d \in [0, 1]$ $a \in [0, 1]$				
Oper	ation:	(f<3:0>) → (f<7:4>) →				
Statu	s Affected:	None				
Enco	ding:	0011	10da	ffff	ffff	
Desc	ription:	'f' are exch is placed ir	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f'.			
		If 'a' is '0', f If 'a' is '1', f GPR bank.	he BSR i			
		If 'a' is '0' a set is enab in Indexed mode wher Section 29 Bit-Oriente Literal Offi	led, this i Literal O never f ≤ 0.2.3 "By ed Instru	nstruction ffset Add 95 (5Fh). te-Orient ctions in	n operates ressing See ted and Indexed	
Nord	s:	1				
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3	1	Q4	
	Decode	Read register 'f'	Proce Data		Write to estination	
	n <u>ple:</u> Before Instruc REG After Instructic REG	tion = 53h	REG, 1,	0		

30.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

30.1 MPLAB Integrated Development Environment Software


The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

FIGURE 31-14: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	, \overline{SSx} ↓ to SCKx ↓ or SCKx ↑ Input		3 Тсү		ns	
70A	TssL2WB	SSx to write to SSPxBUF		3 TCY		ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	—	ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2		1.5 Tcy + 40	—	ns	(Note 2)
74	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SC	≺x Edge	40		ns	
75	TDOR	SDOx Data Output Rise Time		_	25	ns	
76	TDOF	SDOx Data Output Fall Time		—	25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impedance		10	50	ns	
78	TscR	SCKx Output Rise Time (Master mo	de)		25	ns	
79	TscF	SCKx Output Fall Time (Master mod	le)		25	ns	
80	TscH2doV, TscL2doV			—	50	ns	
82	TssL2DoV	SDOx Data Output Valid after $\overline{\text{SSx}}$ \downarrow	Edge	_	50	ns	
83	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge		1.5 Tcy + 40		ns	

TABLE 31-17:	EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

S

	303
SDIx	
SDOx	
SEC_IDLE Mode	
SEC_RUN Mode	
Secondary Oscillator (SOSC)	
Selective Peripheral Module Control	
Serial Clock, SCKx	
Serial Data In (SDIx) Serial Data Out (SDOx)	
Serial Peripheral Interface. See SPI Mode.	303
SETF	185
Shoot-Through Current	
Slave Select (SSx)	
SLEEP	
Software Simulator (MPLAB SIM)	
Special Event Trigger. See Compare (CCP Module).	000
Special Event Trigger. See Compare (ECCP Mode).	
Specifications	
AC (Timing) Characteristics	
Temperature and Voltage	524
Capture/Compare/PWM Requirements	
(ECCP1, ECCP2)	532
CLKO and I/O Requirements	
Comparator	
EUSART/AUSART Synchronous Receive	
Requirements	541
EUSART/AUSART Synchronous Transmission	
Requirements	541
Example SPI Mode Requirements (Master Mode,	
CKE = 0)	533
Example SPI Mode Requirements (Master Mode,	
CKE = 1)	534
Example SPI Mode Requirements (Slave Mode,	
CKE = 0)	535
CKE = 0) Example SPI Slave Mode Requirements	
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1)	536
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements	536 525
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics	536 525 530
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode)	536 525 530
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements	536 525 530 538
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode)	536 525 530 538 537
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC)	536 525 530 538 537 526
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator	536 525 530 538 537 526 522
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements	536 525 530 538 537 526 522 521
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements	536 525 530 538 537 526 522 521 540
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements	536 525 530 538 537 526 522 521 540 539
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements MSSP I ² C Bus Start/Stop Bits Requirements	536 525 530 538 537 526 522 521 540 539
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock	536 525 530 538 537 526 522 521 540 539 526
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock Requirements	536 525 530 538 537 526 522 521 540 539 526 531
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements	536 525 530 538 537 526 522 521 540 539 526 531 541
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements	536 525 530 538 526 522 521 540 539 526 531 541 522
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements	536 525 530 538 526 522 521 540 539 526 531 541 541 522 339
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements	536 525 530 538 526 522 521 540 539 526 531 541 541 522 339
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements	536 525 530 538 537 526 522 521 540 539 526 531 541 522 339 339
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements	536 525 530 538 537 526 522 521 540 539 526 531 541 522 339 339 321
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements	536 525 530 538 537 526 522 521 540 539 526 531 541 522 339 339 339 321 303
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements	536 525 530 538 537 526 522 521 540 539 526 531 541 522 339 339 321 303 89
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements	536 525 530 538 537 526 522 521 540 539 526 531 541 522 339 339 321 303 89 497
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock Requirements Ultra Low-Power Wake-up Voltage Reference SSPOV SSPOV Status Flag SSPATT Register R/W Bit	536 525 530 538 537 526 522 521 540 539 526 531 541 522 339 339 321 303 89 497 486
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock Requirements Ultra Low-Power Wake-up Voltage Reference SSPOV Status Flag. SSPOV Status Flag. SSPXSTAT Register R/W Bit	536 525 530 538 537 526 522 521 540 539 526 531 541 522 339 339 321 303 89 497 486 487
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements	536 525 530 538 537 526 522 521 540 539 526 531 541 542 339 339 321 303 89 487 486 487 487
CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock Requirements Ultra Low-Power Wake-up Voltage Reference SSPOV SSPOV Status Flag. SSPXSTAT Register R/W Bit	536 525 530 538 537 526 522 521 540 539 526 531 541 542 339 339 321 303 89 497 486 487 487

Т

Table Pointer Operations (table)	114
Table Reads/Table Writes	89
TBLRD	
TBLWT	490
Timer0	183
Associated Registers	185
Operation	
Overflow Interrupt	
Prescaler	185
Switching Assignment	185
Prescaler Assignment (PSA Bit)	
Prescaler Select (T0PS2:T0PS0 Bits)	
Reads and Writes in 16-Bit Mode	
Source Edge Select (T0SE Bit)	184
Source Select (T0CS Bit)	184
Timer1	
16-Bit Read/Write Mode	
Associated Registers	197
Clock Source Selection	189
Gate	
Interrupt	
Operation	189
Oscillator	187
Resetting, Using the ECCP Special	
	102
Event Trigger	
SOSC Oscillator	191
Layout Considerations	192
Use as a Clock Source	192
TMR1H Register	
TMR1L Register	187
Timer2	199
Associated Registers	200
Interrupt	
•	
Operation	
Output	200
PR2 Register	248
TMR12 to PR12 Match Flag (TMR12IF Bit)	
TMR2 to PR2 Match Interrupt	240
Timer3/5/7	
16-Bit Read/Write Mode	206
Associated Registers	211
Gates	
Operation	
Overflow Interrupt 201, 2	210
SOSC Oscillator	201
Use as a Clock Source	206
Special Event Trigger (ECCP)	
TMRxH Register	
TMRxL Register	201
Timer4/6/8/10/12	213
Associated Registers	
Interrupt	
•	
Operation	
Output	
Outputs, PWM Time Base for ECCP	215
Postscaler. See Postscaler, Timer4/6/8/10/12.	
Prescaler. See Prescaler, Timer4/6/8/10/12.	
PRx Register	
-	
TMRx Register	
TMRx Register TMRx to PRx Match Interrupt	213

Timing Diagrams	
A/D Conversion	
Automatic Baud Rate Calculation	. 358
Auto-Wake-up Bit (WUE) During Normal	
Operation	
Auto-Wake-up Bit (WUE) During Sleep	
Baud Rate Generator with Clock Arbitration	
BRG Overflow Sequence	. 358
BRG Reset Due to SDAx Arbitration During	
Start Condition	
Brown-out Reset (BOR)	. 528
Bus Collision During a Repeated Start	
Condition (Case 1)	. 346
Bus Collision During a Repeated Start	
Condition (Case 2)	. 346
Bus Collision During a Start Condition	
(SCLx = 0)	. 345
Bus Collision During a Stop Condition	
(Case 1)	. 347
Bus Collision During a Stop Condition	
(Case 2)	. 347
Bus Collision During Start Condition	
(SDAx Only)	
Bus Collision for Transmit and Acknowledge	
Capture/Compare/PWM (ECCP1, ECCP2)	
CLKO and I/O	
Clock Synchronization	
Clock/Instruction Cycle	
EUSART Asynchronous Reception EUSART Asynchronous Transmission	
EUSART Asynchronous Transmission	. 300
(Back-to-Back)	260
EUSART Synchronous Master Transmission	
EUSART Synchronous Transmission	. 307
(Master/Slave)	541
EUSART/AUSART Synchronous Receive	
(Master/Slave)	541
Example SPI Master Mode (CKE = 0)	
Example SPI Master Mode (CKE = 1)	
Example SPI Slave Mode (CKE = 0)	
Example SPI Slave Mode (CKE = 1)	.536
External Clock	
Fail-Safe Clock Monitor (FSCM)	
First Start Bit Timing	
Full-Bridge PWM Output	
Half-Bridge PWM Output	
High/Low-Voltage Detect Characteristics	
High-Voltage Detect Operation (VDIRMAG = 1)	404
I ² C Acknowledge Sequence	. 342
I ² C Bus Data	. 538
I ² C Bus Start/Stop Bits	
I ² C Master Mode (7 or 10-Bit Transmission)	
I ² C Master Mode (7-Bit Reception)	. 341
I ² C Slave Mode (10-Bit Reception, SEN = 0,	
ADMSK = 01001)	
I_2^2 C Slave Mode (10-Bit Reception, SEN = 0)	
I_2^2 C Slave Mode (10-Bit Reception, SEN = 1)	
I ² C Slave Mode (10-Bit Transmission)	. 327
I^2C Slave Mode (7-Bit Reception, SEN = 0,	0.0
ADMSK = 01011)	
l^2C Slave Mode (7-Bit Reception, SEN = 0)	
$I^{2}C$ Slave Mode (7-Bit Reception, SEN = 1)	. 330
I ² C Slave Mode (7-Bit Transmission)	324
I ² C Slave Mode General Call Address Sequence	222
(7 or 10-Bit Addressing Mode)	. 332

I ² C Stop Condition Receive or Transmit Mode	342
LCD Interrupt Timing in Quarter Duty Cycle Drive	
LCD Reference Ladder Power Mode Switching	
LCD Sleep Entry/Exit When SLPEN = 1 or CS = 00	
Low-Voltage Detect Operation (VDIRMAG = 0)	
MSSP I ² C Bus Data	539
MSSP I ² C Bus Start/Stop Bits	539
PWM Auto-Shutdown with Auto-Restart Enabled,	
PxRSEN = 1	266
PWM Auto-Shutdown with Firmware Restart,	200
PxRSEN = 0	266
PWM Direction Change	
PWM Direction Change at Near 100%	200
Duty Cycle	264
PWM Output	
PWM Output (Active-High)	
PWM Output (Active-Low)	
Repeated Start Condition	
Reset, Watchdog Timer (WDT), Oscillator Start-up	550
Timer (OST) and Power-up Timer (PWRT)	528
Send Break Character Sequence	
Slave Synchronization	
Slow Rise Time (MCLR Tied to VDD,	209
VDD Rise > TPWRT)	70
SPI Mode (Master Mode)	
SPI Mode (Slave Mode, CKE = 0) SPI Mode (Slave Mode, CKE = 1)	
	310
Steering Event at Beginning of Instruction	070
(STRSYNC = 1)	270
Steering Event at End of Instruction	070
(STRSYNC = 0)	270
Synchronous Master Transmission	
(Through TXEN)	
Synchronous Reception (Master Mode, SREN)	
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not	369
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1	369
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not	369 73
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2	369 73
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up	369 73 73
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT)	369 73 73 72
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation	369 73 73 72 234
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock	369 73 73 72 234 531
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time- <u>out Sequence</u> on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock Timer1 Gate Count Enable Mode	369 73 73 72 234 531 193
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode	369 73 73 72 234 531 193
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle	369 73 73 72 234 531 193 196
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode	369 73 73 72 234 531 193 196 197
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer1 Gate Toggle Mode	369 73 73 72 234 531 193 196 197 195
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Count Enable Mode	369 73 73 72 234 531 193 196 197 195 206
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Toggle Mode Timer1 Gate Toggle Mode Timer3/5/7 Gate Count Enable Mode Timer3/5/7 Gate Single Pulse Mode	369 73 73 72 234 531 193 196 197 195 206
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Toggle Mode Timer1 Gate Toggle Mode Timer3/5/7 Gate Count Enable Mode Timer3/5/7 Gate Single Pulse Mode Timer3/5/7 Gate Single Pulse/Toggle	369 73 73 72 234 531 193 196 197 195 206 208
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Count Enable Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode	369 73 73 72 234 531 193 196 197 195 206 208 209
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Count Enable Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Toggle Mode	369 73 73 72 234 531 193 196 197 195 206 208 209 207
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Count Enable Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Toggle Mode	369 73 73 72 234 531 193 196 197 195 206 208 209 207 59
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Count Enable Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Toggle Mode Time	369 73 73 73 72 234 531 193 196 197 195 206 208 209 207 59 55
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Count Enable Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Toggle Mode Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode	369 73 73 73 72 234 531 193 196 197 195 206 208 209 207 59 55
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time- <u>out Sequence on Power-up</u> (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Toggle Mode Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Two-Speed Start-up	369 73 73 72 234 531 193 196 206 208 209 207 59 55 58
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Toggle Mode Transition for Entry to SEC_RUN Mode Transition for Two-Speed Start-up (INTOSC to HSPLL)	369 73 73 72 234 531 193 196 197 195 206 208 209 207 59 55 58 444
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time- <u>out Sequence on Power-up</u> (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Toggle Mode Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake from Idle to Run Mode	369 73 72 234 531 193 196 197 195 206 208 209 207 59 55 58 444 59
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation Timer0 and Timer1 External Clock Timer1 Gate Count Enable Mode Timer1 Gate Single Pulse Mode Timer1 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Toggle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Wake from Idle to Run Mode Transition for Wake from Sleep (HSPLL)	369 73 72 234 531 193 196 197 195 206 208 209 207 59 55 58 444 59
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1	369 73 72 234 531 193 196 197 195 206 208 209 207 59 55 58 444 59 58
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation. Timer0 and Timer1 External Clock. Timer1 Gate Count Enable Mode. Timer1 Gate Single Pulse Mode. Timer1 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse Mode. Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode. Transition for Wake from Idle to Run Mode Transition for Wake from Sleep (HSPLL). Transition from RC_RUN Mode to PRI_RUN Mode	369 73 72 234 531 193 196 197 195 206 208 209 207 59 55 58 444 59 58
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1	369 73 72 234 531 193 196 197 195 206 208 209 207 59 55 58 57
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer Pulse Generation. Timer0 and Timer1 External Clock. Timer1 Gate Count Enable Mode. Timer1 Gate Single Pulse Mode. Timer1 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Single Pulse/Toggle Combined Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Toggle Mode Timer3/5/7 Gate Toggle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Wake from Idle to Run Mode Transition for Wake from Sleep (HSPLL) Transition from RC_RUN Mode to PRI_RUN Mode TRANSION FOR SEC_RUN Mode to PRI_RUN Mode (HSPLL)	369 73 72 234 531 193 196 197 195 206 208 209 207 59 58 444 59 58 57 55
Synchronous Reception (Master Mode, SREN) Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1	369 73 72 234 531 193 196 197 195 206 208 209 207 59 55 58 57