

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f87k90t-i-ptrsl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Special Microcontroller Features:

- Operating Voltage Range: 1.8V to 5.5V
- On-Chip 3.3V Regulator
- Operating Speed up to 64 MHz
- Up to 128 Kbytes On-Chip Flash Program Memory
- Data EEPROM of 1,024 Bytes
- 4K x 8 General Purpose Registers (SRAM)
- 10,000 Erase/Write Cycle Flash Program Memory, Minimum
- 1,000,000 Erase/write Cycle Data EEPROM Memory, Typical
- Flash Retention 40 Years, Minimum
- Three Internal Oscillators: LF-INTRC (31 kHz), MF-INTOSC (500 kHz) and HF-INTOSC (16 MHz)
- Self-Programmable under Software Control

- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
- Programmable period from 4 ms to 4,194s (about 70 minutes)
- In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
- · In-Circuit Debug via Two Pins
- Programmable:
 - BOR
 - LVD
- Two Enhanced Addressable USART modules:
 - LIN/J2602 support
 - Auto-Baud Detect (ABD)
- 12-Bit A/D Converter with up to 24 Channels:
 - Auto-acquisition and Sleep operation
 - Differential Input mode of operation

3.8 Effects of Power-Managed Modes on the Various Clock Sources

When PRI IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power-managed modes, the oscillator using the OSC1 pin is disabled. The OSC1 pin (and OSC2 pin if used by the oscillator) will stop oscillating.

In secondary clock modes (SEC RUN and SEC IDLE), the SOSC oscillator is operating and providing the device clock. The SOSC oscillator may also run in all power-managed modes if required to clock SOSC.

In RC RUN and RC IDLE modes, the internal oscillator provides the device clock source. The 31 kHz LF-INTOSC output can be used directly to provide the clock and may be enabled to support various special features, regardless of the power-managed mode (see Section 28.2 "Watchdog Timer (WDT)" through Section 28.5 "Fail-Safe Clock Monitor" for more information on WDT, Fail-Safe Clock Monitor and Two-Speed Start-up).

If the Sleep mode is selected, all clock sources are stopped. Since all the transistor switching currents have been stopped. Sleep mode achieves the lowest current consumption of the device (only leakage currents).

Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The INTOSC is required to support WDT operation. The SOSC oscillator may be operating to support a

Real-Time Clock (RTC). Other features may be operating that do not require a device clock source (i.e., MSSP slave, INTx pins and others). Peripherals that may add significant current consumption are listed in Section 31.2 "DC Characteristics: Power-Down and Supply Current PIC18F87K90 Family (Industrial/ Extended)".

3.9 **Power-up Delays**

Power-up delays are controlled by two timers, so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see Section 5.6 "Power-up Timer (PWRT)".

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on a power-up time of about 64 ms (Parameter 33, Table 31-10); it is always enabled.

The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (HS, XT or LP modes). The OST does this by counting 1,024 oscillator cycles before allowing the oscillator to clock the device.

There is a delay of interval, TCSD (Parameter 38, Table 31-10), following POR, while the controller becomes ready to execute instructions.

I/O pin, RA6, direction is controlled by

TRISA<7>

Oscillator Mode OSC1 Pin OSC2 Pin EC, ECPLL Floating, pulled by external clock At logic low (clock/4 output) HS. HSPLL Feedback inverter is disabled at quiescent Feedback inverter is disabled at guiescent voltage level voltage level

I/O pin, RA6, direction is controlled by

TABLE 3-4: **OSC1 AND OSC2 PIN STATES IN SLEEP MODE**

TRISA<6>

Note: See Section 5.0 "Reset" for time-outs due to Sleep and MCLR Reset.

INTOSC, INTPLL1/2

4.4.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block using the INTOSC multiplexer. This mode provides controllable power conservation during Idle periods.

From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then set the SCS1 bit and execute SLEEP. To maintain software compatibility with future devices, it is recommended that SCS0 also be cleared, though its value is ignored. The INTOSC multiplexer may be used to select a higher clock frequency by modifying the IRCF bits before executing the SLEEP instruction. When the clock source is switched to the INTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared.

If the IRCF bits are set to any non-zero value, or the INTSRC/MFIOSEL bit is set, the INTOSC output is enabled. The HFIOFS/MFIOFS bits become set, after the INTOSC output becomes stable after an interval of TIOBST (Parameter 38, Table 31-10). (For information on the HFIOFS/MFIOFS bits, see Table 4-3.)

Clocks to the peripherals continue while the INTOSC source stabilizes. The HFIOFS/MFIOFS bits will remain set if the IRCF bits were previously at a non-zero value or if INTSRC was set before the SLEEP instruction was executed and the INTOSC source was already stable. If the IRCF bits and INTSRC are all clear, the INTOSC output will not be enabled, the HFIOFS/MFIOFS bits will remain clear and there will be no indication of the current clock source.

When a wake event occurs, the peripherals continue to be clocked from the INTOSC multiplexer. After a delay of TCSD (Parameter 38, Table 31-10), following the wake event, the CPU begins executing code clocked by the INTOSC multiplexer. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

4.5 Selective Peripheral Module Control

Idle mode allows users to substantially reduce power consumption by stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what this mode does not provide: the allocation of power resources to the CPU, processing with minimal power consumption from the peripherals.

PIC18F87K90 family devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- Peripheral Enable bit, generically named XXXEN Located in the respective module's main control register
- Peripheral Module Disable (PMD) bit, generically named XXXMD – Located in one of the PMDx Control registers (PMD0, PMD1, PMD2 or PMD3)

Disabling a module by clearing its XXXEN bit disables the module's functionality, but leaves its registers available to be read and written to. This reduces power consumption, but not by as much as the second approach.

Most peripheral modules have an enable bit.

In contrast, setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral are also disabled, so writes to those registers have no effect and read values are invalid. Many peripheral modules have a corresponding PMD bit.

There are four PMD registers in the PIC18F87K90 family devices: PMD0, PMD1, PMD2 and PMD3. These registers have bits associated with each module for disabling or enabling a particular peripheral.

5.2 Master Clear (MCLR)

The MCLR pin provides a method for triggering a hard external Reset of the device. A Reset is generated by holding the pin low. PIC18 extended microcontroller devices have a noise filter in the MCLR Reset path which detects and ignores small pulses.

The $\overline{\text{MCLR}}$ pin is not driven low by any internal Resets, including the WDT.

5.3 Power-on Reset (POR)

A Power-on Reset condition is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.

To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (Parameter D004). For a slow rise time, see Figure 5-2.

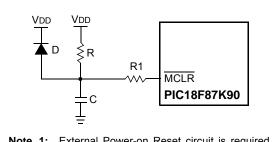
When the device starts normal operation (exiting the Reset condition), device operating parameters (such as voltage, frequency and temperature) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

Power-on Reset events are captured by the \overrightarrow{POR} bit (RCON<1>). The state of the bit is set to '0' whenever a Power-on Reset occurs and does not change for any other Reset event. \overrightarrow{POR} is not reset to '1' by any hardware event. To capture multiple events, the user manually resets the bit to '1' in software following any Power-on Reset.

5.4 Brown-out Reset (BOR)

The PIC18F87K90 family has four BOR modes:

- High-Power BOR
- Medium Power BOR
- Low-Power BOR
- Zero-Power BOR

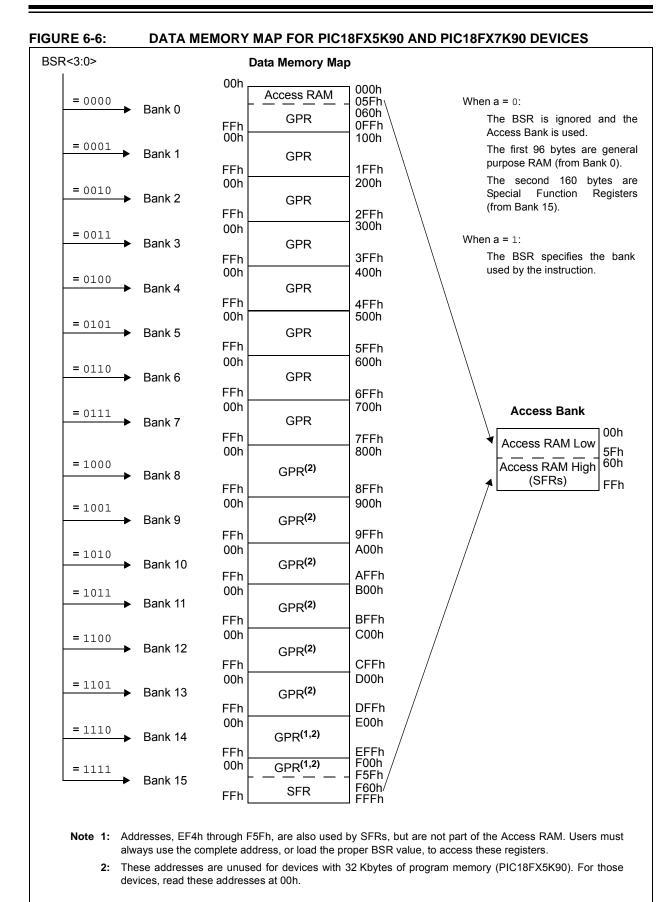

Each power mode is selected by the BORPWR<1:0> bits setting (CONFIG2L<6:5>). For low, medium and high-power BOR, the module monitors the VDD depending on the BORV<1:0> setting (CONFIG1L<3:2>). A BOR event re-arms the Power-on Reset. It also causes a Reset depending on which of the trip levels has been set: 1.8V, 2V, 2.7V or 3V. The typical (Δ IBOR) trip level for the Low and Medium Power BOR will be 0.75 µA and 3 µA.

In Zero-Power BOR (ZPBORMV), the module monitors the VDD voltage and re-arms the POR at about 2V. ZPBORMV does not cause a Reset, but re-arms the POR.

The BOR accuracy varies with its power level. The lower the power setting, the less accurate the BOR trip levels are. So, the high-power BOR has the highest accuracy and the low-power BOR has the lowest accuracy. The trip levels (BVDD, Parameter D005), current consumption (Section 31.2 "DC Characteristics: Power-Down and Supply Current PIC18F87K90 Family (Industrial/Extended)") and time required below BVDD (TBOR, Parameter 35) can all be found in Section 31.0 "Electrical Characteristics"

FIGURE 5-2:

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)



- Note 1: External Power-on Reset circuit is required only if the VDD power-up slope is too slow. The diode, D, helps discharge the capacitor quickly when VDD powers down.
 - 2: $R < 40 \text{ k}\Omega$ is recommended to make sure that the voltage drop across R does not violate the device's electrical specification.
 - 3: $R1 \ge 1 \ k\Omega$ will limit any current flowing into \overline{MCLR} from external capacitor, C, in the event of \overline{MCLR}/VPP pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

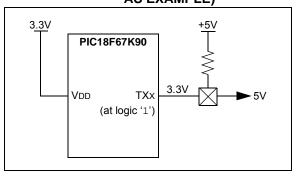
5.4.1 DETECTING BOR

The BOR bit always resets to '0' on any Brown-out Reset or Power-on Reset event. This makes it difficult to determine if a Brown-out Reset event has occurred just by reading the state of BOR alone. A more reliable method is to simultaneously check the state of both POR and BOR. This assumes that the POR bit is reset to '1' in software immediately after any Power-on Reset event. If BOR is '0' while POR is '1', it can be reliably assumed that a Brown-out Reset event has occurred.

LP-BOR cannot be detected with the $\overline{\text{BOR}}$ bit in the RCON register. LP-BOR can rearm the $\overline{\text{POR}}$ and can cause a Power-on Reset.

REGISTER 10-21: IPR6: PERIPHERAL INTERRUPT PRIORITY REGISTER 6

U-0	U-0	U-0	R/W-1	U-0	R/W-1	R/W-1	R/W-1		
—	_		EEIP		CMP3IP	CMP2IP	CMP1IP		
bit 7				•			bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 7-5	Unimplemen	ted: Read as '	כ'						
bit 4	EEIP: EE Inte	errupt Priority bi	it						
	1 = High priority								
	0 = Low priority								
bit 3	SBOREN: Re	ad as '0'							
bit 2	CMP3IP: CMP3 Interrupt Priority bit								
	1 = High priority								
	0 = Low priority								
bit 1	CMP2IP: CMP2 Interrupt Priority bit								
	1 = High priority								
	0 = Low priority								
bit 0	CMP1IP: CM	P1 Interrupt Pri	ority bit						
	1 = High prio	rity							
	0 = Low prior	•							


11.1.3 OPEN-DRAIN OUTPUTS

The output pins for several peripherals are also equipped with a configurable, open-drain output option. This allows the peripherals to communicate with external digital logic, operating at a higher voltage level, without the use of level translators.

The open-drain option is implemented on port pins specifically associated with the data and clock outputs of the USARTs, the MSSP module (in SPI mode) and the CCP modules. This option is selectively enabled by setting the open-drain control bits in the registers: ODCON1, ODCON2 and ODCON3.

When the open-drain option is required, the output pin must also be tied through an external pull-up resistor provided by the user to a higher voltage level, up to 5V (Figure 11-2). When a digital logic high signal is output, it is pulled up to the higher voltage level.

FIGURE 11-2: USING THE OPEN-DRAIN OUTPUT (USART SHOWN AS EXAMPLE)

REGISTER 11-1: ODCON1: PERIPHERAL OPEN-DRAIN CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
SSP10D	CCP2OD	CCP10D	_	—	—	—	SSP2OD
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	SSP10D: SPI1 Open-Drain Output Enable bit
	1 = Open-drain capability is enabled
	0 = Open-drain capability is disabled
bit 6	CCP2OD: ECCP2 Open-Drain Output Enable bit
	1 = Open-drain capability is enabled
	0 = Open-drain capability is disabled
bit 5	CCP10D: ECCP1 Open-Drain Output Enable bit
	1 = Open-drain capability is enabled
	0 = Open-drain capability is disabled
bit 4-1	Unimplemented: Read as '0'
bit 0	SSP2OD: SPI2 Open-Drain Output Enable bit
	1 = Open-drain capability is enabled
	Open drain conchility is dischlod

0 = Open-drain capability is disabled

11.7 PORTF, LATF and TRISF Registers

PORTF is a 7-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISF and LATF. All pins on PORTF are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTF is multiplexed with analog peripheral functions, as well as LCD segments. Pins, RF1 through RF6, may be used as comparator inputs or outputs by setting the appropriate bits in the CMCON register. To use RF<7:1> as digital inputs, it is also necessary to turn off the comparators.

- **Note 1:** On device Resets, pins, RF<7:1>, are configured as analog inputs and are read as '0'.
 - To configure PORTF as a digital I/O, turn off the comparators and clear ANCON1 and ANCON2 to digital.

PORTF is also multiplexed with LCD segment drives controlled by bits in the LCDSE2 and LCDSE3 registers. I/O port functions are only available when the segments are disabled.

EXAMPLE 11-6: INITIALIZING PORTF

CLRF	PORTF	<pre>; Initialize PORTF by ; clearing output ; data latches</pre>
CLRF	LATF	; Alternate method
		; to clear output
		; data latches
BANKSEL	ANCON1	
MOVLW	01Fh	; Make AN6, AN7 and AN5 digital
MOVWF	ANCON1	;
MOVLW	0F0h	; Make AN8, AN9, AN10 and AN11
		digital
MOVWF	ANCON2	; Set PORTF as digital I/O
MOVLW	0CEh	; Value used to
		; initialize data
		; direction
MOVWF	TRISF	; Set RF3:RF1 as inputs
		; RF5:RF4 as outputs
		; RF7:RF6 as inputs

20.1 LCD Registers

The LCD driver module has 32 registers:

- LCD Control Register (LCDCON)
- LCD Phase Register (LCDPS)
- LCD Reference Ladder Register (LCDRL)
- LCD Reference Voltage Control Register (LCDREF)
- Six LCD Segment Enable Registers (LCDSE5:LCDSE0)
- 24 LCD Data Registers (LCDDATA23:LCDDATA0)

The LCDCON register, shown in Register 20-1, controls the overall operation of the module. Once the module is configured, the LCDEN (LCDCON<7>) bit is used to enable or disable the LCD module. The LCD panel can also operate during Sleep by clearing the SLPEN (LCDCON<6>) bit.

The LCDPS register, shown in Register 20-2, configures the LCD clock source prescaler and the type of waveform, Type-A or Type-B. For details on these features, see Section 20.2 "LCD Clock Source Selection", Section 20.3 "LCD Bias Types" and Section 20.8 "LCD Waveform Generation".

R/W-0	R/W-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
LCDEN	SLPEN	WERR	—	CS1	CS0	LMUX1	LMUX0
bit 7							bit 0

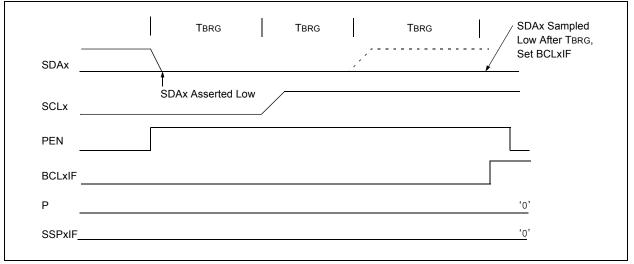
REGISTER 20-1: LCDCON: LCD CONTROL REGISTER

Legend:	C = Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

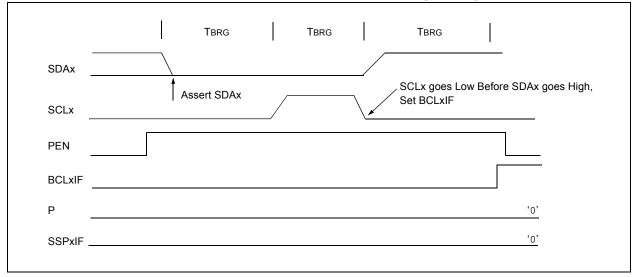
bit 7	LCDEN: LCD Driver Enable bit 1 = LCD driver module is enabled 0 = LCD driver module is disabled
bit 6	SLPEN: LCD Driver Enable in Sleep mode bit 1 = LCD driver module is disabled in Sleep mode 0 = LCD driver module is enabled in Sleep mode
bit 5	WERR: LCD Write Failed Error bit 1 = LCDDATAx register is written while WA (LCDPS<4>) = 0 (must be cleared in software) 0 = No LCD write error
bit 4	Unimplemented: Read as '0'
bit 3-2	CS<1:0>: Clock Source Select bits 00 = (Fosc/4)/8192 01 = SOSC oscillator/32 1x = INTRC (31.25 kHz)/32
bit 1-0	LMUX<1:0>: Commons Select bits

LMUX<1:0>	Multiplex Number of Pixels Nu (PIC18F6X90)		Maximum Number of Pixels (PIC18F8X90)	Bias	
00	Static (COM0)	33	48	Static	
01	1/2 (COM<1:0>)	66	96	1/2 or 1/3	
10	10 1/3 (COM<2:0>)		144	1/2 or 1/3	
11	1/4 (COM<3:0>)	132	192	1/3	

NOTES:


21.4.17.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDAx pin has been deasserted and allowed to float high, SDAx is sampled low after the BRG has timed out.
- b) After the SCLx pin is deasserted, SCLx is sampled low before SDAx goes high.

The Stop condition begins with SDAx asserted low. When SDAx is sampled low, the SCLx pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD<6:0> and counts down to 0. After the BRG times out, SDAx is sampled. If SDAx is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 21-33). If the SCLx pin is sampled low before SDAx is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 21-34).

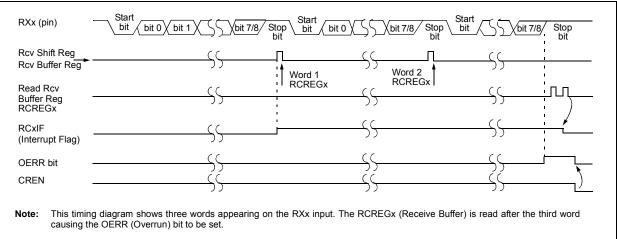

FIGURE 21-33: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 21-34: BUS COLLISION DURING A STOP CONDITION (CASE 2)

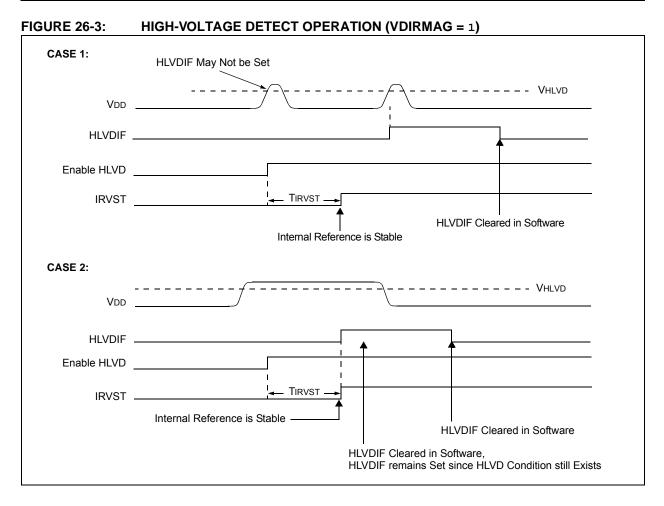
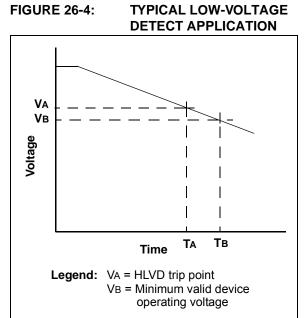

FIGURE 22-7: ASYNCHRONOUS RECEPTION

TABLE 22-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	75
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	TMR1GIF	TMR2IF	TMR1IF	77
PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	TMR1GIE	TMR2IE	TMR1IE	77
IPR1	—	ADIP	RC1IP	TX1IP	SSP1IP	TMR1GIP	TMR2IP	TMR1IP	77
PIR3	TMR5GIF	LCDIF	RC2IF	TX2IF	CTMUIF	CCP2IF	CCP1IF	RTCCIF	77
PIE3	TMR5GIE	LCDIE	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE	77
IPR3	TMR5GIP	LCDIP	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP	77
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	77
RCREG1	EUSART1	Receive Reg	ister						77
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	77
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	79
SPBRGH1	EUSART1	Baud Rate G	enerator Re	egister High	n Byte				76
SPBRG1	EUSART1	Baud Rate G	enerator Re	egister Low	Byte				77
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	81
RCREG2	EUSART2	Receive Reg	ister						82
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	81
BAUDCON2	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	81
SPBRGH2	EUSART2	Baud Rate G	enerator Re	egister High	Byte				82
SPBRG2	EUSART2	Baud Rate G	enerator Re	egister Low	Byte				82


Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

26.5 Applications

In many applications, it is desirable to detect a drop below, or rise above, a particular voltage threshold. For example, the HLVD module could be periodically enabled to detect Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a High-Voltage Detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 26-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage, VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an ISR (Interrupt Service Routine), which would allow the application to perform "housekeeping tasks" and a controlled shutdown before the device voltage exits the valid operating range at TB. This would give the application a time window, represented by the difference between TA and TB, to safely exit.

REGISTER 28-1: CONFIG1L: CONFIGURATION REGISTER 1 LOW (BYTE ADDRESS 300000h)

U-0	R/P-1	U-0	R/P-1	R/P-1	R/P-1	U-0	R/P-1
_	XINST	—	SOSCSEL1	SOSCSEL0	INTOSCSEL0	_	RETEN
bit 7							bit 0

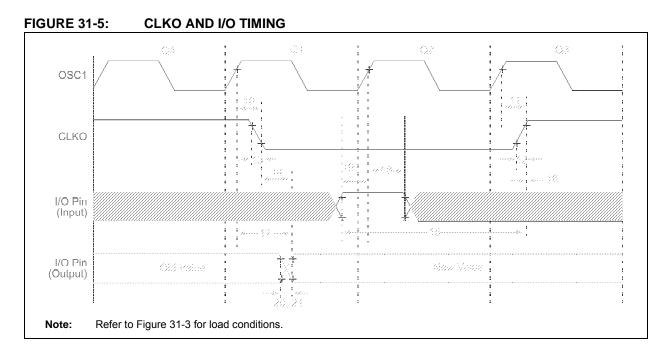
Legend:	P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	XINST: Extended Instruction Set Enable bit
	 1 = Instruction set extension and Indexed Addressing mode are enabled 0 = Instruction set extension and Indexed Addressing mode are disabled (Legacy mode)
bit 5	Unimplemented: Read as '0'
bit 4-3	SOSCSEL<1:0>: SOSC Power Selection and Mode Configuration bits
	 11 = High-power SOSC circuit is selected 10 = Digital (SCLKI) mode: I/O port functionality of RC0 and RC1 is enabled 01 = Low-power SOSC circuit is selected 00 = Reserved
bit 2	INTOSCSEL: LF-INTOSC Low-Power Enable bit
	1 = LF-INTOSC is in High-Power mode during Sleep 0 = LF-INTOSC is in Low-Power mode during Sleep
bit 1	Unimplemented: Read as '0'
bit 0	RETEN: VREG Sleep Enable bit
	 1 = Ultra low-power regulator is disabled. Regulator power in Sleep mode is controlled by VREGSLP (WDTCON<7>)
	0 - Illtra low power regulator is enabled. Regulator power in Sleep mode is controlled by SPETEN

 0 = Ultra low-power regulator is enabled. Regulator power in Sleep mode is controlled by SRETEN (WDTCON<4>).

R/P-0	R/P-0	U-0	U-0	R/P-1	R/P-0	R/P-0	R/P-0
IESO	FCMEN	—	PLLCFG ⁽¹⁾	FOSC3 ⁽²⁾	FOSC2 ⁽²⁾	FOSC1 ⁽²⁾	FOSC0 ⁽²⁾
bit 7							bit (
Legend:		P = Program	mable bit				
R = Reada	ble bit	W = Writable		U = Unimpler	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is cle	= Bit is cleared x = Bit is unknown		
bit 7	IESO: Interna	al/External Osc	cillator Switchov	ver bit			
		ed Start-up is e ed Start-up is c					
bit 6	1 = Fail-Safe	-Safe Clock M Clock Monitor Clock Monitor		it			
bit 5	Unimplemen	ted: Read as	ʻ0'				
bit 4	PLLCFG: 4x	PLL Enable bi	t(1)				
		is multiplied b	•				
bit 3-0	FOSC<3:0>:	Oscillator Sele	ection bits ⁽²⁾				
	1100 = EC1 1011 = EC2 1010 = EC2 0101 = EC3 0100 = EC3 0011 = HS1 0010 = HS2 0001 = XT o 0000 = LP o 0111 = RC, 0110 = RCI0 1000 = INTIO	IO, EC oscillat , EC oscillator IO, EC oscillator IO, EC oscillator IO, EC oscillator , HS oscillator , HS oscillator scillator scillator External RC o O, External RC O2, Internal RC	(medium powe or with CLKOU (high power, 4 or with CLKOU (medium powe (high power, 10 scillator	T function on r, 160 kHz-16 T function on MHz-64 MHz) T function on r, 4 MHz-16 M 6 MHz-25 MHz CKLOUT func	MHz) RA6 (medium p RA6 (high powe IHz) z) stion on RA6	r, DC-160 kHz) bower,160 kHz- er, 4 MHz-64 M	16MHz)
	Not valid for the IN						
2:	INTIO+PLL can or	niv be enabled	by the PLLEN	bit (OSCTUNE	=<6>). Other Pl	L modes can b	e enabled b

REGISTER 28-2: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)


2: INTIO+PLL can only be enabled by the PLLEN bit (OSCTUNE<6>). Other PLL modes can be enabled by either the PLLEN bit or the PLLCFG (CONFIG1H<4>) bit.

Byte-oriented file register operations	Example Instruction
<u>15 10 9 8 7 0</u>	
OPCODE d a f (FILE #)	ADDWF MYREG, W, B
 d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Byte to Byte move operations (2-word)	
<u>15 12 11 0</u>	
OPCODE f (Source FILE #)	MOVFF MYREG1, MYREG2
15 12 11 0	
1111 f (Destination FILE #)	
f = 12-bit file register address	
Bit-oriented file register operations	
15 12 11 9 8 7 0	
OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit, B
 b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Literal operations	
15 8 7 0	
OPCODE k (literal)	MOVLW 7Fh
k = 8-bit immediate value	
Control operations	
CALL, GOTO and Branch operations 15 8 7 0	
OPCODE n<7:0> (literal)	GOTO Label
15 12 11 0	
1111 n<19:8> (literal)	
n = 20-bit immediate value	
15 8 7 0	
OPCODE S n<7:0> (literal)	CALL MYFUNC
15 12 11 0	
1111 n<19:8> (literal)	
S = Fast bit	
15 11 10 0	
OPCODE n<10:0> (literal)	BRA MYFUNC
15 8 7 0	
OPCODE n<7:0> (literal)	BC MYFUNC

RET	URN	Return from	m Subro	utine		
Synta	ax:	RETURN	{s}			
Oper	ands:	$s \in [0,1]$				
Oper	ation:	if s = 1, (WS) \rightarrow W, (STATUSS) (BSRS) \rightarrow	$(TOS) \rightarrow PC;$ if s = 1, $(WS) \rightarrow W,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged			
Statu	s Affected:	None				
Enco	ding:	0000	0000	0001	001s	
Description:		popped and is loaded in 's'= 1, the c registers W loaded into registers W	Return from subroutine. The stack is popped and the top of the stack (TOS) is loaded into the Program Counter. If 's'= 1, the contents of the shadow registers WS, STATUSS and BSRS are loaded into their corresponding registers W, STATUS and BSR. If 's' = 0, no update of these registers occurs			
Word	ls:	1				
Cycle	es:	2				
QC	ycle Activity:					
	Q1	Q2	Q3	3	Q4	
	Decode	No operation	Proce Data		POP PC from stack	
	No operation	No operation	No operat		No operation	
<u>Exan</u>	nple:	RETURN				

After Instruction: PC = TOS

RLCF	Rotate Left	fthroug	gh Carry	
Syntax:	RLCF f {	{,d {,a}}		
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$			
Operation:	$(f < n >) \rightarrow de$ $(f < 7 >) \rightarrow C$ $(C) \rightarrow dest$,	>,	
Status Affected:	C, N, Z			
Encoding:	0011	01da	ffff	ffff
Description:	The conten one bit to th If 'd' is '0', t is '1', the re 'f'.	ne left thre he result	ough the is placed	Carry flag. in W. If 'd'
	If 'a' is '0', t If 'a' is '1', t GPR bank.			
	If 'a' is '0' a set is enabl in Indexed I mode when Section 29 Bit-Oriente Literal Offs	ed, this in Literal Of never f ≤ 9 .2.3 "Byt ed Instru	nstruction fset Addre 95 (5Fh). a e-Oriente ctions in	operates essing See ed and Indexed
	C] ∢ r	egister f	
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q	3	Q4
Q1 Decode	Q2 Read register 'f'	Q: Proce Dat	ess	Q4 Write to estination
	Read	Proce Dat	ess	Write to
Decode	Read register 'f'	Proce Dat	ess de	Write to
Decode	Read register 'f'	Proce Dat	ess de	Write to
Decode Example: Before Instruct REG C After Instructio	Read register 'f' RLCF ction = 1110 = 0	Proce Dat	ess de	Write to
Decode Example: Before Instruct REG C After Instructio REG	Read register 'f' RLCF ction = 1110 = 0 on = 1110	Proce Dat REC 0110	ess de	Write to
Decode Example: Before Instruct REG C After Instructio	Read register 'f' RLCF ction = 1110 = 0 on	Proce Dat REC 0110	ess de	Write to
Decode Example: Before Instruc REG C After Instructio REG W	Read register 'f' RLCF ction = 1110 = 0 on = 1110 = 1110 = 1110	Proce Dat REC 0110	ess de	Write to
Decode Example: Before Instruc REG C After Instructio REG W	Read register 'f' RLCF ction = 1110 = 0 on = 1110 = 1110 = 1110	Proce Dat REC 0110	ess de	Write to

TABLE 31-9: CLKO AND I/O TIMING REQUIREMENTS
--

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
10	TosH2ckL	OSC1 ↑ to CLKO ↓	—	75	200	ns	(Note 1)
11	TosH2ckH	OSC1 ↑ to CLKO ↑	—	75	200	ns	(Note 1)
12	TCKR	CLKO Rise Time	—	15	30	ns	(Note 1)
13	ТскF	CLKO Fall Time	—	15	30	ns	(Note 1)
14	TckL2IoV	CLKO \downarrow to Port Out Valid			0.5 Tcy + 20	ns	
15	TioV2скH	Port In Valid before CLKO ↑	0.25 Tcy + 25			ns	
16	TckH2iol	Port In Hold after CLKO ↑	0			ns	
17	TosH2IoV	OSC1 ↑ (Q1 cycle) to Port Out Valid		50	150	ns	
18	TosH2ıol	OSC1 ↑ (Q2 cycle) to Port Input Invalid (I/O in hold time)	100	—		ns	
19	TioV2osH	Port Input Valid to OSC1 ↑ (I/O in setup time)	0	—		ns	
20	TIOR	Port Output Rise Time	—	10	25	ns	
21	TIOF	Port Output Fall Time		10	25	ns	
22†	Tinp	INTx pin High or Low Time	20		—	ns	
23†	Trbp	RB<7:4> Change INTx High or Low Time	Тсү		—	ns	

† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in EC mode, where CLKO output is 4 x Tosc.

32.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-149B Sheet 1 of 2

Core Features	
Easy Migration	9
Extended Instruction Set	9
Memory Options	9
nanoWatt Technology	9
Oscillator Options and Features	9
CPFSEQ	
CPFSGT	
CPFSLT	
Crystal Oscillator/Ceramic Resonators (HS)	
Customer Change Notification Service	566
Customer Notification Service	566
Customer Support	

D

Data Addressing Modes	104
Comparing Addressing Modes (Bit-Oriented,	
Byte Oriented) with the Extended	
Instruction Set Enabled	
Direct	104
Indexed Literal Offset	
BSR	
Mapping Access Bank	
Indirect	
Inherent and Literal	104
Data EEPROM Memory	
Associated Registers	
EEADR and EEADRH Registers	
EECON1 and EECON2 Registers	
Operation During Code-Protect	
Overview	
Protection, Spurious Writes	124
Reading	
Usage	
Write Verify	
Writing To	
Data Memory	
Access Bank Bank Select Register (BSR)	
Extended Instruction Set	
General Purpose Registers	
Memory Maps	
PIC18FX5K90/X7K90 Devices	03
Special Function Registers	
Special Function Registers	
Data Memory Modes	
Indexed Literal Offset	107
Affected Instructions	
DAW	
DC Characteristics	
CTMU Current Source	520
PIC18F87K90 Family, Industrial	
Power-Down and Supply Current	508
Supply Voltage	
DCFSNZ	471
DECF	
DECFSZ	
Default System Clock	
Details on Individual Family Members	10
Development Support	501
Device Overview	
Features (64-Pin Devices)	
Features (80-Pin Devices)	
Direct Addressing	105

Е

Effect on Standard PIC18 Instructions	100
Effects of Power-Managed Modes on Various	490
Clock Sources	52
Electrical Characteristics	
Enhanced Capture/Compare/PWM (ECCP)	
Capture Mode. See Capture.	
Compare Mode. See Compare.	
ECCP Mode and Timer Resources	
Enhanced PWM Mode	
Auto-Restart	
Auto-Shutdown	264
Direction Change in Full-Bridge	262
Output Mode	
Full-Bridge Application Full-Bridge Mode	
Half-Bridge Application	
Half-Bridge Application Examples	
Half-Bridge Mode	
Output Relationships (Active-High and	200
Active-Low)	258
Output Relationships Diagram	
Programmable Dead-Band Delay	
Shoot-Through Current	
Start-up Considerations	264
Outputs and Configuration	
Enhanced Capture/Compare/PWM (ECCP1/2/3)	
Associated Registers	272
Enhanced Universal Synchronous Asynchronous Received	er
Transmitter (EUSART). See EUSART.	
Equations	
16 x 16 Signed Multiplication Algorithm	
16 x 16 Unsigned Multiplication Algorithm	
A/D Acquisition Time	
A/D Minimum Charging Time	384
Calculating the Minimum Required	
Acquisition Time	
Converting Error Pulses	232
Asynchronous Mode	350
12-Bit Break Transmit and Receive	000
Sequence	366
Associated Registers, Receive	
Associated Registers, Transmit	
Auto-Wake-up on Sync Break	
Receiver	
Setting Up 9-Bit Mode with Address Detect	362
Transmitter	
Baud Rate Generator	
Operation in Power-Managed Modes	
Baud Rate Generator (BRG)	
Associated Registers	
Auto-Baud Rate Detect	
Baud Rate Error, Calculating	
Baud Rates, Asynchronous Modes	
High Baud Rate Select (BRGH Bit)	
Sampling	
Synchronous Master Mode	
Associated Registers, Receive	
Associated Registers, Transmit	
Reception Transmission	
1101151111551011	307