E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	14
Program Memory Size	1KB (1K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	125 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e0412hsg1866

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

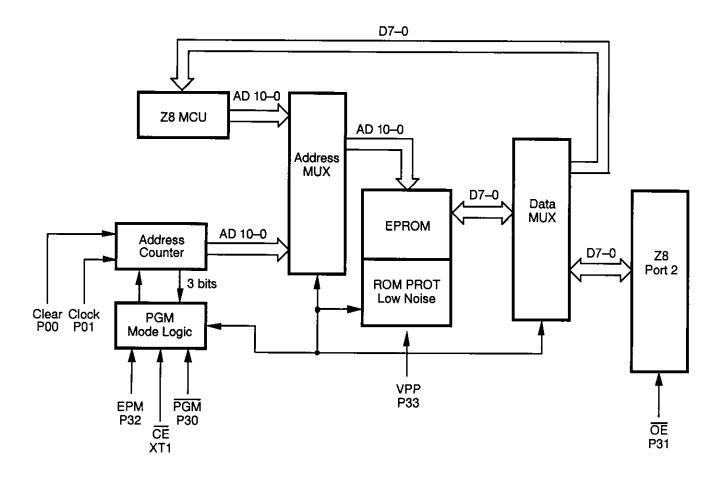


Figure 2. EPROM Programming Mode Block Diagram

PIN DESCRIPTION

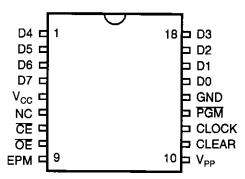


Figure 3. 18-Pin EPROM Mode Configuration

Table 1. 18-Pin DiP Pin Identification

EPROM	Programmi	ng Mode	
Pin #	Symbol	Function	Direction
1-4	D4–D7	Data 4, 5, 6, 7	In/Output
5	V _{cc}	Power Supply	
6	NC	No Connection	
7	CE	Chip Enable	Input
8	ŌĔ	Output Enable	Input
9	EPM	EPROM Prog Mode	Input
10	V _{PP}	Prog Voltage	Input
11	Clear	Clear Clock	Input
12	Clock	Address	Input
13	PGM	Prog Mode	Input
14	GND	Ground	· · · · ·
15–18	D0-D3	Data 0,1, 2, 3	In/Output

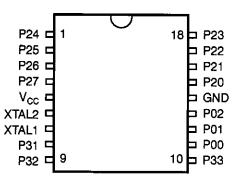


Figure 4. 18-Pin DIP/SOIC Mode Configuration

Table 2. 18-Pin DIP/SOIC Pin Identification

Standa	rd Mode				
Pin #	Symbol	Function	Direction		
1-4	P24-P27	Port 2, Pins 4,5,6,7	In/Output		
5	V _{CC}	Power Supply			
6	XTAL2	Crystal Osc. Clock	Output		
7	XTAL1	Crystal Osc. Clock	Input		
8	P31	Port 3, Pin 1, AN1	Input		
9	P32	Port 3, Pin 2, AN2	Input		
10	P33	Port 3, Pin 3, REF	Input		
11-13	P00-P02	Port 0, Pins 0,1,2	In/Output		
14	GND	Ground			
15–18	P20-P23	Port 2, Pins 0,1,2,3	In/Output		

ABSOLUTE MAXIMUM RATINGS

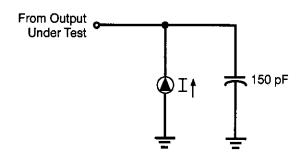
Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability. Total power dissipation should not exceed 462 mW for the package. Power dissipation is calculated as follows:

Total Power Dissipation = $V_{DD} \times [I_{DD} - (\text{sum of } I_{OH})]$ + sum of $[(V_{DD} - V_{OH}) \times I_{OH}]$ + sum of $(V_{0L} \times I_{0L})$

Min	Max	Units	Note
-40	+105	С	
-65	+150	С	
-0.7	+12	V	1
-0.3	+7	V -	
-0.6	V _{DD} +1	V	2
	1.65	W	·
	300	mA	
	220	mA	
-600	+600	μA	3
-600	+600		4
	25	mA	
	25	mA	
	60	mA	
	45	mA	
	40 65 0.7 0.3 0.6	$\begin{array}{c ccc} -40 & \pm 105 \\ -65 & \pm 150 \\ -0.7 & \pm 12 \\ -0.3 & \pm 7 \\ -0.6 & V_{DD} \pm 1 \\ \hline & 1.65 \\ 300 \\ 220 \\ -600 & \pm 600 \\ -600 & \pm 600 \\ 25 \\ 25 \\ 60 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Notes:

1. This applies to all pins except where otherwise noted. Maximum current into pin must be \pm 600 μ A.


2. There is no input protection diode from pin to V_{DD} (not applicable to EPROM Mode).

3. This excludes Pin 6 and Pin 7.

4. Device pin is not at an output Low state.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to Ground. Positive current flows into the referenced pin (Figure 5).

CAPACITANCE

 $T_A = 25^{\circ}C$, $V_{CC} = GND = 0V$, f = 1.0 MHz, unmeasured pins returned to GND.

Parameter	Min	Max
Input capacitance	0	10 pF
Output capacitance	0	20 pF
I/O capacitance	0	25 pF

DC ELECTRICAL CHARACTERISTICS (Continued)

			$T_A = 0^{\circ}C$	c to +70°C	Typical		-	
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
I _{CC1}	Standby Current (Low Noise Mode)	4.5V	·	4.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 1 MHz	7
		5.5V		4.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 1 MHz	7
		4.5V		4.5	2.8	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	7
		5.5V		4.5	2.8	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	7
		4.5V		5.0	3.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 4 MHz	7
		5.5V		5.0	3.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 4 MHz	7
I _{CC2}	Standby Current	4.5V		10.0	1.0	μA	STOP Mode V _{IN} = 0V, V _{CC} WDT is not Running	7,8
		5.5V		10.0	1.0	μA	STOP Mode V _{IN} = 0V,V _{CC} WDT is not Running	7,8
I _{ALL}	Auto Latch Low	4.5V	<u></u>	32.0	16	μA	$0V < V_{IN} < V_{CC}$	
	Current	5.5V		32.0	16	μA	$0V < V_{IN} < V_{CC}$	
	Auto Latch High	4.5V		-16.0	-8.0	μA	OV < V _{IN} < V _{CC}	
	Current	5.5V		-16.0	-8.0	μA	$0V < V_{IN} < V_{CC}$	

Notes:

1. Port 2 and Port 0 only

2. $V_{SS} = 0V = GND$

 The device operates down to V_{LV} of the specified frequency for V_{LV}. The minimum operational V_{CC} is determined on the value of the voltage V_{LV} at the ambient temperature. The V_{LV} increases as the temperature decreases.

4. V_{CC} = 4.5 to 5.5V, typical values measured at V_{CC} = 5.0V.

The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5V with typical values measured at V_{CC} = 5.0V.

5. Standard Mode (not Low EMI Mode)

6. Z86E08 only

7. All outputs unloaded and all inputs are at $V_{CC} \text{ or } V_{SS}$ level.

8. If analog comparator is selected, then the comparator inputs must be at V_{CC} level.

DC ELECTRICAL CHARACTERISTICS Extended Temperature

				40°C to)5°C	Typical			
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
VINMAX	Max Input Voltage	4.5V		12.0		V	I _{IN} < 250 μA	1
		5.5V		12.0	- 4 .	V	l _{IN} < 250 μA	1
V _{CH}	Clock Input High Voltage	4.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	V	Driven by External Clock Generator	
		5.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	4.5V	V _{SS} 0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
		5.5V	V _{SS} –0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	4.5V	$0.7 V_{CC}$	V _{cc} +0.3	2.8	V		
	_	5.5V	0.7 V _{CC}	V _{CC} +0.3	2.8	V	<u>,</u>	
V _{IL}	Input Low Voltage	4.5V	V _{ss} –0.3	0.2 V _{CC}	1.5	V		
		5.5V	V _{ss} -0.3	0.2 V _{CC}	1.5	V		I
V _{OH}	Output High Voltage	4.5V	V _{cc} -0.4		4.8	V	I _{OH} = -2.0 mA	5
		5.5V	V _{cc} -0.4		4.8	V	I _{OH} = -2.0 mA	5
		4.5V	V _{cc} -0.4			V	Low Noise @ $I_{OH} = -0.5$ mA	
		5.5V	V _{cc} -0.4	.		V	Low Noise @ I _{OH} = -0.5 mA	
V _{OL1}	Output Low Voltage	4.5V		0.4	0.1	V	I _{OL} = +4.0 mA	5
	·	5.5V		0.4	0.1	V	I _{OL} = +4.0 mA	5
		4.5V		0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
		5.5V		0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
V _{oL2}	Output Low Voltage	4.5V		1.0	0.3	V	l _{oL} = +12 mA,	5
		5.5V		1.0	0.3	V	I _{OL} = +12 mA,	5
V _{offset}	Comparator Input	4.5V		25.0	10.0	mV		
	Offset Voltage	5.5V		25.0	10.0	mV		
V _{LV}	V _{CC} Low Voltage Auto Reset		1.8	3.8	2.8	V	@ 6 MHz Max. Int. CLK Freq.	3
կլ	Input Leakage	4.5V		-1.0	1.0	μA	$V_{\rm IN} = 0V, V_{\rm CC}$	
	(Input Bias Current of Comparator)	5.5V		-1.0	1.0	μA	$V_{IN} = 0V, V_{CC}$	
I _{OL}	Output Leakage	4.5V		-1.0	1.0	μA	$V_{\rm IN} = 0V, V_{\rm CC}$	
		5.5V		-1.0	1.0	μA	$V_{IN} = 0V, V_{CC}$	
V _{ICR}	Comparator Input Common Mode Voltage Range		0	V _{CC} –1.5		V		

DC ELECTRICAL CHARACTERISTICS (Continued)

			T _A =40°C to +105°C		Typical			
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
lcc	Supply Current	4.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 2 MHz	5,7
		5.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 2 MHz	5,7
		4.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		5.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		4.5V		20.0	12.0	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
		5.5V		20.0	12.0	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
I _{CC1}	Standby Current	4.5V		5.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	5,7
		5.5V		5.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	5,7
		4.5V	-184	5.0	3.0	mA	HALT Mode $V_{IN} = 0V$, $V_{CC} @ 8 MHz$	5,7
		5.5V		5.0	3.0	mA	HALT Mode $V_{IN} = 0V$, $V_{CC} @ 8 MHz$	5,7
		4.5V		7.0	4.0	mA	HALT Mode $V_{iN} = 0V$, V_{CC} @ 12 MHz	5,7
		5.5V	· ·	7.0	4.0	mA	HALT Mode $V_{IN} = 0V$, $V_{CC} @ 12 MHz$	5,7
Icc	Supply Current (Low Noise Mode)	4.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 1 MHz	7
		5.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 1 MHz	7
		4.5V	<u>-</u>	13.0	7.5	mA	All Output and I/O Pins Floating @ 2 MHz	7
		5.5V		13.0	7.5	mA	All Output and I/O Pins Floating @ 2 MHz	7
		4.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 4 MHz	7
		5.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 4 MHz	7

Z86E04/E08 CMOS Z8 OTP Microcontrollers

•	_ .	N 143		C to +105°C	Typical		· · ·	
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
I _{CC1}	Standby Current	4.5V		4.0	2.5	mA	HALT Mode V _{IN} = 0V,	7
	(Low Noise Mode)						V _{cc} @1MHz	
		5.5V		4.0	2.5	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 1 MHz	
		4.5V		4.5	2.8	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 2 MHz	
		5.5V		4.5	2.8	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 2 MHz	
		4.5V		5.0	3.0	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 4 MHz	
		5.5V		5.0	3.0	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 4 MHz	
I _{CC2}	Standby Current	4.5V		20	1.0	μA	STOP Mode V _{IN} = 0V, V _{CC}	7,8
							WDT is not Running	
		5.5V		20	1.0	μA	STOP Mode V _{IN} = 0V, V _{CC}	7,8
							WDT is not Running	
	Auto Latch Low	4.5V		40	16	μA	$0V < V_{IN} < V_{CC}$	
	Current	5.5V		40	16	μA	$0V < V_{iN} < V_{CC}$	
I _{ALH}	Auto Latch High	4.5V		-20.0	-8.0	μA	$0V < V_{IN} < V_{CC}$	
	Current	5.5V		-20.0	-8.0	μA	0V < V _{IN} < V _{CC}	

Notes:

1. Port 2 and Port 0 only

2. $V_{SS} = 0V = GND$

 The device operates down to V_{LV} of the specified frequency for V_{LV}. The minimum operational V_{CC} is determined on the value of the voltage V_{LV} at the ambient temperature. The V_{LV} increases as the temperature decreases.

4. V_{CC} = 4.5V to 5.5V, typical values measured at V_{CC} = 5.0V

5. Standard Mode (not Low EMI Mode)

6. Z86E08 only

7. All outputs unloaded and all inputs are at $V_{CC} \mbox{ or } V_{SS}$ level.

8. If analog comparator is selected, then the comparator inputs must be at V_{CC} level.

Low Noise Mode, Extended Temperature

				T۸	= -40 °C	; to +105 °	С		
				1 Ŵ		4 M			
No	Symbol	Parameter	V _{cc}	Min	Max	Min	Мах	Units	Notes
1	TPC	Input Clock Period	4.5V	1000	DC	250	DC	ns	1
			5.5V	1000	DC	250	DC	ns	1
2	TrC	Clock Input Rise	4.5V		25		25	ns	1
	TfC	and Fall Times	5.5V		25		25	ns	1
3	TwC	Input Clock Width	4.5V	500		125		ns	1
			5.5V	500		125		ns	1
4.	TwTinL	Timer Input Low Width	4.5V	70		70		ns	1
			5.5V	70		70		ns	1
5	TwTinH	Timer Input High Width	4.5V	2.5TpC		2.5TpC			1
			5.5V	2.5TpC		2.5TpC			1
6	TpTin	Timer Input Period	4.5V		4TpC	4TpC	".		1
			5.5V		4TpC	4TpC			1
7	TrTin,	Timer Input Rise	4.5V		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwIL	Int. Request Input	4.5V	70		70		ns	1,2
		Low Time	5.5V	70		70		ns	1,2
9	TwiH	Int. Request Input	4.5V	2.5TpC		2.5TpC			1,2
		High Time	5.5V	2.5TpC		2.5TpC			1,2
10	Twdt	Watch-Dog Timer	4.5V	10		10		ms	1
		Delay Time for Timeout	5.5V	10		10		ms	1

Notes:

1. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.

2. Interrupt request through Port 3 (P33-P31).

PIN FUNCTIONS (Continued)

XTAL1, XTAL2 *Crystal In, Crystal Out* (time-based input and output, respectively). These pins connect a parallelresonant crystal, LC, or an external single-phase clock (8 MHz or 12 MHz max) to the on-chip clock oscillator and buffer.

Port 0, P02–P00. Port 0 is a 3-bit bidirectional, Schmitttriggered CMOS-compatible I/O port. These three I/O lines can be globally configured under software control to be inputs or outputs (Figure 7). Auto Latch. The Auto Latch puts valid CMOS levels on all CMOS inputs (except P33, P32, P31) that are not externally driven. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer. On Power-up and Reset, the Auto Latch will set the ports to an undetermined state of 0 or 1. Default condition is Auto Latches enabled.

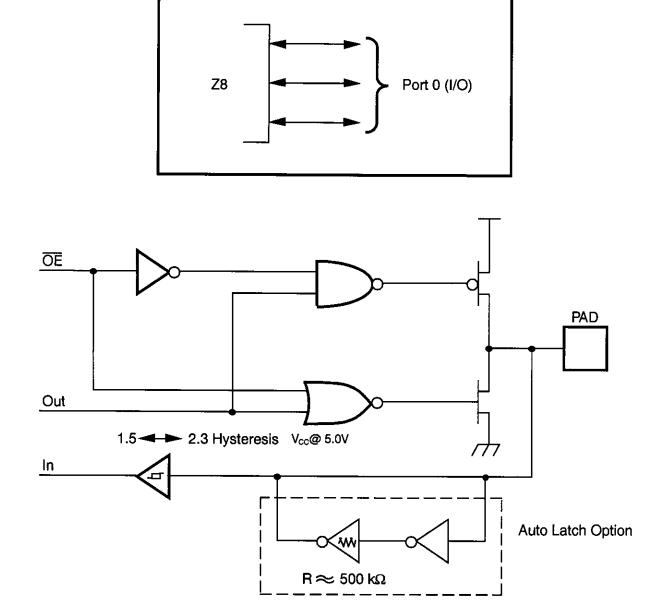


Figure 7. Port 0 Configuration

PIN FUNCTIONS (Continued)

Port 3, P33–P31. Port 3 is a 3-bit, CMOS-compatible port with three fixed input (P33–P31) lines. These three input lines can be configured under software control as digital Schmitt-trigger inputs or analog inputs.

These three input lines are also used as the interrupt sources IRQ0–IRQ3, and as the timer input signal $T_{\rm IN}$ (Figure 9).

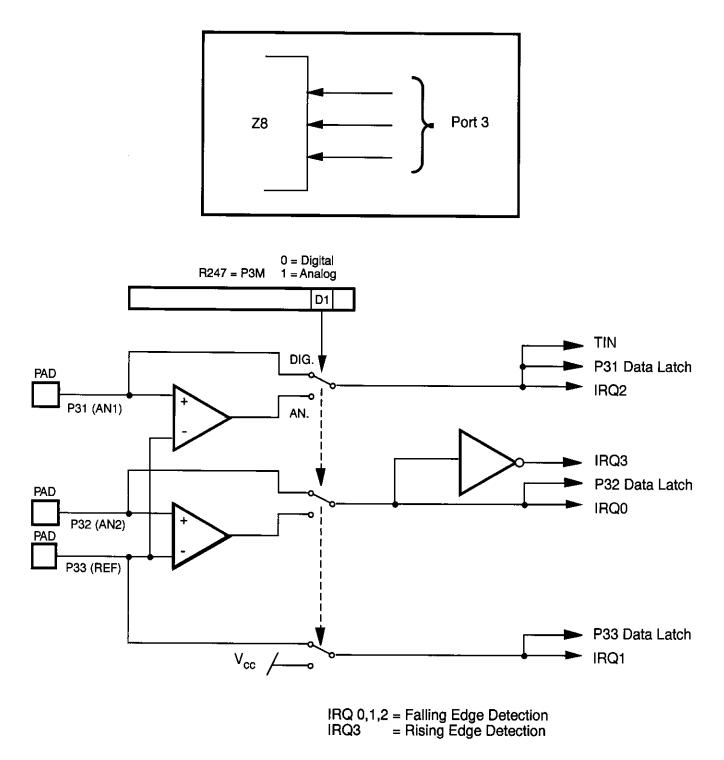


Figure 9. Port 3 Configuration

FUNCTIONAL DESCRIPTION (Continued)

Reset Condition										
Addr.	Reg.	D7	D6	D5	D4	D3	D2	D1	D0	Comments
FF	SPL	0	0	0	0	0	0	0	0	
FD	RP	0	0	0	0	0	0	0	0	
FC	FLAGS	U	U	U	U	U	U	U	U	· · · · · · · · · · · · · · · · · · ·
FB	IMR	0	U	U	U	U	U	U	U	
FA	IRQ	U	U	0	0	0	0	0	0	IRQ3 is used for positive edge detection
F9	IPR	U	Ų	U	U	U	U	U	U	
F8*	P01M	U	U	U	0	U	U	0	1	
F7*	P3M	U	U	U	Ū	U	U	0	0	
F6*	P2M	1	1	1	1	1	1	1	1	Inputs after reset
F5	PRE0	U	U	U	U	U	U	U	0	
F4	T0	U	U	U	U	U	U	U	U	
F3	PRE1	U	Ū	U	Ū	U	Ŭ	0	0	
F2	T1	U	U	U	Ū	U	U	U	U	
F1	TMR	0	0	0	0	0	0	0	0	

Table 3. Control Registers

Note: *Registers are not reset after a STOP-Mode Recovery using P27 pin. A subsequent reset will cause these control registers to be reconfigured as shown in Table 4 and the user must avoid bus contention on the port pins or it may affect device reliability.

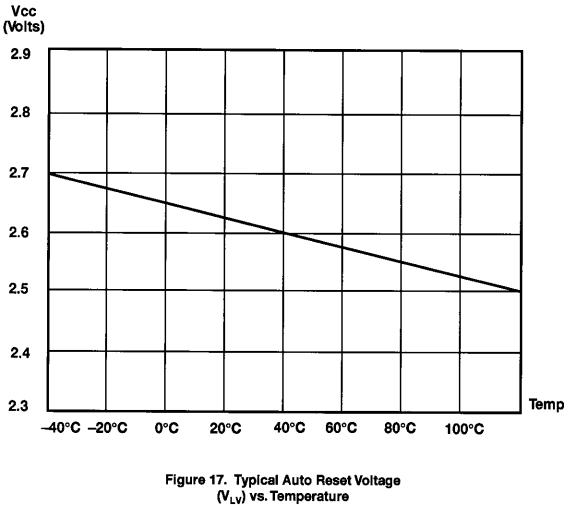
Clock. The Z8 on-chip oscillator has a high-gain, parallelresonant amplifier for connection to a crystal, LC, RC, ceramic resonator, or any suitable external clock source (XTAL1 = INPUT, XTAL2 = OUTPUT). The crystal should be AT cut, up to 12 MHz max., with a series resistance (RS) of less than or equal to 100 Ohms. The crystal should be connected across XTAL1 and XTAL2 using the vendors crystal recommended capacitors from each pin directly to device ground pin 14 (Figure 16). Note that the crystal capacitor loads should be connected to V_{SS} , Pin 14 to reduce Ground noise injection.

Load Capacitor										
	33	3 pFd	56	oFd	100	pFd	0.00 1µFd			
Resistor (R)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)		
1.0M	33K	31K	20K	20K	12K	11K	1.4K	1.4K		
560K	56K	52K	34K	32K	20K	19K	2.5K	2.4K		
220K	144K	130K	84K	78K	48K	45K	6K	6K		
100K	315K	270K	182K	164K	100K	95K	12K	12K		
56K	552K	480K	330K	300K	185K	170K	23K	22K		
20K	1.4M	1 M	884K	740K	500K	450K	65K	61K		
10K	2.6M	2M	1.6M	1.3M	980K	820K	130K	123K		
5K	4.4M	3M	2.8M	2M	1.7K	1.3M	245K	225K		
2K	8M	5M	6M	4M	3.8K	2.7M	600K	536K		
1K	12M	7M	8.8M	6M	6.3K	4.2M	1.0M	950K		

Notes:

A = STD Mode Frequency. B = Low EMI Mode Frequency.

Table 6. Typical Frequency vs. RC Values V_{cc} = 3.3V @ 25°C


Load Capacitor								
Resistor (R)	33 pFd		56 pFd		100 pFd		0.00 1µFd	
	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)
1.0M	18K	18K	12K	12K	7.4K	7.7K	1K	1K
560K	30K	30K	20K	20K	12K	12K	1.6K	1.6K
220K	70K	70K	47K	47K	30K	30K	4K	4K
100K	150K	148K	97K	96K	60K	60K	8K	8K
56K	268K	250K	176K	170K	100K	100K	15K	15K
20K	690M	600K	463K	416K	286K	266K	40K	40K
10K	1.2M	1M	860K	730K	540K	480K	80K	76K
5K	2M	1.7M	1.5M	1.2M	950K	820K	151K	138K
2K	4.6M	3M	3.3M	2.4M	2.2M	1.6M	360K	316K
1K	7M	4.6M	5M	3.6M	3.6K	2.6M	660K	565K

Notes:

A = STD Mode Frequency.

B = Low EMI Mode Frequency.

FUNCTIONAL DESCRIPTION (Continued)

Z86E04/E08 CMOS Z8 OTP Microcontrollers

Low EMI Emission

The Z8 can be programmed to operate in a low EMI Emission (Low Noise) Mode by means of an EPROM programmable bit option. Use of this feature results in:

- Less than 1 mA consumed during HALT Mode.
- All drivers slew rates reduced to 10 ns (typical).
- Internal SCLK/TCLK = XTAL operation limited to a maximum of 4 MHz-250 ns cycle time.
- Output drivers have resistances of 500 ohms (typical).
- Oscillator divide-by-two circuitry eliminated.

In addition to V_{DD} and GND (V_{SS}), the Z8 changes all its pin functions in the EPROM Mode. XTAL2 has no function, XTAL1 functions as \overline{CE} , P31 functions as \overline{OE} , P32 functions as EPM, P33 functions as V_{PP}, and P02 functions as PGM.

ROM Protect. ROM Protect fully protects the Z8 ROM code from being read externally. When ROM Protect is selected, the instructions LDC and LDCI **are supported** (Z86E04/E08 and Z86C04/C08 do not support the instructions of LDE and LDEI). When the device is programmed for ROM Protect, the Low Noise feature will not automatically be enabled.

Please note that when using the device in a noisy environment, it is suggested that the voltages on the EPM and \overline{CE} pins be clamped to V_{CC} through a diode to V_{CC} to prevent accidentally entering the OTP Mode. The V_{PP} requires both a diode and a 100 pF capacitor.

Auto Latch Disable. Auto Latch Disable option bit when programmed will globally disable all Auto Latches.

WDT Enable. The WDT Enable option bit, when programmed, will have the hardware enabled Permanent WDT enabled after exiting reset and can not be stopped in Halt or Stop Mode.

EPROM/Test Mode Disable. The EPROM/Test Mode Disable option bit, when programmed, will disable the EPROM Mode and the Factory Test Mode. Reading, verifying, and programming the Z8 will be disabled. To fully verify that this mode is disabled, the device must be power cycled.

User Modes. Table 7 shows the programming voltage of each mode.

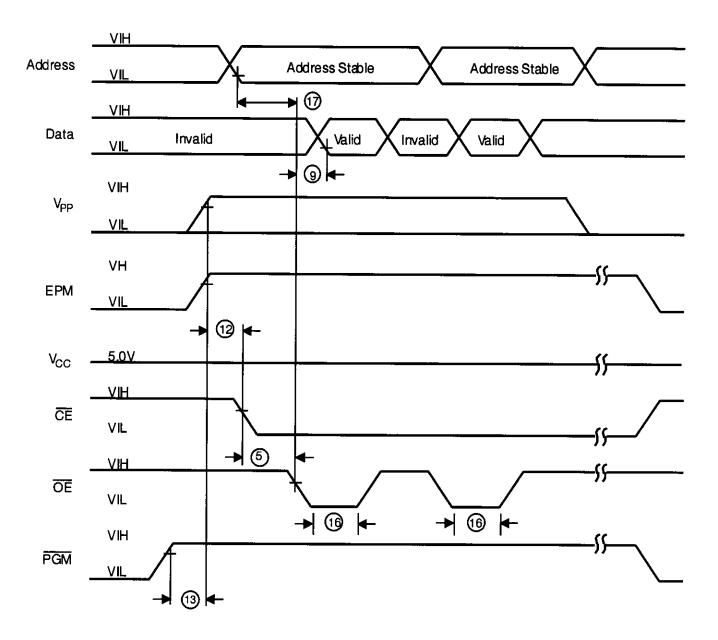

Programming Modes	$V_{_{PP}}$	EPM	CE	ŌĒ	PGM	ADDR	DATA	V _{cc} *
EPROM READ	NU	V _H	VIL	V _{IL}	V _{IH}	ADDR	Out	5.0V
PROGRAM	V _H	V _{IH}	VIL	VIH	V _{IL}	ADDR	In	6.4V
PROGRAM VERIFY	V _H	ViH	VIL	VIL	V _{IH}	ADDR	Out	6.4V
EPROM PROTECT	V _H	V _H	V _H	ViH	V _{IL}	NU	NU	6.4V
LOW NOISE SELECT	V _H	V _{IH}	V _H	VIH	V _{IL}	NU	NU	6.4V
AUTO LATCH DISABLE	V _H	VIH	V _H	V _{IL}	V _{IL}	NU	NU	6.4V
WDT ENABLE	V _H	V _{IL}	V _H	VIH	VIL	NU	NU	6.4V
EPROM/TEST MODE	V _H	V _{IL}	V _H	V _{IL}	V _{IL}	NU	NU	6.4V

Table 7. OTP Programming Table

Notes:

- 1. $V_{H} = 12.75V \pm 0.25 V_{DC}$.
- 2. V_{IH} = As per specific Z8 DC specification.
- 3. V_{IL}= As per specific Z8 DC specification.
- 4. X = Not used, but must be set to V_H or V_{IH} level.
- 5. NU = Not used, but must be set to either V_{IH} or V_{IL} level.
- 6. I_{PP} during programming = 40 mA maximum.
- 7. I_{CC} during programming, verify, or read = 40 mA maximum.
- 8. * V_{CC} has a tolerance of ±0.25V.

FUNCTIONAL DESCRIPTION (Continued)

. _____

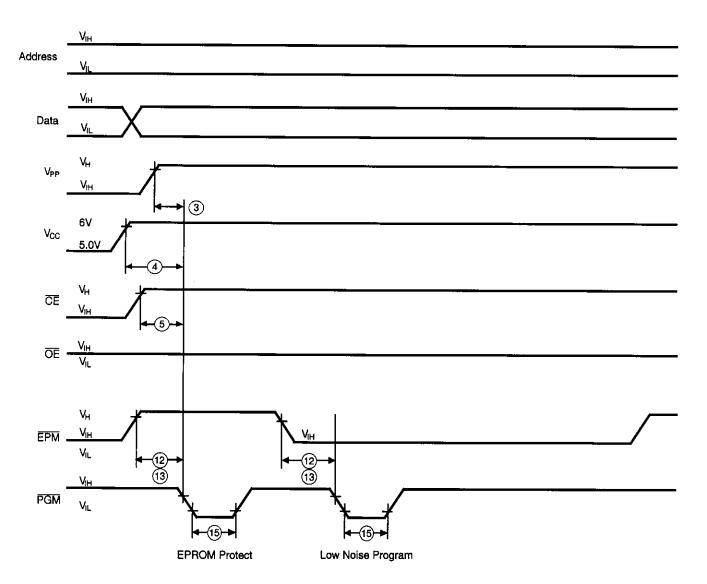
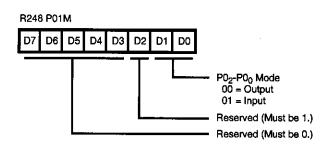
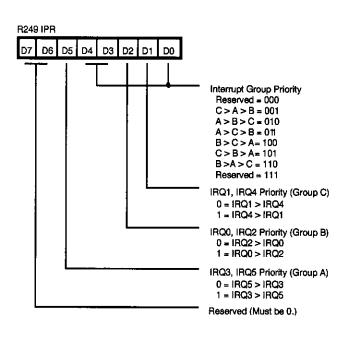
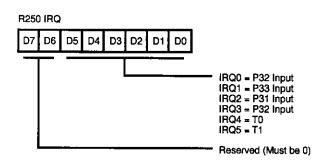




Figure 21. Z86E04/E08 Programming Options Waveform (EPROM Protect and Low Noise Program) Zilog


Z8 CONTROL REGISTERS (Continued)

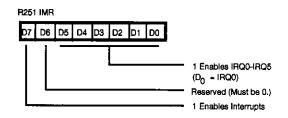
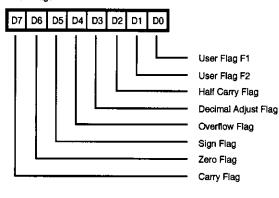

Figure 31. Port 0 and 1 Mode Register (F8_H: Write Only)

Figure 32. Interrupt Priority Register (F9_H: Write Only)



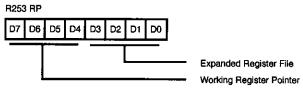


Figure 34. Interrupt Mask Register (FB_H: Read/Write)

R252 Flags

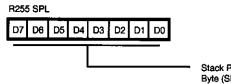
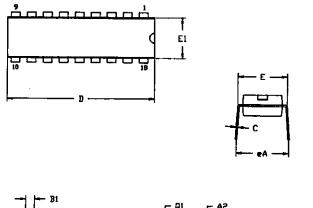


Figure 35. Flag Register (FC_H: Read/Write)

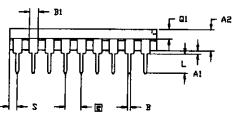
Default After Reset = 00H

Figure 36. Register Pointer (FD_H: Read/Write)

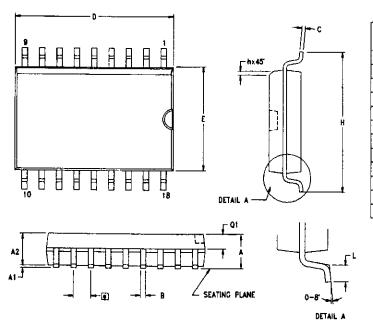


Stack Pointer Lower Byte (SP 7 - SP 0)

Figure 37. Stack Pointer (FF_H: Read/Write)


PACKAGE INFORMATION

Zilog



SYMBOL	MILLI	METER	INCH		
	MIN	MAX	MIN	MAX	
<u>A1</u>	0.51	0.81	.020	.032	
54	3.25	3.43	.128	.135	
B	0.38	0.53	.015	.021	
B1	1.14	1.65	.045	.065	
С	0.23	0.38	.009	.015	
D	22.35	23.37	.880	.920	
E	7.62	8.13	.300	.320	
El	6.22	6.48	.245	.255	
E	2.54 TYP		,100 TYP		
eA	7.87	8.89	.310	.350	
L	3.19	3.81	.125	.150	
Q1	1.52	1.65	.060	.065	
S	0.89	1.65	.035	.065	

CONTROLLING DIMENSIONS : INCH

18-Pin DIP Package Diagram

SYMBOL	MILLI	METER	INCH		
	MIN	MAX	KIN	MAX	
A	2.40	2.65	0.094	0.104	
A1	0.10	0.30	0.004	0.012	
A2	2.24	2.44	0.088	0.096	
8	0.36	0.46	0.014	0.018	
C	0.23	0.30	0.009	0.012	
D	11.40	11.75	0.449	0.463	
ε	7.40	7.60	0.291	0.299	
(F)	t.27	TYP	0.050 TYP		
н	10.00	10.65	0.394	0.419	
h	0.30	0.50	0.012	0.020	
L	0.60	1.00	0.024	0.039	
Q1	0.97	1.07	0.038	0.042	

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

18-Pin SOIC Package Diagram