E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	
Peripherals	POR, WDT
Number of I/O	14
Program Memory Size	1KB (1K x 8)
Program Memory Type	OTP
EEPROM Size	
RAM Size	125 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e0412hec1903tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

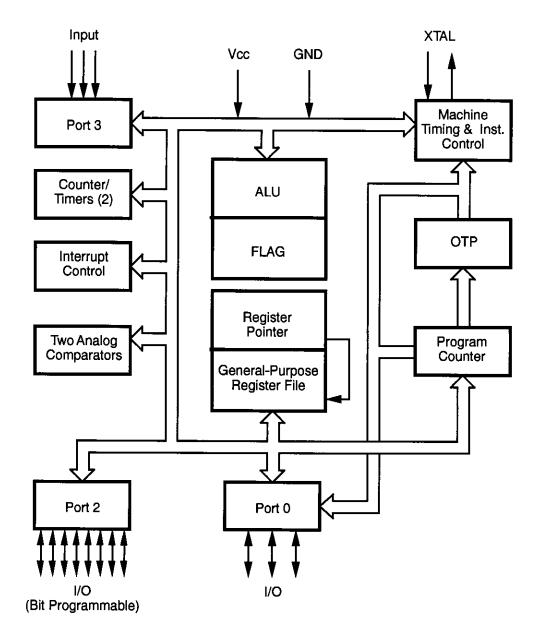


Figure 1. Functional Block Diagram

PIN DESCRIPTION

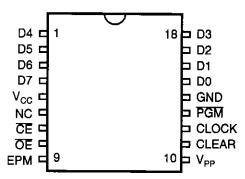


Figure 3. 18-Pin EPROM Mode Configuration

Table 1. 18-Pin DiP Pin Identification

EPROM	EPROM Programming Mode					
Pin # Symbol F		Function	Direction			
1-4	D4–D7	Data 4, 5, 6, 7	In/Output			
5	V _{cc}	Power Supply				
6	NC	No Connection				
7	CE	Chip Enable	Input			
8	ŌĔ	Output Enable	Input			
9	EPM	EPROM Prog Mode	Input			
10	V _{PP}	Prog Voltage	Input			
11	Clear	Clear Clock	Input			
12	Clock	Address	Input			
13	PGM	Prog Mode	Input			
14	GND	Ground	· · · · ·			
15–18	D0-D3	Data 0,1, 2, 3	In/Output			

Figure 4. 18-Pin DIP/SOIC Mode Configuration

Table 2. 18-Pin DIP/SOIC Pin Identification

Standard Mode						
Pin #	Symbol	Function	Direction			
1-4	P24-P27	Port 2, Pins 4,5,6,7	In/Output			
5	V _{CC}	Power Supply				
6	XTAL2	Crystal Osc. Clock	Output			
7	XTAL1	Crystal Osc. Clock	Input			
8	P31	Port 3, Pin 1, AN1	Input			
9	P32	Port 3, Pin 2, AN2	Input			
10	P33	Port 3, Pin 3, REF	Input			
11–13	P00-P02	Port 0, Pins 0,1,2	In/Output			
14	GND	Ground				
15–18	P20-P23	Port 2, Pins 0,1,2,3	In/Output			

DC ELECTRICAL CHARACTERISTICS

Standard Temperature

			T _A = 0°C	to +70°C	Typical			
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
VINMAX	Max Input Voltage	4.5V		12		V	I _{in} ≪250 µА	1
		5.5V		12		۷	I _{In} ≪250 µА	1
V _{CH}	Clock Input High Voitage	4.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	V	Driven by External Clock Generator	
		5.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	4.5V	V _{SS} 0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
		5.5V	V _{SS} -0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	4.5V	0.7 V _{CC}	V _{CC} +0.3	2.8	V	· · · · · · · · · · · · · · · · · · ·	
.		5.5V	0.7 V _{CC}	V _{CC} +0.3	2.8	V		
VIL	Input Low Voltage	4.5V	V _{SS} 0.3	0.2 V _{CC}	1.5	V		
		5.5V	V _{ss} -0.3	0.2 V _{CC}	1.5	V		
V _{OH}	Output High Voltage	4.5V	V _{cc} -0.4		4.8	V	I _{OH} = -2.0 mA	5
	_	5.5V	V _{cc} -0.4		4.8	۷	l _{OH} = -2.0 mA	5
	_	4.5V	V _{CC} -0.4		4.8	۷	Low Noise @ I _{OH} = -0.5 mA	
		5.5V	V _{cc} -0.4		4.8	۷	Low Noise @ I _{OH} =0.5 mA	
V _{OL1}	Output Low Voltage	4.5V		0.8	0.1	۷	I _{OL} = +4.0 mA	5
	-	5.5V		0.4	0.1	V	I _{OL} = +4.0 mA	5
	-	4.5V		0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
	-	5.5V		0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
V _{OL2}	Output Low Voltage	4.5V		0.8	0.8	V	l _{oL} = +12 mA,	5
	-	5.5V		0.8	0.8	٧	l _{OL} = +12 mA,	5
VOFFSET	Comparator Input	4.5V		25.0	10.0	mV		
	Offset Voltage	5.5V		25.0	10.0	mV		
V _{LV}	V _{CC} Low Voltage Auto Reset		2.2	3.0	2.8	V	@ 6 MHz Max. Int. CLK Freq.	
I _{IL}	Input Leakage	4.5V	-1.0	1.0		μA	$V_{IN} = 0V, V_{CC}$	
	(Input Bias Current of Comparator) -	5.5V	-1.0	1.0	·	μĀ	V _{IN} = 0V, V _{CC}	
IOL	Output Leakage	4.5V	-1.0	1.0		 μΑ	V _{IN} = 0V, V _{CC}	
	-	5.5V	-1.0	1.0		μA	$V_{\rm IN} = 0V, V_{\rm CC}$	
V _{ICR}	Comparator Input Common Mode Voltage Range		0	V _{cc} -1.0		V		

Z86E04/E08 CMOS Z8 OTP Microcontrollers

•	_	N/ F/1		C to +105°C	Typical			
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
I _{CC1}	Standby Current	4.5V		4.0	2.5	mA	HALT Mode V _{IN} = 0V,	7
	(Low Noise Mode)						V _{cc} @1MHz	
		5.5V	-	4.0	2.5	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 1 MHz	
		4.5V		4.5	2.8	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 2 MHz	
		5.5V		4.5	2.8	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 2 MHz	
		4.5V		5.0	3.0	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 4 MHz	
		5.5V		5.0	3.0	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 4 MHz	
I _{CC2}	Standby Current	4.5V		20	1.0	μA	STOP Mode V _{IN} = 0V, V _{CC}	7,8
							WDT is not Running	
		5.5V		20	1.0	μA	STOP Mode V _{IN} = 0V, V _{CC}	7,8
							WDT is not Running	
	Auto Latch Low	4.5V		40	16	μA	$0V < V_{IN} < V_{CC}$	
	Current	5.5V		40	16	μA	$0V < V_{iN} < V_{CC}$	
I _{ALH}	Auto Latch High	4.5V		-20.0	-8.0	μA	$0V < V_{IN} < V_{CC}$	
	Current	5.5V		-20.0	-8.0	μA	$0V < V_{IN} < V_{CC}$	
	····							

Notes:

1. Port 2 and Port 0 only

2. $V_{SS} = 0V = GND$

 The device operates down to V_{LV} of the specified frequency for V_{LV}. The minimum operational V_{CC} is determined on the value of the voltage V_{LV} at the ambient temperature. The V_{LV} increases as the temperature decreases.

4. V_{CC} = 4.5V to 5.5V, typical values measured at V_{CC} = 5.0V

5. Standard Mode (not Low EMI Mode)

6. Z86E08 only

7. All outputs unloaded and all inputs are at $V_{CC} \mbox{ or } V_{SS}$ level.

8. If analog comparator is selected, then the comparator inputs must be at V_{CC} level.

AC ELECTRICAL CHARACTERISTICS

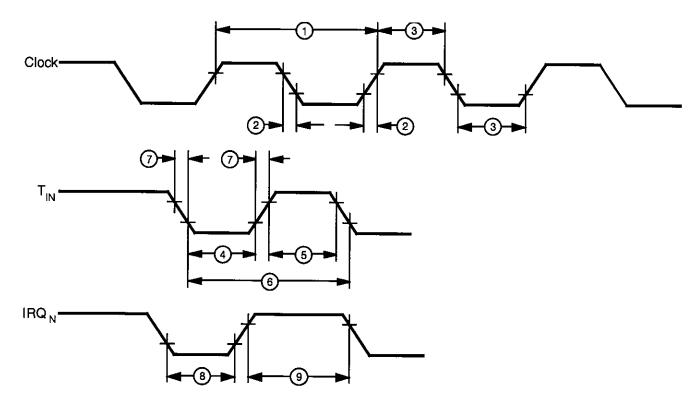


Figure 6. AC Electrical Timing Dlagram

LOW NOISE VERSION

Low EMI Emission

The Z86E04/E08 can be programmed to operate in a Low EMI Emission Mode by means of a mask ROM bit option. Use of this feature results in:

- All pre-driver slew rates reduced to 10 ns typical.
- Internal SCLK/TCLK operation limited to a maximum of 4 MHz–250 ns cycle time.

PIN FUNCTIONS

OTP Programming Mode

D7–D0 Data Bus. Data can be read from, or written to, the EPROM through this data bus.

 V_{CC} Power Supply. It is typically 5V during EPROM Read Mode and 6.4V during the other modes (Program, Program Verify, and so on).

CE Chip Enable (active Low). This pin is active during EPROM Read Mode, Program Mode, and Program Verify Mode.

OE Output Enable (active Low). This pin drives the Data Bus direction. When this pin is Low, the Data Bus is output. When High, the Data Bus is input.

EPM *EPROM Program Mode.* This pin controls the different EPROM Program Modes by applying different voltages.

 $\boldsymbol{V}_{\mathsf{PP}}$ Program Voltage. This pin supplies the program voltage.

Clear Clear (active High). This pin resets the internal address counter at the High Level.

- Output drivers have resistances of 500 Ohms (typical).
- Oscillator divide-by-two circuitry eliminated.

The Low EMI Mode is mask-programmable to be selected by the customer at the time the ROM code is submitted.

Clock Address Clock. This pin is a clock input. The internal address counter increases by one with one clock cycle.

PGM *Program Mode* (active Low). A Low level at this pin programs the data to the EPROM through the Data Bus.

Application Precaution

The production test-mode environment may be enabled accidentally during normal operation if *excessive noise* surges above V_{CC} occur on the XTAL1 pin.

In addition, processor operation of Z8 OTP devices may be affected by *excessive noise* surges on the V_{PP} , \overline{CE} , EPM, \overline{OE} pins while the microcontroller is in Standard Mode.

Recommendations for dampening voltage surges in both test and OTP Mode include the following:

- Using a clamping diode to V_{CC}.
- Adding a capacitor to the affected pin.

Note: Programming the EPROM/Test Mode Disable option will prevent accidental entry into EPROM Mode or Test Mode.

PIN FUNCTIONS (Continued)

XTAL1, XTAL2 *Crystal In, Crystal Out* (time-based input and output, respectively). These pins connect a parallelresonant crystal, LC, or an external single-phase clock (8 MHz or 12 MHz max) to the on-chip clock oscillator and buffer.

Port 0, P02–P00. Port 0 is a 3-bit bidirectional, Schmitttriggered CMOS-compatible I/O port. These three I/O lines can be globally configured under software control to be inputs or outputs (Figure 7). Auto Latch. The Auto Latch puts valid CMOS levels on all CMOS inputs (except P33, P32, P31) that are not externally driven. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer. On Power-up and Reset, the Auto Latch will set the ports to an undetermined state of 0 or 1. Default condition is Auto Latches enabled.

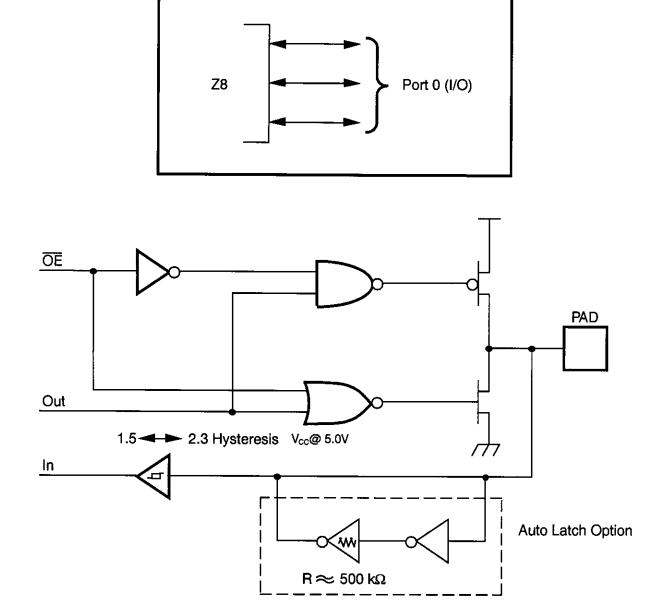


Figure 7. Port 0 Configuration

Port 2, P27–P20. Port 2 is an 8-bit, bit programmable, bidirectional, Schmitt-triggered CMOS-compatible I/O port. These eight I/O lines can be configured under software

control to be inputs or outputs, independently. Bits programmed as outputs can be globally programmed as either push-pull or open-drain (Figure 8).

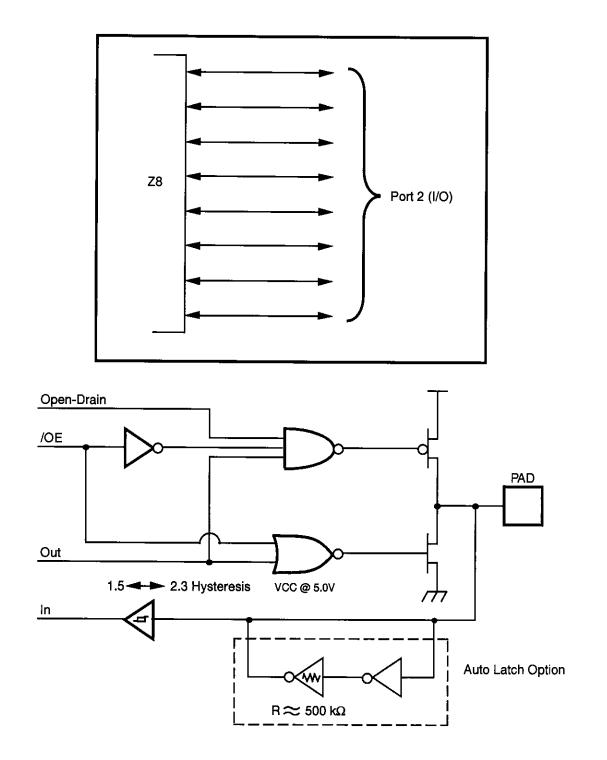


Figure 8. Port 2 Configuration

PIN FUNCTIONS (Continued)

Port 3, P33–P31. Port 3 is a 3-bit, CMOS-compatible port with three fixed input (P33–P31) lines. These three input lines can be configured under software control as digital Schmitt-trigger inputs or analog inputs.

These three input lines are also used as the interrupt sources IRQ0–IRQ3, and as the timer input signal $T_{\rm IN}$ (Figure 9).

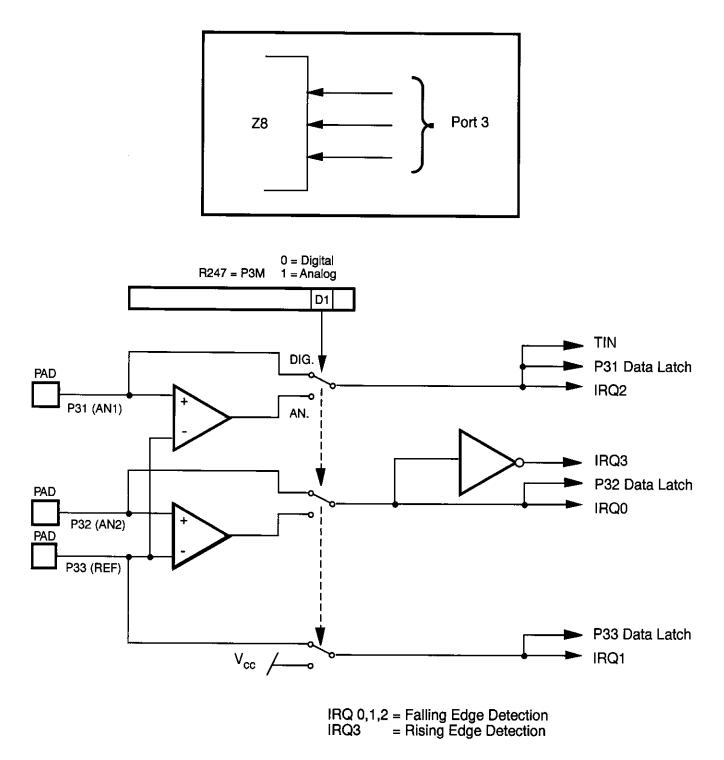
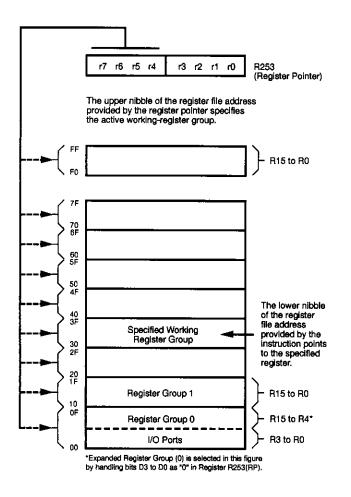



Figure 9. Port 3 Configuration

The Z8 instructions can access registers directly or indirectly through an 8-bit address field. This allows short 4-bit register addressing using the Register Pointer.

In the 4-bit mode, the register file is divided into eight working register groups, each occupying 16 continuous locations. The Register Pointer (Figure 13) addresses the starting location of the active working-register group.

Stack Pointer. The Z8 has an 8-bit Stack Pointer (R255) used for the internal stack that resides within the 124 general-purpose registers.

General-Purpose Registers (GPR). These registers are undefined after the device is powered up. The registers keep their last value after any reset, as long as the reset occurs in the V_{CC} voltage-specified operating range. Note: Register R254 has been designated as a general-purpose register and is set to 00 Hex after any reset or Stop-Mode Recovery.

Counter/Timer. There are two 8-bit programmable counter/timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the T0 can be driven by the internal clock source only (Figure 14).

The 6-bit prescalers divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both counter and prescaler reach the end of count, a timer interrupt request IRQ4 (T0) or IRQ5 (T1) is generated.

The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters are also programmed to stop upon reaching zero (Single-Pass Mode) or to automatically reload the initial value and continue counting (Modulo-N Continuous Mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and is either the internal microprocessor clock divided by four, or an external signal input through Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that is retriggerable or non-retriggerable, or used as a gate input for the internal clock.

Interrupts. The Z8 has six interrupts from six different sources. These interrupts are maskable and prioritized (Figure 15). The sources are divided as follows: the falling edge of P31 (AN1), P32 (AN2), P33 (REF), the rising edge of P32 (AN2), and two counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests (Table 4).

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All Z8 interrupts are vectored through locations in program memory. When an Interrupt machine cycle is activated, an Interrupt Request is granted. This disables all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit starting address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests needs service.

Note: User must select any Z86E08 mode in Zilog's C12 ICEBOX[™] emulator. The rising edge interrupt is not supported on the CCP emulator (a hardware/software workaround must be employed).

Name	Source	Vector Location	Comments
IRQ0	AN2(P32)	0,1	External (F)Edge
IRQ1	REF(P33)	2,3	External (F)Edge
IRQ2	AN1(P31)	4,5	External (F)Edge
IRQ3	AN2(P32)	6,7	External (R)Edge
IRQ4	Т0	8,9	Internal
IRQ5	T1	10,11	Internal
	ng edge triggered ng edge triggered		

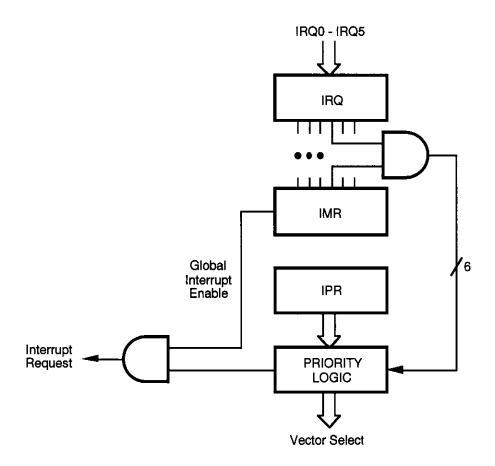
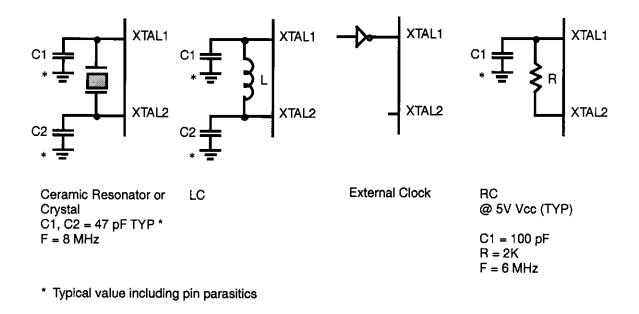



Figure 15. Interrupt Block Dlagram

Clock. The Z8 on-chip oscillator has a high-gain, parallelresonant amplifier for connection to a crystal, LC, RC, ceramic resonator, or any suitable external clock source (XTAL1 = INPUT, XTAL2 = OUTPUT). The crystal should be AT cut, up to 12 MHz max., with a series resistance (RS) of less than or equal to 100 Ohms. The crystal should be connected across XTAL1 and XTAL2 using the vendors crystal recommended capacitors from each pin directly to device ground pin 14 (Figure 16). Note that the crystal capacitor loads should be connected to V_{SS} , Pin 14 to reduce Ground noise injection.

HALT Mode. This instruction turns off the internal CPU clock but not the crystal oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2 and IRQ3 remain active. The device is recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after the HALT.

Note: On the C12 ICEBOX, the IRQ3 does not wake the device out of HALT Mode.

STOP Mode. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 μ A. The STOP Mode is released by a RESET through a Stop-Mode Recovery (pin P27). A Low input condition on P27 releases the STOP Mode. Program execution begins at location 000C(Hex). However, when P27 is used to release the STOP Mode, the I/O port Mode registers are not reconfigured to their default power-on conditions. This prevents any I/O, configured as output when the STOP instruction was executed, from glitching to an unknown state. To use the P27 release approach with STOP Mode, use the following instruction:

LD P2M, #1XXX XXXXB NOP STOP

X = Dependent on user's application.

Note: A low level detected on P27 pin will take the device out of STOP Mode even if configured as an output.

In order to enter STOP or HALT Mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user executes a NOP (opcode=FFH) immediately before the appropriate SLEEP instruction, such as:

FF	NOP	; clear the pipeline
6F	STOP	; enter STOP Mode
	or	
FF	NOP	; clear the pipeline
7 F	HALT	; enter HALT Mode

Watch-Dog Timer (WDT). The Watch-Dog Timer is enabled by instruction WDT. When the WDT is enabled, it cannot be stopped by the instruction. With the WDT instruction, the WDT is refreshed when it is enabled within every 1 Twdt period; otherwise, the controller resets itself, The WDT instruction affects the flags accordingly; Z=1, S=0, V=0.

WDT = 5F (Hex)

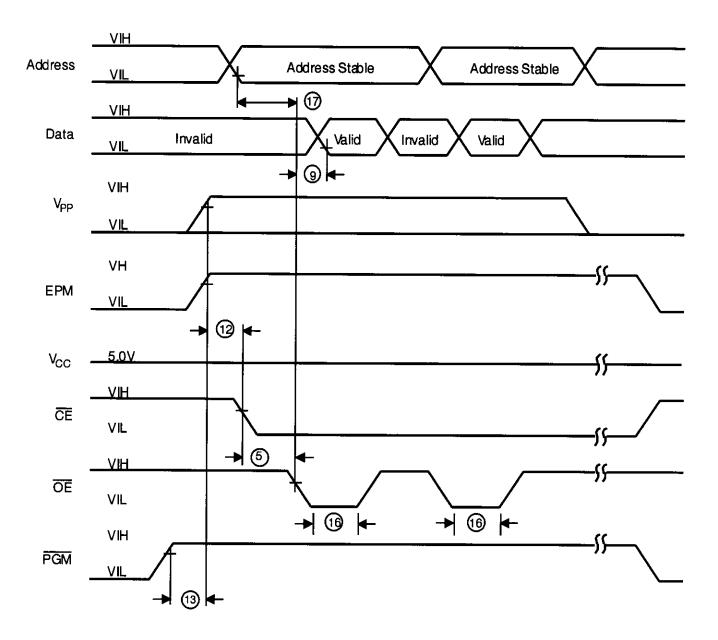
Opcode WDT (5FH). The first time Opcode 5FH is executed, the WDT is enabled and subsequent execution clears the WDT counter. This must be done at least every T_{WDT} ; otherwise, the WDT times out and generates a reset. The generated reset is the same as a power-on reset of T_{POR} , plus 18 XTAL clock cycles. The software enabled WDT does not run in STOP Mode.

Opcode WDH (4FH). When this instruction is executed it enables the WDT during HALT. If not, the WDT stops when entering HALT. This instruction does not clear the counters, it just makes it possible to have the WDT running during HALT Mode. A WDH instruction executed without executing WDT (5FH) has no effect.

Permanent WDT. Selecting the hardware enabled Permanent WDT option, will automatically enable the WDT upon exiting reset. The permanent WDT will always run in HALT Mode and STOP Mode, and it cannot be disabled.

Auto Reset Voltage (V_{LV}). The Z8 has an auto-reset builtin. The auto-reset circuit resets the Z8 when it detects the V_{CC} below V_{LV} .

Figure 17 shows the Auto Reset Voltage versus temperature. If the V_{CC} drops below the VCC operating voltage range, the Z8 will function down to the V_{LV} unless the internal clock frequency is higher than the specified maximum V_{LV} frequency.


Internal Address Counter. The address of Z8 is generated internally with a counter clocked through pin P01 (Clock). Each clock signal increases the address by one and the "high" level of pin P00 (Clear) will reset the address to zero. Figure 18 shows the setup time of the serial address input. **Programming Waveform.** Figures 19, 20, 21 and 22 show the programming waveforms of each mode. Table 8 shows the timing of programming waveforms.

Programming Algorithm. Figure 23 shows the flow chart of the Z8 programming algorithm.

Parameters	Name	Min	Max	Units
1	Address Setup Time	2	·	μs
2	Data Setup Time	2		μs
3	V _{PP} Setup	2		μs
4	V _{cc} Setup Time	2		μs
5	Chip Enable Setup Time	2	·····	μs
6	Program Pulse Width	0.95		ms
7	Data Hold Time	2		μs
8	OE Setup Time	2		μs
9	Data Access Time	188		ns
10	Data Output Float Time		100	ns
11	Overprogram Pulse Width	2.85		ms
12	EPM Setup Time	2		μs
13	PGM Setup Time	2		μs
14	Address to OE Setup Time	2		μs
15	Option Program Pulse Width	78		ms
16	OE Width	250		ns
17	Address Valid to OE Low	125		กร

Table 8. Timing of Programming Waveforms

Zilog

. _____

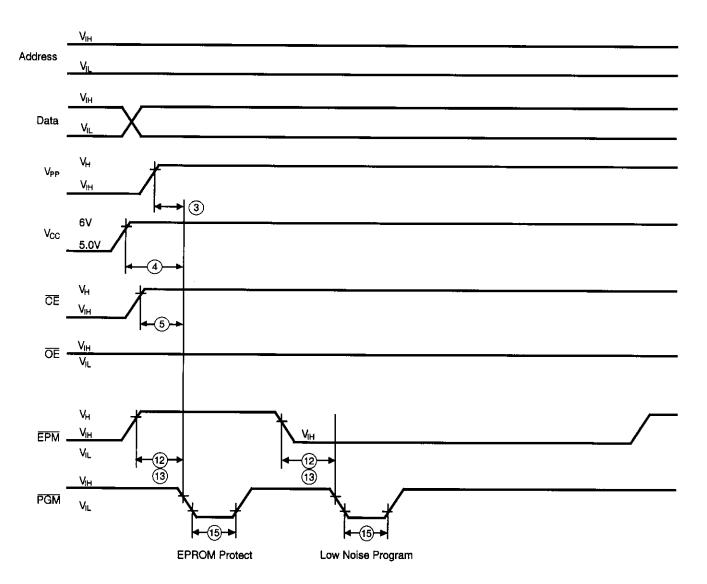


Figure 21. Z86E04/E08 Programming Options Waveform (EPROM Protect and Low Noise Program) Zilog

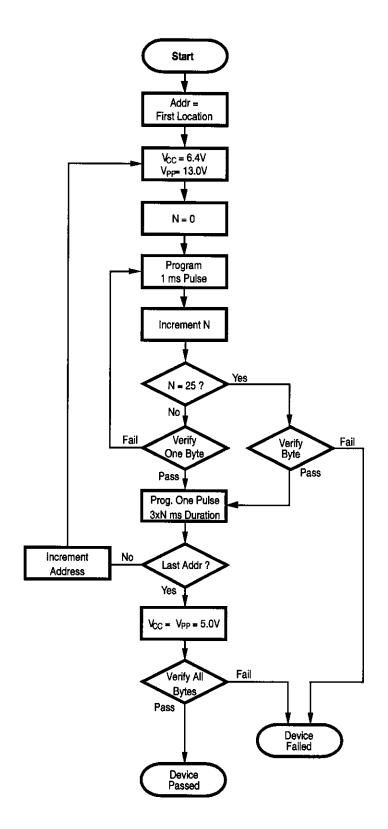
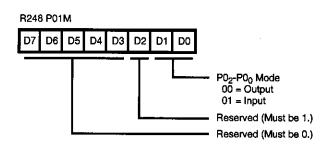
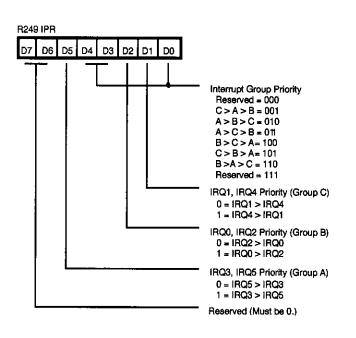
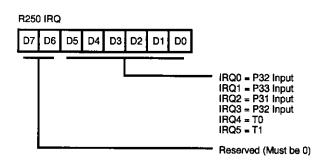




Figure 23. Z86E04/E08 Programming Algorithm


Z8 CONTROL REGISTERS (Continued)

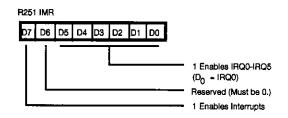
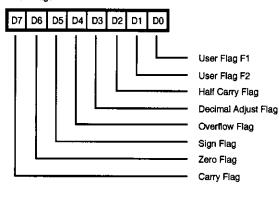

Figure 31. Port 0 and 1 Mode Register (F8_H: Write Only)

Figure 32. Interrupt Priority Register (F9_H: Write Only)



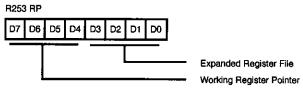


Figure 34. Interrupt Mask Register (FB_H: Read/Write)

R252 Flags

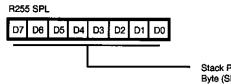
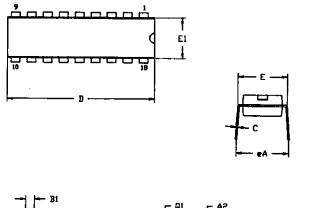


Figure 35. Flag Register (FC_H: Read/Write)

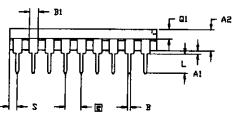
Default After Reset = 00H

Figure 36. Register Pointer (FD_H: Read/Write)

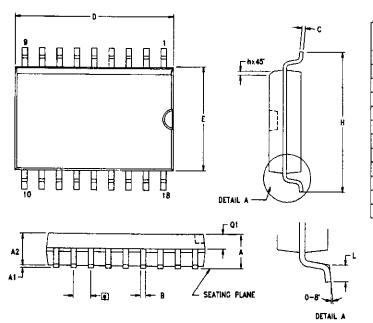


Stack Pointer Lower Byte (SP 7 - SP 0)

Figure 37. Stack Pointer (FF_H: Read/Write)


PACKAGE INFORMATION

Zilog



SYMBOL	MILLI	METER	IN	CH .
	MIN	MAX	MIN	MAX
<u>A1</u>	0.51	0.81	.020	.032
54	3.25	3.43	.128	.135
B	0.38	0.53	.015	.021
B1	1.14	1.65	.045	.065
С	0.23	0.38	.009	.015
D	22.35	23.37	.880	.920
E	7.62	8.13	.300	.320
El	6.22	6.48	.245	.255
E	2.54	TYP	.100	TYP
eA	7.87	8.89	.310	.350
L	3.19	3.81	.125	.150
Q1	1.52	1.65	.060	.065
S	0.89	1.65	.035	.065

CONTROLLING DIMENSIONS : INCH

18-Pin DIP Package Diagram

CYLIDOL	MILLI	METER	II	ICH
SYMBOL	MIN	MAX	KIN	MAX
A	2.40	2.65	0.094	0.104
A1	0.10	0.30	0.004	0.012
A2	2.24	2.44	0.088	0.096
8	0.36	0.46	0.014	0.018
C	0.23	0.30	0.009	0.012
D	11.40	11.75	0.449	0.463
ε	7.40	7.60	0.291	0.299
(F)	t.27	TYP	0.05	O TYP
н	10.00	10.65	0.394	0.419
h	0.30	0.50	0.012	0.020
L	0.60	1.00	0.024	0.039
Q1	0.97	1.07	0.038	0.042

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

18-Pin SOIC Package Diagram