

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	144MHz
Connectivity	CANbus, CSIO, EBI/EMI, I ² C, LINbus, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	154
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 32x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb9bf518tpmc-gk7e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin No		– Pin Name	I/O circuit	Pin state	
LQFP-176	LQFP-144	LQFP-144 BGA-192		type	type
			P08		
11	11	E3	TRACED3	E	G
11	11	E3	TIOA00_2	L	G
			CTS4_2		
			P09		
			TRACECLK		
12	12	E4	TIOB00_2	E	G
			RTS4_2		
			DTTI2X_0		
			P50		
			INT00_0		
			AIN0_2		
13	13	E5	SIN3_1	E	н
10	10	20	RTO10_0	Ľ	11
			IC20_0		
			MOEX_0		
			P51		
			INT01_0		н
		F 4	BIN0_2		
14	14	F1	SOT3_1	E	
			RTO11_0		
			IC21_0		
			MWEX_0		
		P52			
		15 F2	INT02_0		н
			ZIN0_2		
15	15		SCK3_1	E	
			RTO12_0		
			IC22_0		
			MDQM0_0		
		P53			
			SIN6_0		
			TIOA01_2		
16	16	F3	INT07_2	E	н
			RTO13_0		
			IC23_0		
			MDQM1_0		
			P54		
			SOT6_0		
17	17	F4	TIOB01_2	E	1
			RTO14_0		
			MALE_0		
			P55		
			SCK6_0		
18	18	F5	ADTG_1	E	1
			RTO15_0	_	1
			MRDY_0		
	+				+
			P56		
			SIN1_0		
19	19	F6	INT08_2	—— E	н
			TIOA09_2		
			DTTI1X_0		
			MNALE_0		

	Pin No		Pin name	I/O circuit	Pin state	
LQFP-176	LQFP-144	BGA-192	Finitalite	type	type	
			P33			
			INT04_0			
31	-	H6	TIOB03_1	E	н	
			SIN6_1			
			ADTG_6			
			P34			
32	-	J4	FRCK0_0	— Е	1	
52	-	J4	TX0_1	E	1	
			TIOB04_1			
			P35			
			IC03_0			
33	-	J4	RX0_1	E	н	
			TIOB05_1			
			INT08_1			
			P36			
			IC02_0		н	
34	26	J3	SIN5_2	——— E		
54	20	13	INT09_1	E		
			TIOA12_2			
			MCSX2_0			
			P37		н	
			IC01_0			
0 <i>E</i>	07	J2	SOT5_2	E		
35	27		INT10_1	E		
			TIOB12_2			
			MCSX3_0			
			P38		н	
			IC00_0			
36	28	K1	SCK5_2	E		
			INT11_1			
			MCLKOUT_0			
			P39			
37	29	K2	DTTI0X_0	E	1	
			ADTG_2			
			P3A			
38	30	K3	RTO00_0	G	1	
			TIOA00_1			
			P3B			
39	31	K4	RTO01_0	G	1	
	0.		TIOA01_1	•		
			P3C			
40	22	L1		G		
40	32		RT002_0		I	
			TIOA02_1			
44	22		P3D		1.	
41	33	L2	RT003_0	G	1	
			TIOA03_1			
40	24		P3E			
42	34	L3	RTO04_0	G	I	
			TIOA04_1			

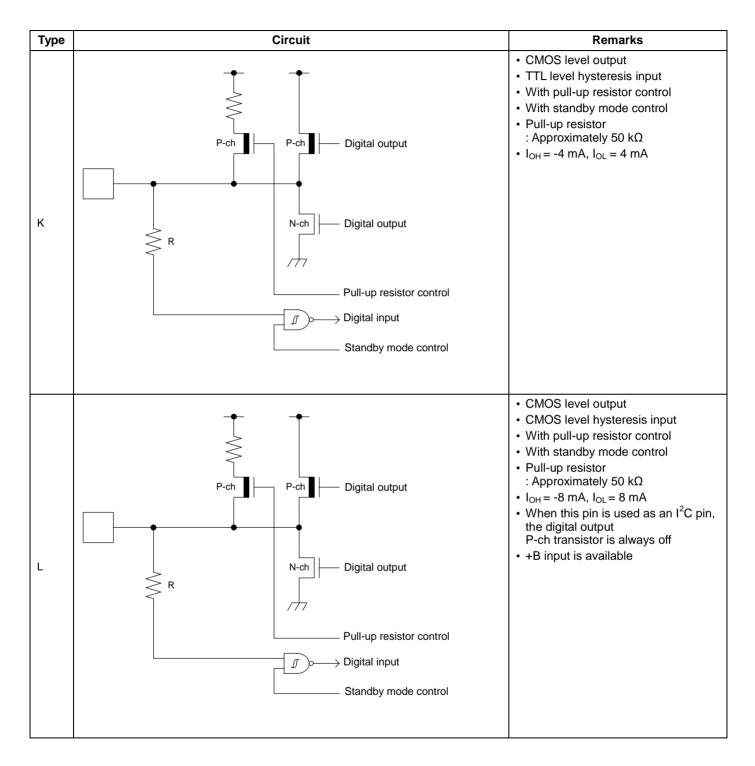
	Pin No		Pin name	I/O circuit	Pin state
LQFP-176	LQFP-144	BGA-192	Fininaine	type	type
			P4B		
			TIOB02_0		
61	53	N6	IC12_1	E	1
			ZIN0_1		
			MADATA01_0		
			P4C		
			TIOB03_0		
62	54	M6	IC13_1	—— E	1
-		-	SCK7_1		
			AIN1_2		
			MADATA02_0		
			P4D		
63	55	L6	FRCK1_1	—— E	1
			SOT7_1		
			BIN1_2		
			MADATA03_0 P4E		
			TIOB05_0		н
		К6	INT06_2		
64	56		SIN7_1	——— E	
			ZIN1_2		
			MADATA04_0		
			P70		
			TIOA04_2		I
65	57	J6	TX0_0	—— E	
			MADATA05_0		
			P71		н
			INT13_2		
66	58	B N8	TIOB04_2	E	
			RX0_0		
			MADATA06_0		
			P72		
			SIN2_0		
67	59	M8	INT14_2	E	Н
			AIN2_0		
			MADATA07_0		
			P73		
			SOT2_0		
68	60	L8	INT15_2	E	Н
			BIN2_0		
			MADATA08_0		
			P74		
69	61	К8	SCK2_0	— E	1
00			ZIN2_0	L	'
		1	MADATA09_0		
			P75		
			SIN3_0		
70	62	P8	ADTG_8	E	н
			INT07_1		
			MADATA10_0		

Pin No		Pin name	I/O circuit	Pin state	
LQFP-176	LQFP-144	BGA-192	Finnane	type	type
			P17		
			AN07		
97	81	K14	SIN2_2	F	L
			INT04_1		
			MAD03_0		
-	-	P7	VSS	-	<u>.</u>
-	-	P11	VSS	-	
-	-	L14	VSS	-	
			P18		
			AN08		
98	82	K11	SOT2_2	F	L
			INT21_1		
			MAD04_0		
			P19		
			AN09		
99	83	J13	SCK2_2	F	L
			INT22_1		
			MAD05_0		
			P1A		
			AN10		
			SIN4_1		
100	84	J12	INT05_1	F	L
			TIOA13_2		
			IC00_1		
			MAD06_0		
			P1B		L
			AN11		
			SOT4_1		
101	85	J11	INT25_1	F	
			TIOB13_2		
			IC01_1		
			MAD07_0		
			P1C		
			AN12		
			SCK4_1		
102	86	J10	INT26_1	F	L
			TIOA14_2		
			IC02_1		
			MAD08_0		
			P1D		
			AN13		
			CTS4_1		
103	87	J9	INT27_1	F	L
			TIOB14_2		
			IC03_1		
			MAD09_0		
			P1E		
			AN14		
		H10	RTS4_1		
104	88		INT28_1	F	L
			TIOA15_2		
			DTTI0X_1		
	1		MAD10_0		

Pin No		Pin name	I/O circuit	Pin state	
LQFP-176	LQFP-144	BGA-192	Finhame	type	type
			PB7		
			AN23		
117	-	G9	TIOB12_1	F	L
			INT23_0		
			ZIN2_2		
			P29		
118	94	F10	AN24	F	К
			MAD12_0		
			P28		
			AN25		
119	95	F11	ADTG_4	— F	L
110	00		INT09_0	· ·	
			RTO05_1		
			MAD13_0		
			P27		
			AN26		
120	96	F12	INT02_2	F	L
			RTO04_1		
			MAD14_0		
			P26		
		97 F13	AN27		
121	97		SCK2_1	F	К
			RTO03_1		
			MAD15_0		
		E10	P25		
	98		AN28		к
122			SOT2_1	F	
122	90	E10	TX1_0	Г	
			RTO02_1		
			MAD16_0		
			P24		
			AN29		
			SIN2_1		
123	99	E11	RX1_0	F	L
			INT01_2		
			RTO01_1		
			MAD17_0		
			P23		
			AN30		
124	100	E12	SCK0_0	F	К
			TIOA07_1		
			RTO00_1		
			P22		
			AN31		
125	101	E13	SOT0_0	F	К
			TIOB07_1		
			ZIN1_1		
			P21		
100	400	D40	SIN0_0		н
126	102	D12	 INT06_1	E	
			BIN1_1		

Module	Pin name	Function		Pin No			
Woulle	Finnanie	T difetion	LQFP-176	LQFP-144	BGA-192		
Base Timer	TIOA14_0		151	121	D8		
14	TIOA14_1	Base timer ch.14 TIOA pin	78	-	N10		
	TIOA14_2		102	86	J10		
	TIOB14_0		164	134	B6		
	TIOB14_1	Base timer ch.14 TIOB pin	79	-	L10		
	TIOB14_2		103	87	J9		
Base Timer	TIOA15_0		73	65	N9		
15	TIOA15_1	Base timer ch.15 TIOA pin	80	-	K10		
	TIOA15_2		104	88	H10		
	TIOB15_0		74	66	M9		
	TIOB15_1	Base timer ch.15 TIOB pin	81	-	M10		
	TIOB15 2		105	89	H9		
CAN 0	TX0_0		65	57	J6		
	TX0_1	CAN interface ch.0 TX output	32	-	J5		
	TX0_2		7	7	D1		
	RX0_0		66	58	N8		
	RX0_1	CAN interface ch.0 RX output	33	-	J4		
	RX0_2		6	6	D2		
CAN 1	TX1_0		122	98	E10		
	TX1_1	CAN interface ch.1 TX output	23	23	G5		
	TX1_2		92	76	L13		
	RX1_0		123	99	E11		
	RX1_1	CAN interface ch.1 RX output	22	22	G4		
	RX1_2		91	75	M12		
Debugger	SWCLK	Serial wire debug interface clock input	135	111	A12		
	SWDIO	Serial wire debug interface data input / output	137	113	B12		
	SWO	Serial wire viewer output	138	114	B11		
	TCK	J-TAG test clock input	135	111	A12		
	TDI	J-TAG test data input	136	112	C12		
	TDO	J-TAG debug data output	138	114	B11		
	TMS	J-TAG test mode state input/output	137	113	B12		
	TRACECLK	Trace CLK output of ETM	12	12	E4		
	TRACED0		8	8	D3		
	TRACED1	Trace data output of ETM	9	9	D4		
	TRACED2		10	10	E2		
	TRACED3		11	11	E3		
	TRSTX	J-TAG test reset Input	134	110	B13		

Modulo	Pin name	Function		Pin No	
Module	Pin name	Function	LQFP-176	LQFP-144	BGA-192
Multi Function	SIN6_0		16	16	F3
Serial	SIN6_1	Multifunction serial interface ch.6 input pin	31	-	H6
6	SIN6_2		170	-	B4
	SOT6_0		17	17	F4
	(SDA6_0)	Multifunction serial interface ch.6 output pin.	17	17	1.4
	SOT6_1 (SDA6_1)	This pin operates as SOT6 when it is used in a UART/CSIO (operation modes 0 to 2) and as	30	-	H5
	SOT6_2	SDA6 when it is used in an I^2C (operation mode 4).	171	-	C4
	(SDA6_2) SCK6_0				
	(SCL6_0) Multifunction serial interface ch.6 clock I/O pin.	18	18	F5	
	SCK6_1	This pin operates as SCK6 when it is used in a	29		114
	(SCL6_1)	UART/CSIO (operation modes 0 to 2) and as	29	-	H4
	SCK6_2 (SCL6_2)	SCL6 when it is used in an I ² C (operation mode 4).	172	140	B3
Multi Function	SIN7_0		22	22	G4
Serial	SIN7_1	Multifunction serial interface ch.7 input pin	64	56	K6
7	SIN7_2		110	-	H13
	SOT7_0 (SDA7_0)		23	23	G5
	SOT7_1 (SDA7_1)	Multifunction serial interface ch.7 output pin. This pin operates as SOT7 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA7 when it is used in an I ² C (operation mode 4).	63	55	L6
	SOT7_2 (SDA7_2)		111	-	H12
	SCK7_0 (SCL7_0)		24	24	G6
	SCK7_1 (SCL7_1)	Multifunction serial interface ch.7 clock I/O pin. This pin operates as SCK7 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL7 when it is used in an I ² C (operation mode 4).	62	54	M6
	SCK7_2 (SCL7_2)		112	-	H11



Madula	Pin name	Function	Pin No		
Module		Function	LQFP-176	LQFP-144	BGA-192
Multi Function Timer	DTTI0X_0	Input signal controlling wave form generator	37	29	K2
0	DTTI0X_1	outputs RTO00 to RTO05 of multi-function timer 0.	104	88	H10
-	FRCK0_0		32	-	J5
	FRCK0_1	16-bit free-run timer ch.0 external clock input pin	105	89	H9
	FRCK0_2		91	75	M12
	IC00_0		36	28	K1
	IC00_1		100	84	J12
	IC00_2		92	76	L13
	IC01_0		35	27	J2
	IC01_1	40 hit input contume ch 0 input air of multi function	101	85	J11
	IC01_2	16-bit input capture ch.0 input pin of multi-function timer 0	93	77	L12
	IC02_0	ICxx describes channel number.	34	26	J3
	IC02_1	Toxx describes charmer number.	102	86	J10
	IC02_2		94	78	L11
	IC03_0		33	-	J4
	IC03_1		103	87	J9
	IC03_2		95	79	K13
	RTO00_0 (PPG00_0)	Wave form generator output of multi-function timer	38	30	КЗ
	RTO00_1 (PPG00_1)	This pin operates as PPG00 when it is used in PPG0 output modes.	124	100	E12
	RTO01_0 (PPG00_0)	Wave form generator output of multi-function timer	39	31	K4
	RTO01_1 (PPG00_1)	This pin operates as PPG00 when it is used in PPG0 output modes.	123	99	E11
	RTO02_0 (PPG02_0)	Wave form generator output of multi-function timer	40	32	L1
	RTO02_1 (PPG02_1)	This pin operates as PPG02 when it is used in PPG0 output modes.	122	98	E10
	RTO03_0 (PPG02_0)	Wave form generator output of multi-function timer	41	33	L2
	RTO03_1 (PPG02_1)	This pin operates as PPG02 when it is used in PPG0 output modes.	121	97	F13
	RTO04_0 (PPG04_0)	Wave form generator output of multi-function timer	42	34	L3
	RTO04_1 (PPG04_1)	This pin operates as PPG04 when it is used in PPG0 output modes.	120	96	F12
	RTO05_0 (PPG04_0)	Wave form generator output of multi-function timer	43	35	M2
	RTO05_1 (PPG04_1)	This pin operates as PPG04 when it is used in PPG0 output modes.	119	95	F11

Medule	Din nome	Function	Pin No		
Module	Pin name	Function	LQFP-176	LQFP-144	BGA-192
Multi Function Timer	DTTI1X_0	Input signal controlling wave form generator	19	19	F6
1	DTTI1X_1	outputs RTO10 to RTO15 of multi-function timer 1.	58	50	M5
	FRCK1_0	40 kit for a more time on the 4 and a more that his state in	2	2	B2
	FRCK1_1	16-bit free-run timer ch.1 external clock input pin	63	55	L6
	IC10_0		3	3	C2
	IC10_1		59	51	L5
	IC11_0		4	4	C3
	IC11_1	16-bit input capture ch.1 input pin of multi-function	60	52	K5
	IC12_0	timer 1.	5	5	D5
	IC12_1	ICxx describes channel number	61	53	N6
	IC13_0		6	6	D2
	IC13_1		62	54	M6
	RTO10_0 (PPG10_0)	Wave form generator output of multi-function timer	13	13	E5
	RTO10_1 (PPG10_1)	This pin operates as PPG10 when it is used in PPG1 output modes.	46	38	N2
	RTO11_0	Wave form generator output of multi-function timer	14	14	F1
	(PPG10_0) RTO11_1 (PPG10_1)	This pin operates as PPG10 when it is used in PPG1 output modes.	47	39	N3
	RTO12_0 (PPG12_0)	Wave form generator output of multi-function timer	15	15	F2
	RTO12_1 (PPG12_1)	This pin operates as PPG12 when it is used in PPG1 output modes.	48	40	МЗ
	RTO13_0 (PPG12_0)	Wave form generator output of multi-function timer	16	16	F3
	RTO13_1 (PPG12_1)	This pin operates as PPG12 when it is used in PPG1 output modes.	49	41	L4
	RTO14_0 (PPG14_0)	Wave form generator output of multi-function timer	17	17	F4
	RTO14_1 (PPG14_1)	 1. This pin operates as PPG14 when it is used in PPG1 output modes. 	50	42	M4
	RTO15_0 (PPG14_0)	Wave form generator output of multi-function timer	18	18	F5
	RTO15_1 (PPG14_1)	This pin operates as PPG14 when it is used in PPG1 output modes.	51	43	N4

6. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

6.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the datasheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

1. Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

2. Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.

3. Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- 3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 M Ω).

Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.

- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of Styrofoam or other highly static-prone materials for storage of completed board assemblies.

6.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

1. Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

2. Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

3. Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

4. Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

5. Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

7. Handling Devices

Power supply pins

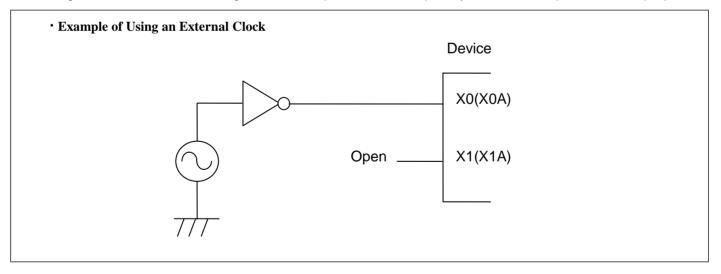
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin and GND pin, between AVCC pin and AVSS pin near this device.

Stabilizing power supply voltage

A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/µs when there is a momentary fluctuation on switching the power supply.

Crystal oscillator circuit


Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation.

Evaluate oscillation of your using crystal oscillator by your mount board.

Using an external clock

When using an external clock, the clock signal should be input to the X0, X0A pin only and the X1,X1A pin should be kept open.

Peripheral Address Map

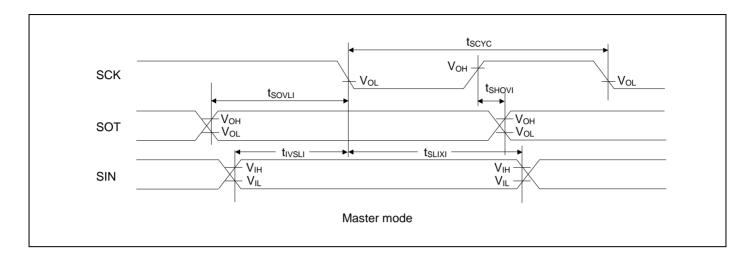
Start address	End address	Bus	Peripherals
0x4000_0000	0x4000_0FFF	АНВ	Flash memory I/F register
0x4000_1000	0x4000_FFFF	АНВ	Reserved
0x4001_0000	0x4001_0FFF		Clock/Reset Control
0x4001_1000	0x4001_1FFF		Hardware Watchdog timer
0x4001_2000	0x4001_2FFF	APB0	Software Watchdog timer
0x4001_3000	0x4001_4FFF	APBU	Reserved
0x4001_5000	0x4001_5FFF		Dual-Timer
0x4001_6000	0x4001_FFFF		Reserved
0x4002_0000	0x4002_0FFF		Multi-function timer unit0
0x4002_1000	0x4002_1FFF		Multi-function timer unit1
0x4002_2000	0x4002_3FFF		Multi-function timer unit2
0x4002_4000	0x4002_4FFF		PPG
0x4002_5000	0x4002_5FFF		Base Timer
0x4002_6000	0x4002_6FFF	APB1	Quadrature Position/Revolution Counter
0x4002_7000	0x4002_7FFF		A/D Converter
0x4002_8000	0x4002_DFFF		Reserved
0x4002_E000	0x4002_EFFF		Internal CR trimming
0x4002_F000	0x4002_FFFF		Reserved
0x4003_0000	0x4003_0FFF		External Interrupt Controller
0x4003_1000	0x4003_1FFF		Interrupt Request Batch-Read Function
0x4003_2000	0x4003_2FFF		Reserved
0x4003_3000	0x4003_3FFF		GPIO
0x4003_4000	0x4003_4FFF		Reserved
0x4003_5000	0x4003_5FFF		Low Voltage Detector
0x4003_6000	0x4003_6FFF	APB2	USB clock generator
0x4003_7000	0x4003_7FFF		CAN Prescaler
0x4003_8000	0x4003_8FFF		Multi-function serial Interface
0x4003_9000	0x4003_9FFF		CRC
0x4003_A000	0x4003_AFFF		Watch Counter
0x4003_B000	0x4003_EFFF		Reserved
0x4003_F000	0x4003_FFFF		External Memory interface
0x4004_0000	0x4004_FFFF		USB ch.0
0x4005_0000	0x4005_FFFF	7	USB ch.1
0x4006_0000	0x4006_0FFF	1	DMAC register
0x4006_1000	0x4006_1FFF	AHB	Reserved
0x4006_2000	0x4006_2FFF	1	CAN ch.0
0x4006_3000	0x4006_3FFF	1	CAN ch.1
0x4006_4000	0x41FF_FFFF	1	Reserved

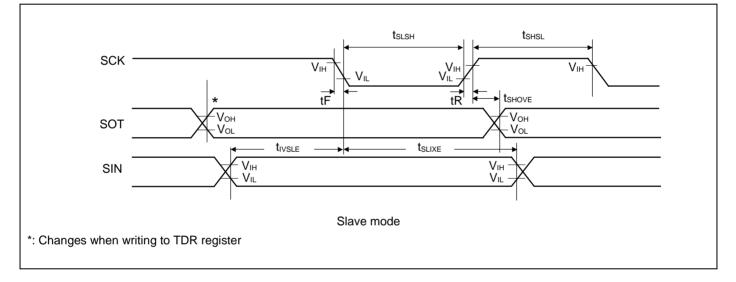
Separate Bus Access Asynchronous SRAM Mode

Deveryoter	Cumple of	Pin name	Conditions		Value	
Parameter	Symbol		Conditions	Min	Max	Unit
MOEX			Vcc ≥ 4.5 V			
Min pulse width	t _{OEW}	MOEX	Vcc < 4.5 V	MCLK×n-3	-	ns
$MCSX \downarrow \rightarrow Address output$		MCSX[7:0],	Vcc ≥ 4.5 V	-9	+9	
delay time	t _{CSL-AV}	MAD[24:0]	Vcc < 4.5 V	-12	+12	ns
MOEX ↑ →		MOEX,	Vcc ≥ 4.5 V	0	MCLK×m+9	
Address hold time	t _{OEH - AX}	MAD[24:0]	Vcc < 4.5 V	0	MCLK×m+12	ns
$MCSX \downarrow \rightarrow$			Vcc ≥ 4.5 V	MCLK×m-9	MCLK×m+9	
MOEX ↓ delay time	t _{CSL-OEL}	MOEX,	Vcc < 4.5 V	MCLK×m-12	MCLK×m+12	ns
$MOEX \uparrow \rightarrow$		MCSX[7:0]	Vcc ≥ 4.5 V	0	MCLK×m+9	
MCSX ↑ time	t _{OEH - CSH}		Vcc < 4.5 V	0	MCLK×m+12	ns
$MCSX \downarrow \rightarrow$	1	MCSX,	Vcc ≥ 4.5 V	MCLK×m-9	MCLK×m+9	
MDQM ↓ delay time	t _{CSL - RDQML}	MDQM[1:0]	Vcc < 4.5 V	MCLK×m-12	MCLK×m+12	ns
Data set up \rightarrow		MOEX,	Vcc ≥ 4.5 V	20	-	20
MOEX ↑ time	t _{DS - OE}	MADATA[15:0]	Vcc < 4.5 V	38	-	ns
$MOEX \uparrow \rightarrow$	+	MOEX,	Vcc ≥ 4.5 V	0		20
Data hold time	t _{DH - OE}	MADATA[15:0]	Vcc < 4.5 V	0	-	ns
MWEX	+		Vcc ≥ 4.5 V	MCLK×n-3		ns
Min pulse width	I WEW		Vcc < 4.5 V		-	115
$MWEX \uparrow \to Address \text{ output}$	+	MWEX,	Vcc ≥ 4.5 V	0	MCLK×m+9	ns
delay time	t _{WEH - AX}	MAD[24:0]	Vcc < 4.5 V	0	MCLK×m+12	115
$MCSX \downarrow \rightarrow$	+		Vcc ≥ 4.5 V	MCLK×n-9	MCLK×n+9	ns
MWEX ↓ delay time	t _{CSL-WEL}	MWEX,	Vcc < 4.5 V	MCLK×n-12	MCLK×n+12	115
$MWEX \uparrow \rightarrow$	+	MCSX[7:0]	Vcc ≥ 4.5 V	0	MCLK×m+9	ns
MCSX ↑ delay time	t _{wen - CSH}		Vcc < 4.5 V	0	MCLK×m+12	115
$MCSX \downarrow \rightarrow$	+	MCSX,	Vcc ≥ 4.5 V	MCLK×n-9	MCLK×n+9	ns
MDQM ↓ delay time	t _{CSL-WDQML}	MDQM[1:0]	Vcc < 4.5 V	MCLK×n-12	MCLK×n+12	115
$MCSX \downarrow \to$	t	MCSX,	Vcc ≥ 4.5 V	MCLK-9	MCLK+9	nc
Data output time	t _{CSL - DV}	MADATA[15:0]	Vcc < 4.5 V	MCLK-12	MCLK+12	ns
$MWEX \uparrow \to$	+	MWEX,	Vcc ≥ 4.5 V	0	MCLK×m+9	D 0
Data hold time	t _{WEH - DX}	MADATA[15:0]	Vcc < 4.5 V	0	MCLK×m+12	ns

(Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C)

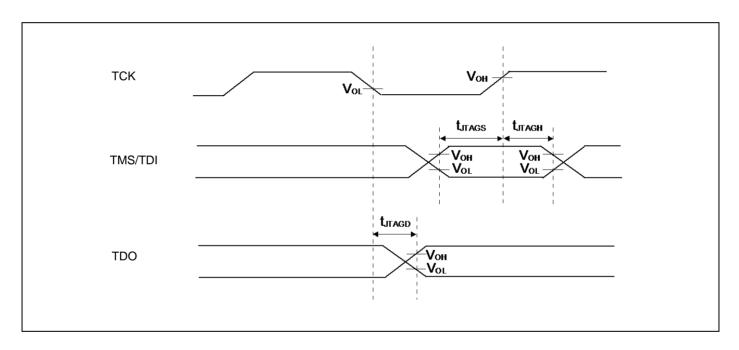
Note: When the external load capacitance = 30 pF. (m = 0 to 15, n = 1 to 16)


(Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C)


Separate Bus Access Synchronous SRAM Mode

Parameter	Currenck - I	8	O an all the sec		11		
	Symbol	Pin name	Conditions	Min	Value Max	Unit	
Address delay time		MCLK,	Vcc ≥ 4.5 V	4	9		
	t _{AV}	MAD[24:0]	Vcc < 4.5 V	1	12	ns	
		MCLK,	Vcc ≥ 4.5 V	4	9		
MCCV delay time	t _{CSL}		Vcc < 4.5 V		12	ns	
MCSX delay time		MCSX[7:0]	Vcc ≥ 4.5 V	4	9		
	t _{CSH}		Vcc < 4.5 V		12	ns	
			Vcc ≥ 4.5 V	4	9		
MOEV delay time	t _{REL}	MCLK,	Vcc < 4.5 V	1	12	ns	
MOEX delay time		MOEX	Vcc ≥ 4.5 V	4	9		
	t _{REH}		Vcc < 4.5 V		12	ns	
Data set up →		MCLK,	Vcc ≥ 4.5 V	19			
MCLK ↑ time	t _{DS}	MADATA[15:0]	Vcc < 4.5 V	37	-	ns	
$MCLK \uparrow \rightarrow$		MCLK,	Vcc ≥ 4.5 V	0			
Data hold time	t _{DH}	MADATA[15:0]	Vcc < 4.5 V	0	-	ns	
	t _{WEL}	MCLK, MWEX	Vcc ≥ 4.5 V	4	9	ns ns	
			Vcc < 4.5 V	7'	12		
MWEX delay time			Vcc ≥ 4.5 V	4	9		
	t _{WEH}		Vcc < 4.5 V	7'	12		
		MCLK, MDQM[1:0]	Vcc ≥ 4.5 V	4	9	20	
MDQM[1:0] delay time	t _{DQML}		Vcc < 4.5 V	7'	12	ns	
			Vcc ≥ 4.5 V	4	9	20	
	t _{DQMH}		Vcc < 4.5 V	7'	12	ns	
$MCLK \uparrow \to$	+	MCLK,	Vcc ≥ 4.5 V	MCLK+1	MCLK+18	20	
Data output time	t _{OD}	MADATA[15:0]	Vcc < 4.5 V		MCLK+24	ns	
$MCLK \uparrow \to$	+	MCLK,	Vcc ≥ 4.5 V	1	18	20	
Data hold time	t _{OD}	MADATA[15:0]	Vcc < 4.5 V		24	ns	

Note: When the external load capacitance = 30 pF.



12.4.15 JTAG Timing

Parameter	Symbol	Pin name	Conditions	Val	ue	Unit	Remarks
Farameter	Symbol	Fin name	Conditions	Min	Max	Unit	
TMS, TDI setup time	t _{JTAGS}	TCK, TMS, TDI	Vcc ≥ 4.5 V	15		20	
			Vcc < 4.5 V	15	-	ns	
TMS, TDI hold time	t _{JTAGH}	TCK, TMS, TDI	Vcc ≥ 4.5 V	15		ns	
			Vcc < 4.5 V	15		115	
TDO delay time	t _{JTAGD} TCK, TDO	ТСК,	Vcc ≥ 4.5 V	-	25		
		Vcc < 4.5 V	-	45	ns		

(Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C)

Note: When the external load capacitance = 30 pF.

12.5 12-bit A/D Converter

Electrical Characteristics for the A/D Converter

Parameter	Symbol	Pin name		Value	11	Domorko	
			Min	Тур	Max	Unit	Remarks
Resolution	-	-	-	-	12	bit	
Integral Nonlinearity	-	-	-		± 4.5	LSB	
Differential Nonlinearity	-	-	-		± 2.5	LSB	AVRH = 2.7 V to 5.5 V
Zero transition voltage	V _{ZT}	ANxx	-		± 15	mV	
Full-scale transition voltage	V _{FST}	ANxx	-		AVRH ± 15	mV	
Conversion time		-	1.0* ¹	-	-		AVcc ≥ 4.5 V
Conversion time	-		1.2* ¹	-	-	μs	AVcc < 4.5 V
	Ts	-	*2	-	-	20	AVcc ≥ 4.5 V
Sampling time			*2	-	-	ns	AVcc < 4.5 V
Compare clock cycle*3	Tcck	-	50	-	2000	ns	
State transition time to operation permission	Tstt	-	-	-	1.0	μs	
Analog input capacity	C _{AIN}	-	-	-	12.9	pF	
	R _{AIN}	-	-	-	2	1.0	AVcc ≥ 4.5 V
Analog input resistance					3.8	kΩ	AVcc < 4.5 V
Interchannel disparity	-	-	-	-	4	LSB	
Analog port input current	-	ANxx	-	-	5	μA	
Analog input voltage	-	ANxx	AVss	-	AVRH	V	
Reference voltage	-	AVRH	2.7	-	AV _{CC}	V	

*1: The Conversion time is the value of sampling time (Ts) + compare time (Tc).

The condition of the minimum conversion time is the following.

AVcc ≥ 4.5 V, HCLK=120 MHz sampling time: 300 ns compare time: 700 ns

AVcc < 4.5 V, HCLK=120 MHz sampling time: 500 ns compare time: 700 ns

Ensure that it satisfies the value of the sampling time (Ts) and compare clock cycle (Tcck).

For setting of the sampling time and compare clock cycle, see "Chapter 1-1: A/D Converter" in "FM3 Family Peripheral Manual Analog Macro Part".

The registers setting of the A/D Converter are reflected in the operation according to the APB bus clock timing.

The sampling clock and compare clock is generated from the Base clock (HCLK).

About the APB bus number which the A/D Converter is connected to, see "8. Block Diagram" in this datasheet.

*2: A necessary sampling time changes by external impedance.

Ensure that it set the sampling time to satisfy (Equation 1).

*3: Compare time (Tc) is the value of (Equation 2).

12.7 Low-Voltage Detection Characteristics

12.7.1 Low-Voltage Detection Reset

 $(Ta = -40^{\circ}C to + 85^{\circ}C)$

Parameter	Symbol	Conditions		Value		Unit	Remarks
Falametei	Symbol		Min	Тур	Max		Reillar KS
Detected voltage	VDL	-	2.25	2.45	2.65	V	When voltage drops
Released voltage	VDH	-	2.30	2.50	2.70	V	When voltage rises

12.7.2 Interrupt of Low-Voltage Detection

 $(Ta = -40^{\circ}C to + 85^{\circ}C)$

Parameter	Symbol	Conditions	Value			Unit	Remarks
Farameter			Min	Тур	Max	Unit	Reillarks
Detected voltage	VDL	SVHI = 0000	2.58	2.8	3.02	V	When voltage drops
Released voltage	VDH	3VHI = 0000	2.67	2.9	3.13	V	When voltage rises
Detected voltage	VDL	SVHI = 0001	2.76	3.0	3.24	V	When voltage drops
Released voltage	VDH	3001 = 0001	2.85	3.1	3.34	V	When voltage rises
Detected voltage	VDL	SVHI = 0010	2.94	3.2	3.45	V	When voltage drops
Released voltage	VDH	3011 = 0010	3.04	3.3	3.56	V	When voltage rises
Detected voltage	VDL	SVHI = 0011	3.31	3.6	3.88	V	When voltage drops
Released voltage	VDH	5VHI = 0011	3.40	3.7	3.99	V	When voltage rises
Detected voltage	VDL	SVHI = 0100	3.40	3.7	3.99	V	When voltage drops
Released voltage	VDH		3.50	3.8	4.10	V	When voltage rises
Detected voltage	VDL	SVHI = 0111	3.68	4.0	4.32	V	When voltage drops
Released voltage	VDH	5VHI = 0111	3.77	4.1	4.42	V	When voltage rises
Detected voltage	VDL	0)///// 4000	3.77	4.1	4.42	V	When voltage drops
Released voltage	VDH	SVHI = 1000	3.86	4.2	4.53	V	When voltage rises
Detected voltage	VDL	0)///// 4004	3.86	4.2	4.53	V	When voltage drops
Released voltage	VDH	SVHI = 1001	3.96	4.3	4.64	V	When voltage rises
LVD stabilization wait time	T _{LVDW}	-	-	-	4032 × t _{CYCP} *	μs	

*: t_{CYCP} indicates the APB2 bus clock cycle time.