

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	14
Program Memory Size	1KB (1K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	125 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e0412peg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FEATURES

- 14 Input/Output Lines
- Six Vectored, Prioritized Interrupts
 (3 falling edge, 1 rising edge, 2 timers)
- Two Analog Comparators
- Program Options:
 - Low Noise
 - ROM Protect
 - Auto Latch
 - Watch-Dog Timer (WDT)
 - EPROM/Test Mode Disable

- Two Programmable 8-Bit Counter/Timers, Each with
 6-Bit Programmable Prescaler
- WDT/ Power-On Reset (POR)
- On-Chip Oscillator that Accepts XTAL, Ceramic Resonance, LC, RC, or External Clock
- Clock-Free WDT Reset
- Low-Power Consumption (50 mw typical)
- Fast Instruction Pointer (1µs @ 12 MHz)
- RAM Bytes (125)

GENERAL DESCRIPTION

Zilog's Z86E04/E08 Microcontrollers (MCU) are One-Time Programmable (OTP) members of Zilog's single-chip Z8® MCU family that allow easy software development, debug, prototyping, and small production runs not economically desirable with masked ROM versions.

For applications demanding powerful I/O capabilities, the Z86E04/E08's dedicated input and output lines are grouped into three ports, and are configurable under software control to provide timing, status signals, or parallel I/O.

Two on-chip counter/timers, with a large number of user selectable modes, offload the system of administering real-time tasks such as counting/timing and I/O data communications.

Note: All Signals with an overline, "", are active Low, for example: B/W (WORD is active Low); B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{cc}	V _{DD}
Ground	GND	V_{SS}

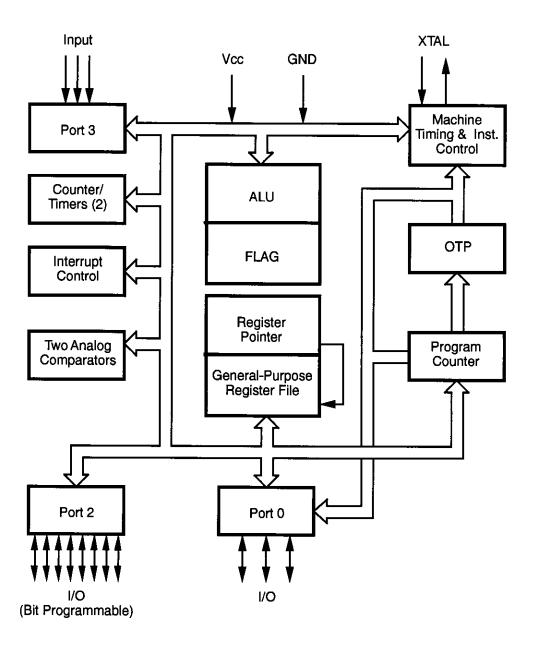


Figure 1. Functional Block Diagram

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to Ground. Positive current flows into the referenced pin (Figure 5).

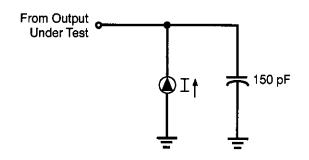


Figure 5. Test Load Diagram

CAPACITANCE

 $T_A = 25$ °C, $V_{CC} = GND = 0V$, f = 1.0 MHz, unmeasured pins returned to GND.

Parameter	Min	Max
Input capacitance	0	10 pF
Output capacitance	0	20 pF
I/O capacitance	0	25 pF

			$T_A = 0^{\circ}C$	to +70°C	Typical			·
Sym	Parameter	V _{CC} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
Icc	Supply Current	4.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 2 MHz	5,7
		5.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 2 MHz	5,7
		4.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		5.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		4.5V	•	20.0	12.0	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
		5.5V		20.0	12.0	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
I _{CC1}	Standby Current	4.5V		4.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	5,7
		5.5V	~	4.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	5,7
		4.5V	.,	5.0	3.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 8 MHz	5,7
		5.5V	-	5.0	3.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 8 MHz	5,7
		4.5V		7.0	4.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 12 MHz	5,7
		5.5V		7.0	4.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 12 MHz	5,7
I _{cc}	Supply Current (Low Noise Mode)	4.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 1 MHz	7
		5.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 1 MHz	7
		4.5V		13.0	7.5	mA	All Output and I/O Pins Floating @ 2 MHz	7
		5.5V		13.0	7.5	mA	All Output and I/O Pins Floating @ 2 MHz	7
		4.5V		15.0	8.2		All Output and I/O Pins Floating @ 4 MHz	7
		5.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 4 MHz	7

AC ELECTRICAL CHARACTERISTICS

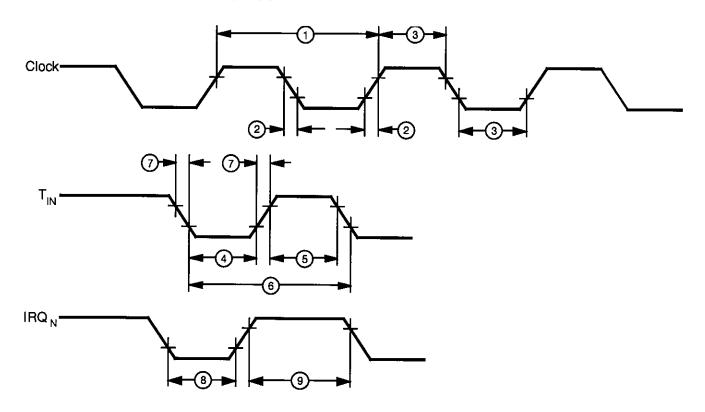


Figure 6. AC Electrical Timing Diagram

AC ELECTRICAL CHARACTERISTICS

Timing Table (Standard Mode for SCLK/TCLK = XTAL/2) Standard Temperature

15				7	T _A = 0 °C	to +70 °C	•	<u></u>	
				8 N	lHz	12	MHz		
No	Symbol	Parameter	V _{cc}	Min	Max	Min	Max	Units	Notes
1	TpC	Input Clock Period	4.5V	125	DC	83	DC	ns	1
			5.5V	125	DC	83	DC	ns	1
2	TrC,TfC	Clock Input Rise	4.5V	-8.	25		15	ns	1
		and Fall Times	5.5V		25		15	ns	1
3	TwC	Input Clock Width	4.5V	62		41		ns	1
			5.5V	62		41	•	ns	1
4	TwTinL	Timer Input Low Width	4.5V	100		100		ns	1
			5.5V	70	1	70		ns	1
5	TwTinH	Timer Input High Width	4.5V	5TpC		5TpC			1
			5.5V	5TpC		5TpC			1
6	TpTin	Timer Input Period	4.5V		8TpC	8TpC		•••	1
			5.5V		8TpC	8TpC			1
7	TrTin,	Timer Input Rise	4.5V		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwlL	Int. Request Input	4.5V	70		70		ns	1,2
		Low Time	5.5V	70		70		ns	1,2
9	TwiH	Int. Request Input	4.5V		5TpC	5TpC			1,2
		High Time	5.5V		5TpC	5TpC			1,2
10	Twdt	Watch-Dog Timer	4.5V	12	<u> </u>	12		ms	1
		Delay Time for Timeout	5.5V	12	·	12	· ·	ms	1
11	Tpor	Power-On Reset Time	4.5V	20	80	20	80	ms	1
			5.5V	20	80	20	80	ms	1

Notes:

^{1.} Timing Reference uses 0.7 $\rm V_{CC}$ for a logic 1 and 0.2 $\rm V_{CC}$ for a logic 0.

^{2.} Interrupt request through Port 3 (P33-P31).

AC ELECTRICAL CHARACTERISTICS

Timing Table (Standard Mode for SCLK/TCLK = XTAL/2) Extended Temperature

				T 8 M		to +105 °C 12 N		"	-
No	Symbol	Parameter	V _{cc}	Min	Max	Min	Max	Units	Notes
1	ТрС	Input Clock Period	4.5V	125	DC	83	DC	ns	1
			5.5V	125	DC	83	DC	ns	1
2	TrC,TfC	Clock Input Rise	4.5V		25		15	ns	1
		and Fall Times	5.5V		25		15	ns	1
3	TwC	Input Clock Width	4.5V		62		41	ns	1
			5.5V		62		41	ns	1
4	TwTinL	Timer Input Low Width	4.5V	70		70		ns	1
			5.5V	70		70	•	ns	1
5	TwTinH	Timer Input High Width	4.5V	5TpC		5TpC			1
			5.5V	5TpC		5TpC			1
6	TpTin	Timer Input Period	4.5V	8TpC		8TpC			1
		<u> </u>	5.5V	8TpC		8TpC			1
7	TrTin,	Timer Input Rise	4.5V		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwlL	Int. Request Input	4.5V	70		70		ns	1,2
		Low Time	5.5V	70		70	•	ns	1,2
9	TwiH	Int. Request Input	4.5V	5TpC		5TpC			1,2
		High Time	5.5V	5TpC		5TpC			1,2
10	Twdt	Watch-Dog Timer	4.5V	10		10		ms	1
		Delay Time for Timeout	5.5V	10		10		ms	1
11	Tpor	Power-On Reset Time	4.5V	12	100	12	100	ms	1
			5.5V	12	100	12	100	ms	1

Notes:

^{1.} Timing Reference uses 0.7 $\rm V_{CC}$ for a logic 1 and 0.2 $\rm V_{CC}$ for a logic 0.

^{2.} Interrupt request made through Port 3 (P33-P31).

LOW NOISE VERSION

Low EMI Emission

The Z86E04/E08 can be programmed to operate in a Low EMI Emission Mode by means of a mask ROM bit option. Use of this feature results in:

- All pre-driver slew rates reduced to 10 ns typical.
- Internal SCLK/TCLK operation limited to a maximum of 4 MHz-250 ns cycle time.
- Output drivers have resistances of 500 Ohms (typical).
- Oscillator divide-by-two circuitry eliminated.

The Low EMI Mode is mask-programmable to be selected by the customer at the time the ROM code is submitted.

PIN FUNCTIONS

OTP Programming Mode

D7–D0 Data Bus. Data can be read from, or written to, the EPROM through this data bus.

 $V_{\rm CC}$ Power Supply. It is typically 5V during EPROM Read Mode and 6.4V during the other modes (Program, Program Verify, and so on).

CE Chip Enable (active Low). This pin is active during EPROM Read Mode, Program Mode, and Program Verify Mode.

OE Output Enable (active Low). This pin drives the Data Bus direction. When this pin is Low, the Data Bus is output. When High, the Data Bus is input.

EPM *EPROM Program Mode.* This pin controls the different EPROM Program Modes by applying different voltages.

 \mathbf{V}_{PP} Program Voltage. This pin supplies the program voltage.

Clear Clear (active High). This pin resets the internal address counter at the High Level.

Clock Address Clock. This pin is a clock input. The internal address counter increases by one with one clock cycle.

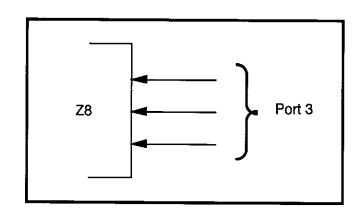
PGM Program Mode (active Low). A Low level at this pin programs the data to the EPROM through the Data Bus.

Application Precaution

The production test-mode environment may be enabled accidentally during normal operation if *excessive noise* surges above V_{CC} occur on the XTAL1 pin.

In addition, processor operation of Z8 OTP devices may be affected by *excessive noise* surges on the V_{pp} , \overline{CE} , EPM, \overline{OE} pins while the microcontroller is in Standard Mode.

Recommendations for dampening voltage surges in both test and OTP Mode include the following:


- Using a clamping diode to V_{CC}.
- Adding a capacitor to the affected pin.

Note: Programming the EPROM/Test Mode Disable option will prevent accidental entry into EPROM Mode or Test Mode.

PIN FUNCTIONS (Continued)

Port 3, P33–P31. Port 3 is a 3-bit, CMOS-compatible port with three fixed input (P33–P31) lines. These three input lines can be configured under software control as digital Schmitt-trigger inputs or analog inputs.

These three input lines are also used as the interrupt sources IRQ0–IRQ3, and as the timer input signal T_{IN} (Figure 9).

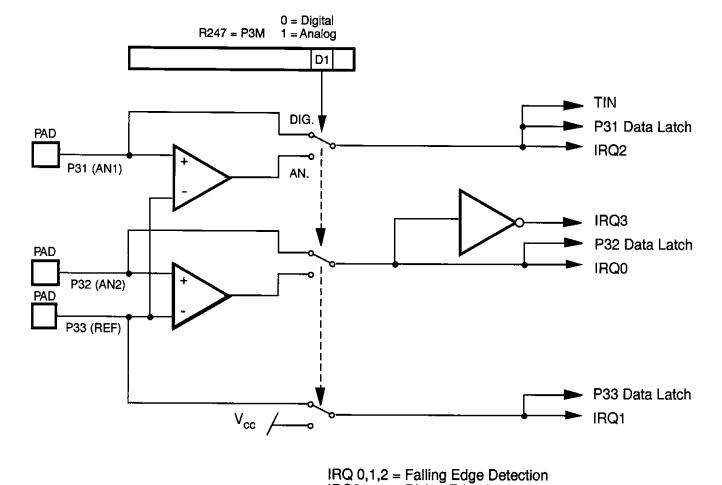


Figure 9. Port 3 Configuration

= Rising Edge Detection

IRQ3

Comparator Inputs. Two analog comparators are added to input of Port 3, P31, and P32, for interface flexibility. The comparators reference voltage P33 (REF) is common to both comparators.

Typical applications for the on-board comparators; Zero crossing detection, A/D conversion, voltage scaling, and threshold detection. In Analog Mode, P33 input functions serve as a reference voltage to the comparators.

The dual comparator (common inverting terminal) features a single power supply which discontinues power in STOP

Mode. The common voltage range is 0–4 V when the $V_{\rm CC}$ is 5.0V; the power supply and common mode rejection ratios are 90 dB and 60 dB, respectively.

Interrupts are generated on either edge of Comparator 2's output, or on the falling edge of Comparator 1's output. The comparator output is used for interrupt generation, Port 3 data inputs, or T_{IN} through P31. Alternatively, the comparators can be disabled, freeing the reference input (P33) for use as IRQ1 and/or P33 input.

FUNCTIONAL DESCRIPTION

The following special functions have been incorporated into the Z8 devices to enhance the standard Z8 core architecture to provide the user with increased design flexibility.

RESET. This function is accomplished by means of a Power-On Reset or a Watch-Dog Timer Reset. Upon power-up, the Power-On Reset circuit waits for T_{POR} ms, plus 18 clock cycles, then starts program execution at address 000C (Hex) (Figure 10). The Z8 control registers' reset value is shown in Table 3.

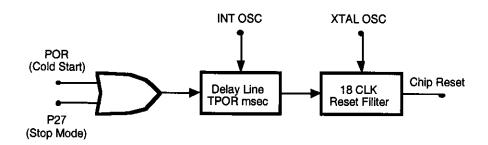


Figure 10. Internal Reset Configuration

Power-On Reset (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for a POR timer function. The POR time allows $V_{\rm CC}$ and the oscillator circuit to stabilize before instruction execution begins. The POR timer circuit is a one-shot timer triggered by one of the four following conditions:

- Power-bad to power-good status
- Stop-Mode Recovery
- WDT time-out
- WDH time-out

Watch-Dog Timer Reset. The WDT is a retriggerable one-shot timer that resets the Z8 if it reaches its terminal count. The WDT is initially enabled by executing the WDT instruction and is retriggered on subsequent execution of the WDT instruction. The timer circuit is driven by an on-board RC oscillator.

FUNCTIONAL DESCRIPTION (Continued)

Table 3. Control Registers

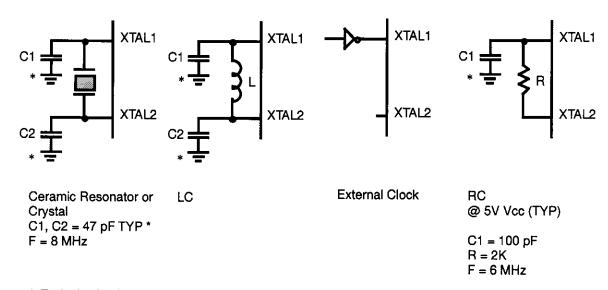
				R	eset C	onditio	n			* ***
Addr.	Reg.	D7	D6	D5	D4	D3	D2	D1	D0	Comments
FF	SPL	0	0	0	0	0	0	0	0	-
FD	RP	0	0	0	0	0	0	0	0	
FC	FLAGS	U	Ū	U	U	Ü	U	U	U	
FB	IMR	0	U	U	U	U	U	U	U	
FA	IRQ	U	U	0	0	0	0	0	0	IRQ3 is used for positive edge detection
F9	IPR	U	Ų	Ū	U	U	U	U	U	
F8*	P01M	U	U	U	0	U	U	0	1	
F7*	P3M	U	U	U	Ū	U	Ü	0	0	
F6*	P2M	1	1	1	1	1	1	1	1	Inputs after reset
F5	PRE0	U	U	Ū	U	U	U	Ū	0	
F4	TO	U	U	U	U	U	U	U	U	
F3	PRE1	U	Ū	U	Ū	U	Ü	0	0	
F2	T1	U	U	U	Ū	U	Ü	U	U	
F1	TMR	0	0	0	0	0	0	0	0	

Note: *Registers are not reset after a STOP-Mode Recovery using P27 pin. A subsequent reset will cause these control registers to be reconfigured as shown in Table 4 and the user must avoid bus contention on the port pins or it may affect device reliability.

Program Memory. The Z86E04/E08 addresses up to 1K/2KB of Internal Program Memory (Figure 11). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. Bytes 0–1024/2048 are on-chip one-time programmable ROM.

Identifiers 1023/2047 3FFH/7FFH Location of On-Chip First Byte of ROM Instruction Executed After RESET 12 0CH IRQ5 0BH 11 10 IRQ5 0AH IRQ4 9 09H IRQ4 8 08H 7 **IRQ3** 07H Interrupt Vector 6 06H IRQ3 (Lower Byte) IRQ2 5 05H 04H IRQ2 Interrupt Vector 3 IRQ1 03H (Upper Byte) IRQ1 2 02H 1 IRQ0 01H 0 00H IRQ0

Figure 11. Program Memory Map


Register File. The Register File consists of three I/O port registers, 124 general-purpose registers, and 14 control and status registers R0–R3, R4–R127 and R241–R255, respectively (Figure 12). General-purpose registers occupy the 04H to 7FH address space. I/O ports are mapped as per the existing CMOS Z8.

Location		Identifiers
255 (FFH)	Stack Pointer (Bits 7-0)	SPL
254 (FE)	General-Purpose Register	GPR
253 (FD)	Register Pointer	RP
252 (FC)	Program Control Flags	FLAGS
251 (FB)	Interrupt Mask Register	IMR
250 (FA)	Interrupt Request Register	IRQ
249 (F9)	Interrupt Priority Register	IPR
248 (F8)	Ports 0-1 Mode	P01M
247 (F7)	Port 3 Mode	РЗМ
246 (F6)	Port 2 Mode	P2M
245 (F5)	TO Prescaler	PRE0
244 (F4)	Timer/Counter 0	τ ο
243 (F3)	T1 Prescaler	PRE1
242 (F2)	Timer/Counter 1	T1
241 (F1H)	Timer Mode	TMR
128	Not Implemented	
127 (7FH)	General-Purpose Registers	
4		
3	Port 3	P3
2	Port 2	P2
1	Reserved	P1
0 (00H)	Port 0	P0

Figure 12. Register File

Clock. The Z8 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, LC, RC, ceramic resonator, or any suitable external clock source (XTAL1 = INPUT, XTAL2 = OUTPUT). The crystal should be AT cut, up to 12 MHz max., with a series resistance (RS) of less than or equal to 100 Ohms.

The crystal should be connected across XTAL1 and XTAL2 using the vendors crystal recommended capacitors from each pin directly to device ground pin 14 (Figure 16). Note that the crystal capacitor loads should be connected to $V_{\rm SS}$, Pin 14 to reduce Ground noise injection.

^{*} Typical value including pin parasitics

Figure 16. Oscillator Configuration

FUNCTIONAL DESCRIPTION (Continued)

Table 5. Typical Frequency vs. RC Values V_{CC} = 5.0V @ 25°C

			Loa	d Capacitor				
	33	pFd	56 pFd		100 pFd		0.00 1μFd	
Resistor (R)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)
1.0M	33K	31K	20K	20K	12K	11K	1.4K	1.4K
560K	56K	52K	34K	32K	20K	19K	2.5K	2.4K
220K	144K	130K	84K	78K	48K	45K	6K	6K
100K	315K	270K	182K	164K	100K	95K	12K	12K
56K	552K	480K	330K	300K	185K	170K	23K	22K
20K	1.4M	1M	884K	740K	500K	450K	65K	61K
10K	2.6M	2M	1.6M	1.3M	980K	820K	130K	123K
5K	4.4M	3M	2.8M	2M	1.7K	1.3M	245K	225K
2K	8M	5M	6M	4M	3.8K	2.7M	600K	536K
1K	12M	7M	8.8M	6 M	6.3K	4.2M	1.0M	950K

Notes:

A = STD Mode Frequency. B = Low EMI Mode Frequency.

Table 6. Typical Frequency vs. RC Values V_{cc} = 3.3V @ 25°C

	Load Capacitor									
Resistor (R)	33	pFd	56 pFd		100	pFd	0.00 1μFd			
	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)		
1.0M	18K	18K	12K	12K	7.4K	7.7K	1K	1K		
560K	30K	30K	20K	20K	12K	12K	1.6K	1.6K		
220K	70K	70K	47K	47K	30K	30K	4K	4K		
100K	150K	148K	97K	96K	60K	60K	8K	8K		
56K	268K	250K	176K	170K	100K	100K	15K	15K		
20K	690M	600K	463K	416K	286K	266K	40K	40K		
10K	1.2M	1M	860K	730K	540K	480K	80K	76K		
5K	2M	1.7M	1.5M	1.2M	950K	820K	151K	138K		
2K	4.6M	3M	3.3M	2.4M	2.2M	1.6M	360K	316K		
1K	7M	4.6M	5M	3.6M	3.6K	2.6M	660K	565K		

Notes:

A = STD Mode Frequency.

B = Low EMI Mode Frequency.

FUNCTIONAL DESCRIPTION (Continued)

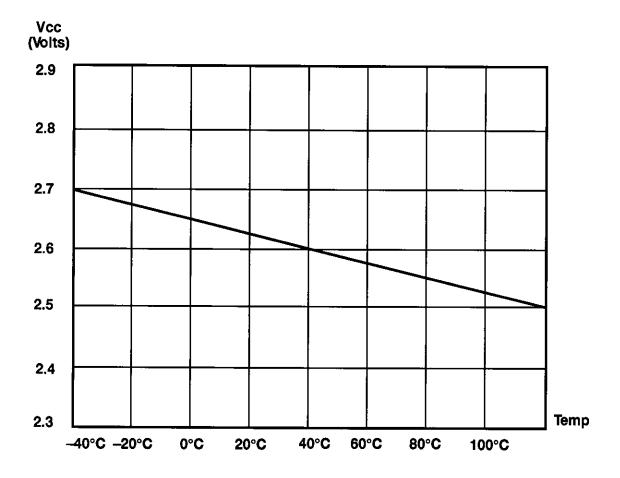


Figure 17. Typical Auto Reset Voltage (V_{LV}) vs. Temperature

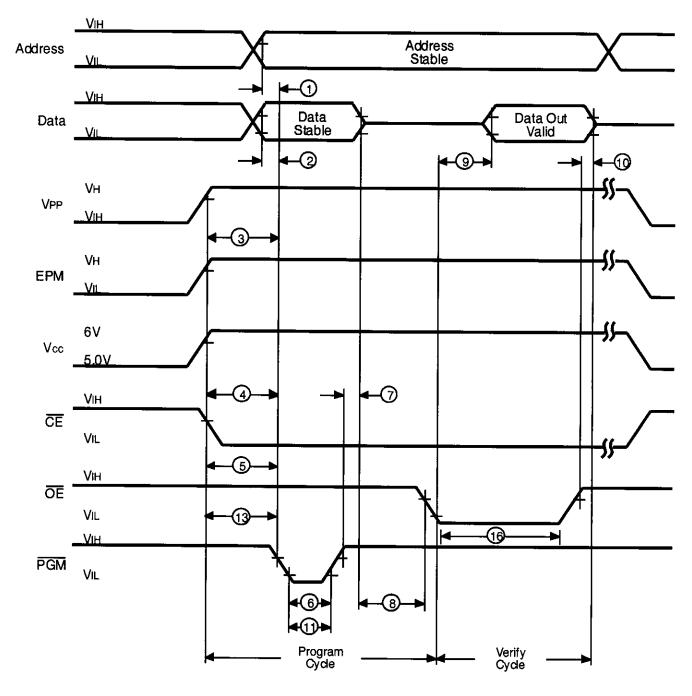


Figure 20. Z86E04/E08 Programming Waveform (Program and Verify)

Z8 CONTROL REGISTERS (Continued)

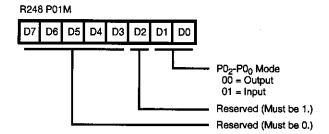


Figure 31. Port 0 and 1 Mode Register (F8_H: Write Only)

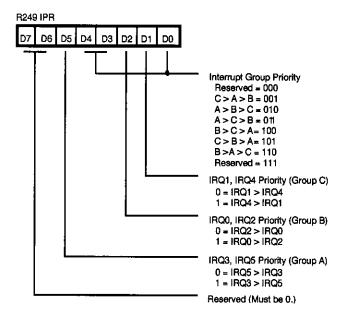


Figure 32. Interrupt Priority Register (F9_H: Write Only)

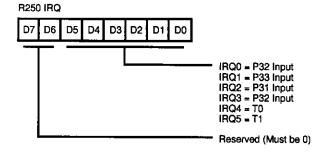


Figure 33. Interrupt Request Register (FA_H: Read/Write)

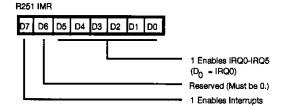


Figure 34. Interrupt Mask Register (FB_H: Read/Write)

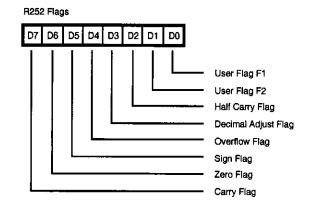


Figure 35. Flag Register (FC_H: Read/Write)

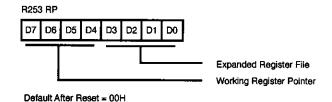


Figure 36. Register Pointer (FD_H: Read/Write)

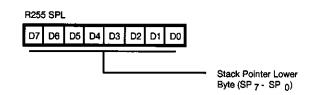
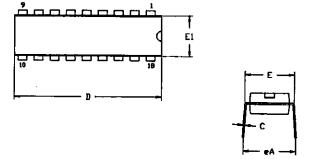
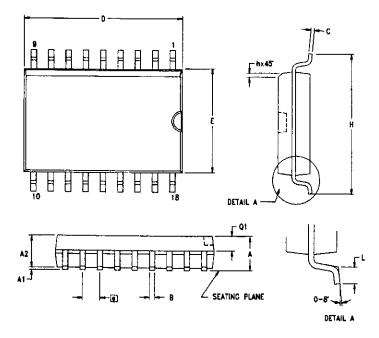



Figure 37. Stack Pointer (FF_H: Read/Write)

PACKAGE INFORMATION



LDEMYZ	MILLI	METER	INC	CH
	MIN	MAX	MIN	MAX
A1	0.51	0.81	.020	.032
SA	3.25	3.43	.128	.135
В	0.38	0.53	.015	.021
Bl	1.14	1.65	.045	.065
С	0.23	0.38	.009	.015
D	22.35	23.37	.880	.920
E	7.62	8.13	.300	.320
El	6.22	6.48	.245	.255
2	2,54	TYP	.100	TYP
eA	7.87	8.89	.310	.350
<u> </u>	3.18	3.81	.125	.150
Ωt	1.52	1.65	.060	.065
2	0.89	1.65	.035	.065

CONTROLLING DIMENSIONS : INCH

18-Pin DIP Package Diagram

SYMBOL	MILLI	METER	INCH			
21 MBDL	MIN	MAX	KIN	MAX		
A	2.40	2.65	0.094	0.104		
A1	0.10	0.30	0.004	0.012		
A2	2.24	2.44	0.088	0.096		
8	0.36	0.46	0.014	0.018		
С	0.23	0.30	0.009	0.012		
D	11.40	11.75	0.449	0.463		
Ε	7.40	7.60	0.291	0.299		
(1.27	TYP	0.05	O TYP		
Н	10.00	10.65	0.394	0.419		
h	0.30	0.50	0.012	0.020		
_ L	0.60	1.00	0.024	0.039		
Q1	0.97	1.07	0.038	0.042		

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

18-Pin SOIC Package Diagram

ORDERING INFORMATION

Z86E04

Z86E08

Standard Temperature

Standard Temperature

	_
18-Pin DIP	•

18-Pin SOIC

18-Pin DIP

18-Pin SOIC

Z86E0412PSC

Z86E0412SSC

Z86E0812PSC

Z86E0812SSC

Z86E0412PEC

Z86E0412SEC

Z86E0812PEC

Z86E0812SEC

For fast results, contact your local Zilog sales office for assistance in ordering the part(s) desired.

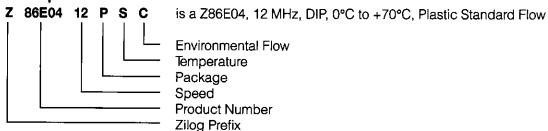
Codes

Preferred Package P = Plastic DIP

Speeds 12 =12 MHz

Longer Lead Time

S = SOIC


Environmental
C = Plastic Standard

Preferred Temperature

 $S = 0^{\circ}C$ to $+70^{\circ}C$

E = -40°C to +105°C

Pre-Characterization Product:

The product represented by this CPS is newly introduced and Zilog has not completed the full characterization of the product. The CPS states what Zilog knows about this product at this time, but additional features or nonconformance with some aspects of the CPS may be

found, either by Zilog or its customers in the course of further application and characterization work. In addition, Zilog cautions that delivery may be uncertain at times, due to start-up yield issues.

© 1998 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY, IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMATION SET FORTH HEREIN OR REGARDING THE FREEDOM OF THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 FAX 408 370-8056 Internet: http://www.zilog.com