E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	14
Program Memory Size	1KB (1K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	125 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e0412hsc1866

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FEATURES

- 14 Input/Output Lines
- Six Vectored, Prioritized Interrupts
 (3 falling edge, 1 rising edge, 2 timers)
- Two Analog Comparators
- Program Options:
 - Low Noise
 - ROM Protect
 - Auto Latch
 - Watch-Dog Timer (WDT)
 - EPROM/Test Mode Disable

- Two Programmable 8-Bit Counter/Timers, Each with 6-Bit Programmable Prescaler
- WDT/ Power-On Reset (POR)
- On-Chip Oscillator that Accepts XTAL, Ceramic Resonance, LC, RC, or External Clock
- Clock-Free WDT Reset
- Low-Power Consumption (50 mw typical)
- Fast Instruction Pointer (1µs @ 12 MHz)
- RAM Bytes (125)

GENERAL DESCRIPTION

Zilog's Z86E04/E08 Microcontrollers (MCU) are One-Time Programmable (OTP) members of Zilog's single-chip Z8[®] MCU family that allow easy software development, debug, prototyping, and small production runs not economically desirable with masked ROM versions.

For applications demanding powerful I/O capabilities, the Z86E04/E08's dedicated input and output lines are grouped into three ports, and are configurable under software control to provide timing, status signals, or parallel I/O.

Two on-chip counter/timers, with a large number of user selectable modes, offload the system of administering real-time tasks such as counting/timing and I/O data communications.

Note: All Signals with an overline, " $\overline{}$ ", are active Low, for example: B/W (WORD is active Low); B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device		
Power	V _{cc}	V _{DD}		
Ground	GND	V _{SS}		

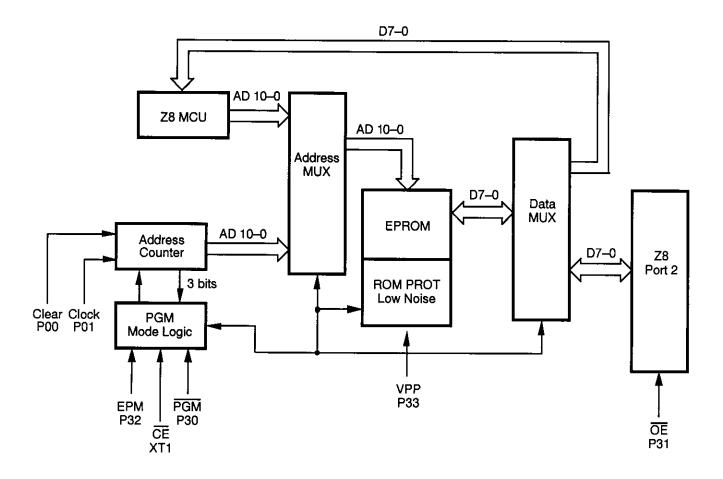
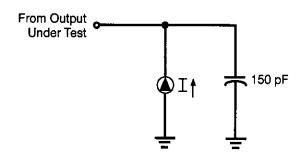



Figure 2. EPROM Programming Mode Block Diagram

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to Ground. Positive current flows into the referenced pin (Figure 5).

CAPACITANCE

 $T_A = 25^{\circ}C$, $V_{CC} = GND = 0V$, f = 1.0 MHz, unmeasured pins returned to GND.

Parameter	Min	Max
Input capacitance	0	10 pF
Output capacitance	0	20 pF
I/O capacitance	0	25 pF

DC ELECTRICAL CHARACTERISTICS Extended Temperature

				40°C to)5°C	Typical			
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
VINMAX	Max Input Voltage	4.5V		12.0		V	I _{IN} < 250 μA	1
		5.5V		12.0	- 4 .	V	l _{IN} < 250 μA	1
V _{CH}	Clock Input High Voltage	4.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	V	Driven by External Clock Generator	
		5.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	4.5V	V _{SS} 0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
		5.5V	V _{SS} –0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	4.5V	$0.7 V_{CC}$	V _{cc} +0.3	2.8	V		
	_	5.5V	0.7 V _{CC}	V _{CC} +0.3	2.8	V	<u>,</u>	
V _{IL}	Input Low Voltage	4.5V	V _{ss} –0.3	0.2 V _{CC}	1.5	V		
		5.5V	V _{ss} -0.3	0.2 V _{CC}	1.5	V		I
V _{OH}	Output High Voltage	4.5V	V _{cc} -0.4		4.8	V	I _{OH} = -2.0 mA	5
		5.5V	V _{cc} -0.4		4.8	V	I _{OH} = -2.0 mA	5
		4.5V	V _{cc} -0.4			V	Low Noise @ $I_{OH} = -0.5$ mA	
		5.5V	V _{cc} -0.4	.		V	Low Noise @ I _{OH} = -0.5 mA	
V _{OL1}	Output Low Voltage	4.5V		0.4	0.1	V	I _{OL} = +4.0 mA	5
	·	5.5V		0.4	0.1	V	I _{OL} = +4.0 mA	5
		4.5V		0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
		5.5V		0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
V _{ol2}	Output Low Voltage	4.5V		1.0	0.3	V	l _{OL} = +12 mA,	5
		5.5V		1.0	0.3	V	I _{OL} = +12 mA,	5
V _{offset}	Comparator Input	4.5V		25.0	10.0	mV		
	Offset Voltage	5.5V		25.0	10.0	mV		
V _{LV}	V _{CC} Low Voltage Auto Reset		1.8	3.8	2.8	V	@ 6 MHz Max. Int. CLK Freq.	3
կլ	Input Leakage	4.5V		-1.0	1.0	μA	$V_{\rm IN} = 0V, V_{\rm CC}$	
	(Input Bias Current of Comparator)	5.5V		-1.0	1.0	μA	$V_{IN} = 0V, V_{CC}$	
I _{OL}	Output Leakage	4.5V		-1.0	1.0	μA	$V_{\rm IN} = 0V, V_{\rm CC}$	
		5.5V		-1.0	1.0	μA	$V_{IN} = 0V, V_{CC}$	
V _{ICR}	Comparator Input Common Mode Voltage Range		0	V _{CC} –1.5		V		

DC ELECTRICAL CHARACTERISTICS (Continued)

				40°C to)5°C	Typical			-
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
lcc	Supply Current	4.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 2 MHz	5,7
		5.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 2 MHz	5,7
		4.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		5.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		4.5V		20.0	12.0	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
		5.5V		20.0	12.0	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
I _{CC1}	Standby Current	4.5V		5.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	5,7
		5.5V		5.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	5,7
		4.5V	-184	5.0	3.0	mA	HALT Mode $V_{IN} = 0V$, $V_{CC} @ 8 MHz$	5,7
		5.5V		5.0	3.0	mA	HALT Mode $V_{IN} = 0V$, $V_{CC} @ 8 MHz$	5,7
		4.5V		7.0	4.0	mA	HALT Mode $V_{iN} = 0V$, V_{CC} @ 12 MHz	5,7
		5.5V	· ·	7.0	4.0	mA	HALT Mode $V_{IN} = 0V$, $V_{CC} @ 12 MHz$	5,7
Icc	Supply Current (Low Noise Mode)	4.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 1 MHz	7
		5.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 1 MHz	7
		4.5V	<u>-</u>	13.0	7.5	mA	All Output and I/O Pins Floating @ 2 MHz	7
		5.5V		13.0	7.5	mA	All Output and I/O Pins Floating @ 2 MHz	7
		4.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 4 MHz	7
		5.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 4 MHz	7

Z86E04/E08 CMOS Z8 OTP Microcontrollers

•	_ .	N 143		C to +105°C	Typical		· · ·	
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
I _{CC1}	Standby Current	4.5V		4.0	2.5	mA	HALT Mode V _{IN} = 0V,	7
	(Low Noise Mode)						V _{cc} @1MHz	
		5.5V		4.0	2.5	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 1 MHz	
		4.5V		4.5	2.8	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 2 MHz	
		5.5V		4.5	2.8	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 2 MHz	
		4.5V		5.0	3.0	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 4 MHz	
		5.5V		5.0	3.0	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 4 MHz	
I _{CC2}	Standby Current	4.5V		20	1.0	μA	STOP Mode V _{IN} = 0V, V _{CC}	7,8
							WDT is not Running	
		5.5V		20	1.0	μA	STOP Mode V _{IN} = 0V, V _{CC}	7,8
							WDT is not Running	
	Auto Latch Low	4.5V		40	16	μA	$0V < V_{IN} < V_{CC}$	
	Current	5.5V		40	16	μA	0V < V _{IN} < V _{CC}	
I _{ALH}	Auto Latch High	4.5V		-20.0	-8.0	μA	$0V < V_{IN} < V_{CC}$	
	Current	5.5V		-20.0	-8.0	μA	$0V < V_{IN} < V_{CC}$	

Notes:

1. Port 2 and Port 0 only

2. $V_{SS} = 0V = GND$

 The device operates down to V_{LV} of the specified frequency for V_{LV}. The minimum operational V_{CC} is determined on the value of the voltage V_{LV} at the ambient temperature. The V_{LV} increases as the temperature decreases.

4. V_{CC} = 4.5V to 5.5V, typical values measured at V_{CC} = 5.0V

5. Standard Mode (not Low EMI Mode)

6. Z86E08 only

7. All outputs unloaded and all inputs are at $V_{CC} \mbox{ or } V_{SS}$ level.

8. If analog comparator is selected, then the comparator inputs must be at V_{CC} level.

AC ELECTRICAL CHARACTERISTICS

Timing Table (Standard Mode for SCLK/TCLK = XTAL/2)

Extended Temperature

				T 8 M		to +105 °C ; 12 N			
No	Rumhal	Deveneter	v	-					
	Symbol	Parameter	V _{cc}	Min	Max	Min	Max	Units	Notes
1	ТрС	Input Clock Period	4.5V	125	DC	83	DC	ns	1
			5.5V	125	DC	83	DC	ns	1
2	TrC,TfC	Clock Input Rise	4.5V		25		15	ns	1
		and Fall Times	5.5V	-	25		15	ns	1
3	TwC	Input Clock Width	4.5V		62		41	ns	1
			5.5V		62		41	ns	1
4	TwTinL	Timer Input Low Width	4.5V	70		70		ns	1
			5.5V	70		70		ns	1
5	TwTinH	Timer Input High Width	4.5V	5TpC		5TpC			1
			5.5V	5TpC		5TpC			1
6	TpTin	Timer Input Period	4.5V	8TpC		8TpC			1
			5.5V	8TpC		8TpC			- 1
7	TrTin,	Timer Input Rise	4.5V		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwiL	Int. Request Input	4.5V	70		70		ns	1,2
		Low Time	5.5V	70		70		ns	1,2
9	TwiH	Int. Request Input	4.5V	5TpC		5TpC			1,2
		High Time	5.5V	5TpC		5TpC			1,2
10	Twdt	Watch-Dog Timer	4.5V	10		10		ms	1
		Delay Time for Timeout	5.5V	10		10		ms	1
11	Tpor	Power-On Reset Time	4.5V	12	100	12	100	ms	1
			5.5V	12	100	12	100	ms	1

Notes:

1. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.

2. interrupt request made through Port 3 (P33-P31).

Low Noise Mode, Extended Temperature

				T۸	= -40 °C	; to +105 °	С		
				1 Ŵ		4 M			
No	Symbol	Parameter	V _{cc}	Min	Max	Min	Мах	Units	Notes
1	TPC	Input Clock Period	4.5V	1000	DC	250	DC	ns	1
			5.5V	1000	DC	250	DC	ns	1
2	TrC	Clock Input Rise	4.5V		25		25	ns	1
	TfC	and Fall Times	5.5V		25		25	ns	1
3	TwC	Input Clock Width	4.5V	500		125		ns	1
			5.5V	500		125		ns	1
4.	TwTinL	Timer Input Low Width	4.5V	70		70		ns	1
			5.5V	70		70		ns	1
5	TwTinH	Timer Input High Width	4.5V	2.5TpC		2.5TpC			1
			5.5V	2.5TpC		2.5TpC			1
6	TpTin	Timer Input Period	4.5V		4TpC	4TpC	".		1
			5.5V		4TpC	4TpC			1
7	TrTin,	Timer Input Rise	4.5V		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwIL	Int. Request Input	4.5V	70		70		ns	1,2
		Low Time	5.5V	70		70		ns	1,2
9	TwiH	Int. Request Input	4.5V	2.5TpC		2.5TpC			1,2
		High Time	5.5V	2.5TpC		2.5TpC			1,2
10	Twdt	Watch-Dog Timer	4.5V	10		10		ms	1
		Delay Time for Timeout	5.5V	10		10		ms	1

Notes:

1. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.

2. Interrupt request through Port 3 (P33-P31).

Port 2, P27–P20. Port 2 is an 8-bit, bit programmable, bidirectional, Schmitt-triggered CMOS-compatible I/O port. These eight I/O lines can be configured under software

control to be inputs or outputs, independently. Bits programmed as outputs can be globally programmed as either push-pull or open-drain (Figure 8).

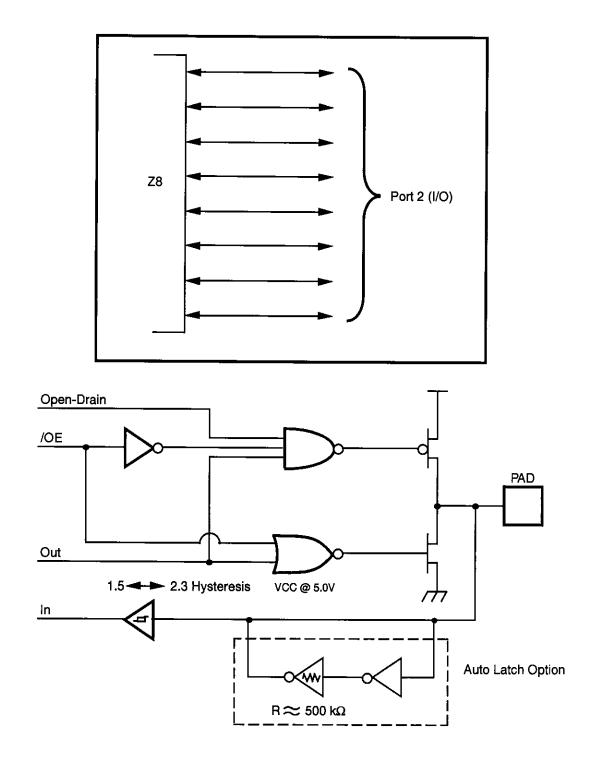


Figure 8. Port 2 Configuration

PIN FUNCTIONS (Continued)

Port 3, P33–P31. Port 3 is a 3-bit, CMOS-compatible port with three fixed input (P33–P31) lines. These three input lines can be configured under software control as digital Schmitt-trigger inputs or analog inputs.

These three input lines are also used as the interrupt sources IRQ0–IRQ3, and as the timer input signal $T_{\rm IN}$ (Figure 9).

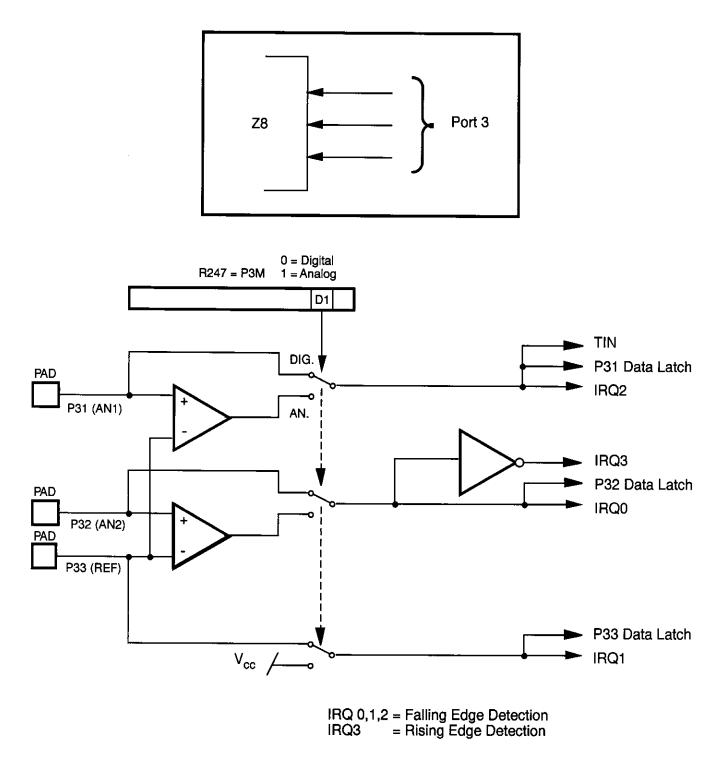


Figure 9. Port 3 Configuration

Comparator Inputs. Two analog comparators are added to input of Port 3, P31, and P32, for interface flexibility. The comparators reference voltage P33 (REF) is common to both comparators.

Typical applications for the on-board comparators; Zero crossing detection, A/D conversion, voltage scaling, and threshold detection. In Analog Mode, P33 input functions serve as a reference voltage to the comparators.

The dual comparator (common inverting terminal) features a single power supply which discontinues power in STOP

Mode. The common voltage range is 0-4 V when the V_{CC} is 5.0V; the power supply and common mode rejection ratios are 90 dB and 60 dB, respectively.

Interrupts are generated on either edge of Comparator 2's output, or on the falling edge of Comparator 1's output. The comparator output is used for interrupt generation, Port 3 data inputs, or $T_{\rm IN}$ through P31. Alternatively, the comparators can be disabled, freeing the reference input (P33) for use as IRQ1 and/or P33 input.

FUNCTIONAL DESCRIPTION

The following special functions have been incorporated into the Z8 devices to enhance the standard Z8 core architecture to provide the user with increased design flexibility.

RESET. This function is accomplished by means of a Power-On Reset or a Watch-Dog Timer Reset. Upon power-up, the Power-On Reset circuit waits for T_{POR} ms, plus 18 clock cycles, then starts program execution at address 000C (Hex) (Figure 10). The Z8 control registers' reset value is shown in Table 3.

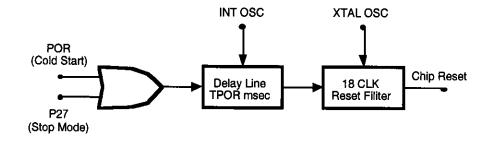


Figure 10. Internal Reset Configuration

Power-On Reset (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for a POR timer function. The POR time allows V_{CC} and the oscillator circuit to stabilize before instruction execution begins. The POR timer circuit is a one-shot timer triggered by one of the four following conditions:

Watch-Dog Timer Reset. The WDT is a retriggerable one-shot timer that resets the Z8 if it reaches its terminal count. The WDT is initially enabled by executing the WDT instruction and is retriggered on subsequent execution of the WDT instruction. The timer circuit is driven by an onboard RC oscillator.

- Power-bad to power-good status
- Stop-Mode Recovery
- WDT time-out
- WDH time-out

FUNCTIONAL DESCRIPTION (Continued)

				R	eset C	onditio	n			
Addr.	Reg.	D7	D6	D5	D4	D3	D2	D1	D0	Comments
FF	SPL	0	0	0	0	0	0	0	0	
FD	RP	0	0	0	0	0	0	0	0	
FC	FLAGS	U	U	U	U	U	U	U	U	· · · · · · · · · · · · · · · · · · ·
FB	IMR	0	U	U	U	U	U	U	U	
FA	IRQ	U	U	0	0	0	0	0	0	IRQ3 is used for positive edge detection
F9	IPR	U	Ų	U	U	U	U	U	U	
F8*	P01M	U	U	U	0	U	U	0	1	
F7*	P3M	U	U	U	Ū	U	U	0	0	
F6*	P2M	1	1	1	1	1	1	1	1	Inputs after reset
F5	PRE0	U	U	U	U	U	U	U	0	
F4	T0	U	U	U	U	U	U	U	U	
F3	PRE1	U	Ū	U	Ū	U	Ŭ	0	0	
F2	T1	U	U	U	Ū	U	U	U	U	
F1	TMR	0	0	0	0	0	0	0	0	

Table 3. Control Registers

Note: *Registers are not reset after a STOP-Mode Recovery using P27 pin. A subsequent reset will cause these control registers to be reconfigured as shown in Table 4 and the user must avoid bus contention on the port pins or it may affect device reliability.

Program Memory. The Z86E04/E08 addresses up to 1K/2KB of Internal Program Memory (Figure 11). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. Bytes 0–1024/2048 are on-chip one-time programmable ROM.

Identifiers 1023/2047 3FFH/7FFH Location of On-Chip First Byte of ROM Instruction Executed After RESET 12 0CH IRQ5 0BH 11 10 IRQ5 0AH IRQ4 9 09H IRQ4 8 08H 7 **IRQ3** 07H Interrupt Vector 6 06H IRQ3 (Lower Byte) IRQ2 5 05H 04H 4 IRQ2 Interrupt Vector 3 IRQ1 03H (Upper Byte) **IRQ1** 2 02H 1 IRQ0 01H 0 00H IRQ0

Figure 11. Program Memory Map

Register File. The Register File consists of three I/O port registers, 124 general-purpose registers, and 14 control and status registers R0–R3, R4–R127 and R241–R255, respectively (Figure 12). General-purpose registers occupy the 04H to 7FH address space. I/O ports are mapped as per the existing CMOS Z8.

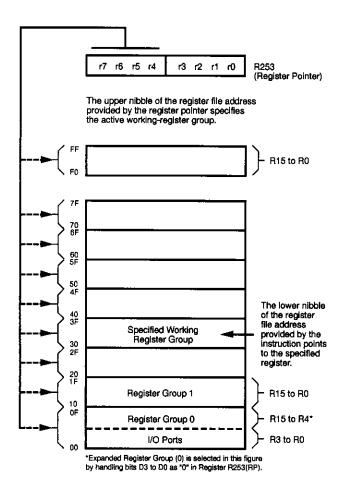

Location	· · · · · · · · · · · · · · · · · · ·	Identifiers
255 (FFH)	Stack Pointer (Bits 7-0)	SPL
254 (FE)	General-Purpose Register	GPR
253 (FD)	Register Pointer	RP
252 (FC)	Program Control Flags	FLAGS
251 (FB)	Interrupt Mask Register	IMR
250 (FA)	Interrupt Request Register	IRQ
249 (F9)	Interrupt Priority Register	IPR
248 (F8)	Ports 0-1 Mode	P01M
247 (F7)	Port 3 Mode	РЗМ
246 (F6)	Port 2 Mode	P2M
245 (F5)	T0 Prescaler	PRE0
244 (F4)	Timer/Counter 0	то
243 (F3)	T1 Prescaler	PRE1
242 (F2)	Timer/Counter 1	T 1
241 (F1H)	Timer Mode	TMR
128	Not Implemented	
127 (7FH)	General-Purpose Registers	
4		
3	Port 3	P3
2	Port 2	P2
1	Reserved	P1
0 (00H)	Port 0	P0

Figure 12. Register File

FUNCTIONAL DESCRIPTION (Continued)

The Z8 instructions can access registers directly or indirectly through an 8-bit address field. This allows short 4-bit register addressing using the Register Pointer.

In the 4-bit mode, the register file is divided into eight working register groups, each occupying 16 continuous locations. The Register Pointer (Figure 13) addresses the starting location of the active working-register group.

Stack Pointer. The Z8 has an 8-bit Stack Pointer (R255) used for the internal stack that resides within the 124 general-purpose registers.

General-Purpose Registers (GPR). These registers are undefined after the device is powered up. The registers keep their last value after any reset, as long as the reset occurs in the V_{CC} voltage-specified operating range. Note: Register R254 has been designated as a general-purpose register and is set to 00 Hex after any reset or Stop-Mode Recovery.

Counter/Timer. There are two 8-bit programmable counter/timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the T0 can be driven by the internal clock source only (Figure 14).

The 6-bit prescalers divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both counter and prescaler reach the end of count, a timer interrupt request IRQ4 (T0) or IRQ5 (T1) is generated.

The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters are also programmed to stop upon reaching zero (Single-Pass Mode) or to automatically reload the initial value and continue counting (Modulo-N Continuous Mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and is either the internal microprocessor clock divided by four, or an external signal input through Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that is retriggerable or non-retriggerable, or used as a gate input for the internal clock.

Load Capacitor										
	33	3 pFd	56	oFd	100	pFd	0.00 1μFd			
Resistor (R)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)		
1.0M	33K	31K	20K	20K	12K	11K	1.4K	1.4K		
560K	56K	52K	34K	32K	20K	19K	2.5K	2.4K		
220K	144K	130K	84K	78K	48K	45K	6K	6K		
100K	315K	270K	182K	164K	100K	95K	12K	12K		
56K	552K	480K	330K	300K	185K	170K	23K	22K		
20K	1.4M	1 M	884K	740K	500K	450K	65K	61K		
10K	2.6M	2M	1.6M	1.3M	980K	820K	130K	123K		
5K	4.4M	3M	2.8M	2M	1.7K	1.3M	245K	225K		
2K	8M	5M	6M	4M	3.8K	2.7M	600K	536K		
1K	12M	7M	8.8M	6M	6.3K	4.2M	1.0M	950K		

Notes:

A = STD Mode Frequency. B = Low EMI Mode Frequency.

Table 6. Typical Frequency vs. RC Values V_{cc} = 3.3V @ 25°C

				Load Capac	itor				
Resistor (R)	33 pFd		56	pFd	100	pFd	0.00 1µFd		
	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	
1.0M	18K	18K	12K	12K	7.4K	7.7K	1K	1K	
560K	30K	30K	20K	20K	12K	12K	1.6K	1.6K	
220K	70K	70K	47K	47K	30K	30K	4K	4K	
100K	150K	148K	97K	96K	60K	60K	8K	8K	
56K	268K	250K	176K	170K	100K	100K	15K	15K	
20K	690M	600K	463K	416K	286K	266K	40K	40K	
10K	1.2M	1M	860K	730K	540K	480K	80K	76K	
5K	2M	1.7M	1.5M	1.2M	950K	820K	151K	138K	
2K	4.6M	3M	3.3M	2.4M	2.2M	1.6M	360K	316K	
1K	7M	4.6M	5M	3.6M	3.6K	2.6M	660K	565K	

Notes:

A = STD Mode Frequency.

B = Low EMI Mode Frequency.

HALT Mode. This instruction turns off the internal CPU clock but not the crystal oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2 and IRQ3 remain active. The device is recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after the HALT.

Note: On the C12 ICEBOX, the IRQ3 does not wake the device out of HALT Mode.

STOP Mode. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 μ A. The STOP Mode is released by a RESET through a Stop-Mode Recovery (pin P27). A Low input condition on P27 releases the STOP Mode. Program execution begins at location 000C(Hex). However, when P27 is used to release the STOP Mode, the I/O port Mode registers are not reconfigured to their default power-on conditions. This prevents any I/O, configured as output when the STOP instruction was executed, from glitching to an unknown state. To use the P27 release approach with STOP Mode, use the following instruction:

LD P2M, #1XXX XXXXB NOP STOP

X = Dependent on user's application.

Note: A low level detected on P27 pin will take the device out of STOP Mode even if configured as an output.

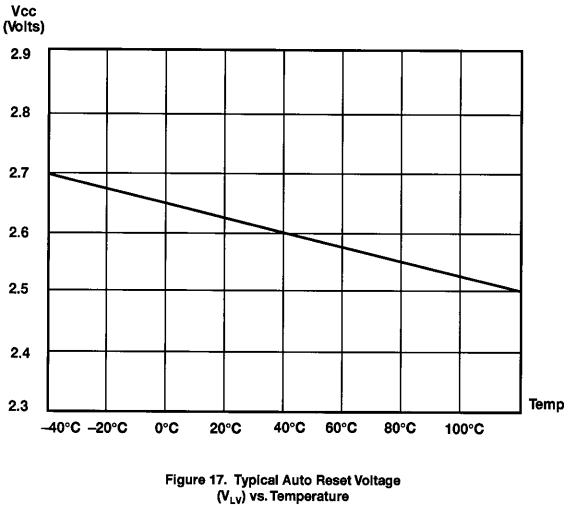
In order to enter STOP or HALT Mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user executes a NOP (opcode=FFH) immediately before the appropriate SLEEP instruction, such as:

FF	NOP	; clear the pipeline
6F	STOP	; enter STOP Mode
	or	
FF	NOP	; clear the pipeline
7 F	HALT	; enter HALT Mode

Watch-Dog Timer (WDT). The Watch-Dog Timer is enabled by instruction WDT. When the WDT is enabled, it cannot be stopped by the instruction. With the WDT instruction, the WDT is refreshed when it is enabled within every 1 Twdt period; otherwise, the controller resets itself, The WDT instruction affects the flags accordingly; Z=1, S=0, V=0.

WDT = 5F (Hex)

Opcode WDT (5FH). The first time Opcode 5FH is executed, the WDT is enabled and subsequent execution clears the WDT counter. This must be done at least every T_{WDT} ; otherwise, the WDT times out and generates a reset. The generated reset is the same as a power-on reset of T_{POR} , plus 18 XTAL clock cycles. The software enabled WDT does not run in STOP Mode.


Opcode WDH (4FH). When this instruction is executed it enables the WDT during HALT. If not, the WDT stops when entering HALT. This instruction does not clear the counters, it just makes it possible to have the WDT running during HALT Mode. A WDH instruction executed without executing WDT (5FH) has no effect.

Permanent WDT. Selecting the hardware enabled Permanent WDT option, will automatically enable the WDT upon exiting reset. The permanent WDT will always run in HALT Mode and STOP Mode, and it cannot be disabled.

Auto Reset Voltage (V_{LV}). The Z8 has an auto-reset builtin. The auto-reset circuit resets the Z8 when it detects the V_{CC} below V_{LV} .

Figure 17 shows the Auto Reset Voltage versus temperature. If the V_{CC} drops below the VCC operating voltage range, the Z8 will function down to the V_{LV} unless the internal clock frequency is higher than the specified maximum V_{LV} frequency.

FUNCTIONAL DESCRIPTION (Continued)

Z86E04/E08 CMOS Z8 OTP Microcontrollers

Low EMI Emission

The Z8 can be programmed to operate in a low EMI Emission (Low Noise) Mode by means of an EPROM programmable bit option. Use of this feature results in:

- Less than 1 mA consumed during HALT Mode.
- All drivers slew rates reduced to 10 ns (typical).
- Internal SCLK/TCLK = XTAL operation limited to a maximum of 4 MHz-250 ns cycle time.
- Output drivers have resistances of 500 ohms (typical).
- Oscillator divide-by-two circuitry eliminated.

In addition to V_{DD} and GND (V_{SS}), the Z8 changes all its pin functions in the EPROM Mode. XTAL2 has no function, XTAL1 functions as \overline{CE} , P31 functions as \overline{OE} , P32 functions as EPM, P33 functions as V_{PP}, and P02 functions as PGM.

ROM Protect. ROM Protect fully protects the Z8 ROM code from being read externally. When ROM Protect is selected, the instructions LDC and LDCI **are supported** (Z86E04/E08 and Z86C04/C08 do not support the instructions of LDE and LDEI). When the device is programmed for ROM Protect, the Low Noise feature will not automatically be enabled.

Please note that when using the device in a noisy environment, it is suggested that the voltages on the EPM and \overline{CE} pins be clamped to V_{CC} through a diode to V_{CC} to prevent accidentally entering the OTP Mode. The V_{PP} requires both a diode and a 100 pF capacitor.

Auto Latch Disable. Auto Latch Disable option bit when programmed will globally disable all Auto Latches.

WDT Enable. The WDT Enable option bit, when programmed, will have the hardware enabled Permanent WDT enabled after exiting reset and can not be stopped in Halt or Stop Mode.

EPROM/Test Mode Disable. The EPROM/Test Mode Disable option bit, when programmed, will disable the EPROM Mode and the Factory Test Mode. Reading, verifying, and programming the Z8 will be disabled. To fully verify that this mode is disabled, the device must be power cycled.

User Modes. Table 7 shows the programming voltage of each mode.

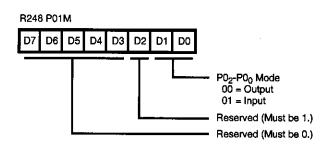
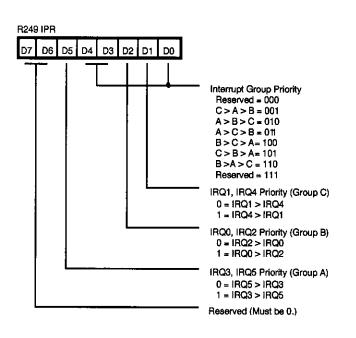
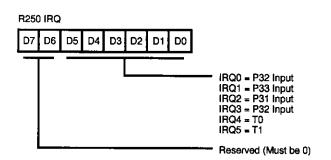

Programming Modes	$V_{_{PP}}$	EPM	CE	ŌĒ	PGM	ADDR	DATA	V _{cc} *
EPROM READ	NU	V _H	VIL	V _{IL}	V _{IH}	ADDR	Out	5.0V
PROGRAM	V _H	V _{IH}	VIL	VIH	V _{IL}	ADDR	In	6.4V
PROGRAM VERIFY	V _H	ViH	VIL	VIL	V _{IH}	ADDR	Out	6.4V
EPROM PROTECT	V _H	V _H	V _H	ViH	V _{IL}	NU	NU	6.4V
LOW NOISE SELECT	V _H	V _{IH}	V _H	VIH	V _{IL}	NU	NU	6.4V
AUTO LATCH DISABLE	V _H	VIH	V _H	V _{IL}	V _{IL}	NU	NU	6.4V
WDT ENABLE	V _H	V _{IL}	V _H	VIH	VIL	NU	NU	6.4V
EPROM/TEST MODE	V _H	V _{IL}	V _H	V _{IL}	V _{IL}	NU	NU	6.4V

Table 7. OTP Programming Table


Notes:

- 1. $V_{H} = 12.75V \pm 0.25 V_{DC}$.
- 2. V_{IH} = As per specific Z8 DC specification.
- 3. V_{IL}= As per specific Z8 DC specification.
- 4. X = Not used, but must be set to V_H or V_{IH} level.
- 5. NU = Not used, but must be set to either V_{IH} or V_{IL} level.
- 6. I_{PP} during programming = 40 mA maximum.
- 7. I_{CC} during programming, verify, or read = 40 mA maximum.
- 8. * V_{CC} has a tolerance of ±0.25V.


Z8 CONTROL REGISTERS (Continued)

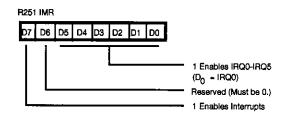
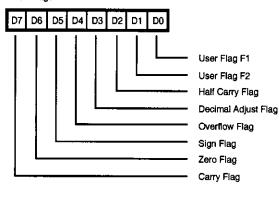

Figure 31. Port 0 and 1 Mode Register (F8_H: Write Only)

Figure 32. Interrupt Priority Register (F9_H: Write Only)



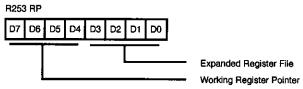


Figure 34. Interrupt Mask Register (FB_H: Read/Write)

R252 Flags

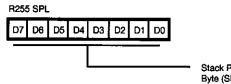


Figure 35. Flag Register (FC_H: Read/Write)

Default After Reset = 00H

Figure 36. Register Pointer (FD_H: Read/Write)

Stack Pointer Lower Byte (SP 7 - SP 0)

Figure 37. Stack Pointer (FF_H: Read/Write)

ORDERING INFORMATION

Z86E04

Z86E08

Standard To	emperature	Standard Temperature			
18-Pin DIP	18-Pin SOIC	18-Pin DIP	18-Pin SOIC		
Z86E0412PSC	Z86E0412SSC	Z86E0812PSC	Z86E0812SSC		
Z86E0412PEC	Z86E0412SEC	Z86E0812PEC	Z86E0812SEC		

For fast results, contact your local Zilog sales office for assistance in ordering the part(s) desired.

Codes

Preferred Package P = Plastic DIP

Longer Lead Time S = SOIC

Speeds 12 =12 MHz

Environmental C = Plastic Standard

Preferred Temperature

 $S = 0^{\circ}C$ to +70°C E = -40°C to +105°C

Example:	
Z 86E04 12 P S C	is a Z86E04, 12 MHz, DIP, 0°C to +70°C, Plastic Standard Flow Environmental Flow Temperature Package Speed Product Number Zilog Prefix