

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Discontinued at Digi-Key
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	14
Program Memory Size	1KB (1K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	125 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e0412sec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FEATURES

- 14 Input/Output Lines
- Six Vectored, Prioritized Interrupts
 (3 falling edge, 1 rising edge, 2 timers)
- Two Analog Comparators
- Program Options:
 - Low Noise
 - ROM Protect
 - Auto Latch
 - Watch-Dog Timer (WDT)
 - EPROM/Test Mode Disable

- Two Programmable 8-Bit Counter/Timers, Each with
 6-Bit Programmable Prescaler
- WDT/ Power-On Reset (POR)
- On-Chip Oscillator that Accepts XTAL, Ceramic Resonance, LC, RC, or External Clock
- Clock-Free WDT Reset
- Low-Power Consumption (50 mw typical)
- Fast Instruction Pointer (1µs @ 12 MHz)
- RAM Bytes (125)

GENERAL DESCRIPTION

Zilog's Z86E04/E08 Microcontrollers (MCU) are One-Time Programmable (OTP) members of Zilog's single-chip Z8® MCU family that allow easy software development, debug, prototyping, and small production runs not economically desirable with masked ROM versions.

For applications demanding powerful I/O capabilities, the Z86E04/E08's dedicated input and output lines are grouped into three ports, and are configurable under software control to provide timing, status signals, or parallel I/O.

Two on-chip counter/timers, with a large number of user selectable modes, offload the system of administering real-time tasks such as counting/timing and I/O data communications.

Note: All Signals with an overline, "", are active Low, for example: B/W (WORD is active Low); B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{cc}	V _{DD}
Ground	GND	V_{SS}

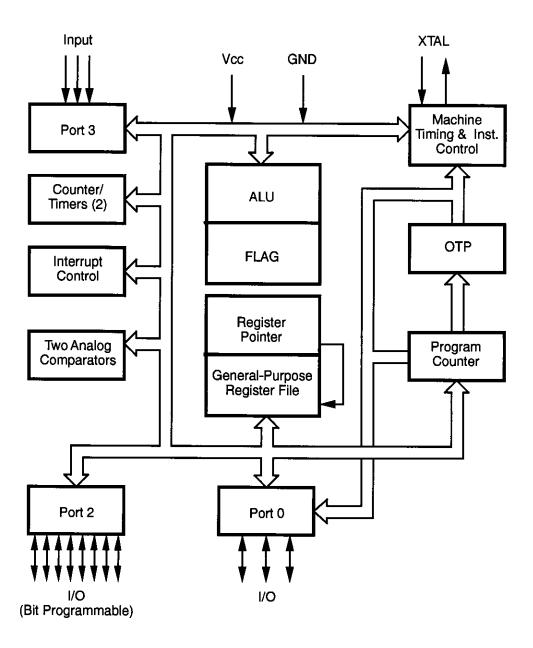


Figure 1. Functional Block Diagram

DC ELECTRICAL CHARACTERISTICS

Standard Temperature

			$T_A = 0^{\circ}C$	to +70°C	Typical			
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
VINMAX	Max Input Voltage	4.5V	<u> </u>	12		V	I _{In} <250 μA	1
		5.5V		12		٧	I _{In} <250 μΑ	1
V _{CH}	Clock Input High Voltage	4.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	٧	Driven by External Clock Generator	
		5.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	V	Driven by External Clock Generator	- "
V _{CL}	Clock Input Low Voltage	4.5V	V _{SS} -0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
		5.5V	V _{SS} -0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	4.5V	0.7 V _{CC}	V _{CC} +0.3	2.8	V		
		5.5V	$0.7 V_{CC}$	V _{CC} +0.3	2.8	V		
V _{IL}	Input Low Voltage	4.5V	V _{SS} -0.3	0.2 V _{CC}	1.5	V		
		5.5V	V _{SS} -0.3	$0.2\mathrm{V_{CC}}$	1.5	٧		
V _{OH}	Output High Voltage	4.5V	V _{CC} -0.4		4.8	٧	$I_{OH} = -2.0 \text{ mA}$	5
		5.5V	V _{CC} -0.4		4.8	V	I _{OH} = -2.0 mA	5
	•	4.5V	V _{CC} -0.4		4.8	٧	Low Noise @ I _{OH} = -0.5 mA	*** **
	•	5.5V	V _{CC} -0.4		4.8	٧	Low Noise @ I _{OH} = -0.5 mA	
V _{OL1}	Output Low Voltage	4.5V		0.8	0.1	٧	$I_{OL} = +4.0 \text{ mA}$	5
	•	5.5V		0.4	0.1	V	I _{OL} = +4.0 mA	5
	•	4.5V		0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
	•	5.5V	<u>.</u>	0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
V _{OL2}	Output Low Voltage	4.5V		0.8	0.8	٧	I _{OL} = +12 mA,	5
	•	5.5V		0.8	0.8	٧	l _{OL} = +12 mA,	5
VOFFSET	Comparator Input	4.5V		25.0	10.0	mV		
	Offset Voltage	5.5V		25.0	10.0	mV		
V_{LV}	V _{CC} Low Voltage Auto Reset		2.2	3.0	2.8	V	@ 6 MHz Max. Int. CLK Freq.	<u>.</u>
I _{IL}	Input Leakage	4.5V	-1.0	1.0		μА	V _{IN} = 0V, V _{CC}	
	(Input Bias Current of Comparator)	5.5V	-1.0	1.0	·	μА	V _{IN} = 0V, V _{CC}	*****
I _{OL}	Output Leakage	4.5V	-1.0	1.0		μA	V _{IN} = 0V, V _{CC}	
	-	5.5V	-1.0	1.0		μА	V _{IN} = 0V, V _{CC}	
V _{ICR}	Comparator Input Common Mode Voltage Range		0	V _{CC} -1.0		V		

DC ELECTRICAL CHARACTERISTICS (Continued)

		-	T _A = 0°0	C to +70°C	Typical			
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
I _{CC1}	Standby Current	4.5V		4.0	2.5	mA	HALT Mode V _{IN} = 0V,	7
	(Low Noise Mode)						V _{CC} @ 1 MHz	
		5.5V		4.0	2.5	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 1 MHz	
		4.5V		4.5	2.8	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 2 MHz	
		5.5V	*****	4.5	2.8	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 2 MHz	
		4.5V		5.0	3.0	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 4 MHz	
		5.5V		5.0	3.0	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 4 MHz	
I_{CC2}	Standby Current	4.5V		10.0	1.0	μΑ	STOP Mode V _{IN} = 0V, V _{CC}	7,8
					· •		WDT is not Running	
		5.5V		10.0	1.0	μА	STOP Mode V _{IN} = 0V,V _{CC}	7,8
							WDT is not Running	
I _{ALL}	Auto Latch Low	4.5V		32.0	16	μА	0V < V _{IN} < V _{CC}	
	Current	5.5V		32.0	16	μА	0V < V _{IN} < V _{CC}	-
I _{ALH}	Auto Latch High	4.5V	mak.	-16.0	-8.0	μА	OV < V _{IN} < V _{CC}	-
	Current	5.5V		-16.0	-8.0	μА	0V < V _{IN} < V _{CC}	

- 1. Port 2 and Port 0 only
- 2. $V_{SS} = 0V = GND$
- 3. The device operates down to V_{LV} of the specified frequency for V_{LV} . The minimum operational V_{CC} is determined on the value of the voltage V_{LV} at the ambient temperature. The V_{LV} increases as the temperature decreases.
- 4. V_{CC} = 4.5 to 5.5V, typical values measured at V_{CC} = 5.0V. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5V with typical values measured at V_{CC} = 5.0V.
- 5. Standard Mode (not Low EMI Mode)
- 6. Z86E08 only
- 7. All outputs unloaded and all inputs are at $\rm V_{\rm CC}$ or $\rm V_{\rm SS}$ level.
- 8. If analog comparator is selected, then the comparator inputs must be at $V_{\rm CC}$ level.

Sym	Parameter	V _{cc} [4]	T _A = -40°C to +105°C Min Max	Typical @ 25°C	Units	Conditions	Notes
I _{CC1}	Standby Current (Low Noise Mode)	4.5V	4.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 1 MHz	7
		5.5V	4.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 1 MHz	7
		4.5V	4.5	2.8	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	7
		5.5V	4.5	2.8	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	7
		4.5V	5.0	3.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 4 MHz	7
		5.5V	5.0	3.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 4 MHz	7
I _{CC2}	Standby Current	4.5V	20	1.0	μА	STOP Mode $V_{IN} = 0V, V_{CC}$ WDT is not Running	7,8
		5.5V	20	1.0	μА	STOP Mode V _{IN} = 0V, V _{CC} WDT is not Running	7,8
I _{ALL}	Auto Latch Low	4.5V	40	16	μА	OV < V _{IN} < V _{CC}	
	Current	5.5V	40	16	μА	OV < V _{IN} < V _{CC}	
I _{ALH}	Auto Latch High	4.5V	-20.0	-8.0	μА	OV < V _{IN} < V _{CC}	
	Current	5.5V	-20.0	-8.0	μА	0V < V _{IN} < V _{CC}	

- 1. Port 2 and Port 0 only
- 2. $V_{SS} = 0V = GND$
- 3. The device operates down to V_{LV} of the specified frequency for V_{LV} . The minimum operational V_{CC} is determined on the value of the voltage V_{LV} at the ambient temperature. The V_{LV} increases as the temperature decreases.
- 4. V_{CC} = 4.5V to 5.5V, typical values measured at V_{CC} = 5.0V
- 5. Standard Mode (not Low EMI Mode)
- 6. Z86E08 only
- 7. All outputs unloaded and all inputs are at V_{CC} or V_{SS} level.
- 8. If analog comparator is selected, then the comparator inputs must be at V_{CC} level.

AC ELECTRICAL CHARACTERISTICS

Timing Table (Standard Mode for SCLK/TCLK = XTAL/2) Extended Temperature

				T 8 M	"	-			
No	Symbol	Parameter	V _{cc}	Min	Max	Min	Max	Units	Notes
1	ТрС	Input Clock Period	4.5V	125	DC	83	DC	ns	1
			5.5V	125	DC	83	DC	ns	1
2	TrC,TfC	Clock Input Rise	4.5V		25		15	ns	1
		and Fall Times	5.5V		25		15	ns	1
3	TwC	Input Clock Width	4.5V		62		41	ns	1
			5.5V		62		41	ns	1
4	TwTinL	Timer Input Low Width	4.5V	70		70		ns	1
			5.5V	70		70	•	ns	1
5	TwTinH	Timer Input High Width	4.5V	5TpC		5TpC			1
			5.5V	5TpC		5TpC			1
6	TpTin	Timer Input Period	4.5V	8TpC		8TpC			1
		<u> </u>	5.5V	8TpC		8TpC			1
7	TrTin,	Timer Input Rise	4.5V		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwlL	Int. Request Input	4.5V	70		70		ns	1,2
		Low Time	5.5V	70		70	•	ns	1,2
9	TwiH	Int. Request Input	4.5V	5TpC		5TpC			1,2
		High Time	5.5V	5TpC		5TpC			1,2
10	Twdt	Watch-Dog Timer	4.5V	10		10		ms	1
		Delay Time for Timeout	5.5V	10		10		ms	1
11	Tpor	Power-On Reset Time	4.5V	12	100	12	100	ms	1
			5.5V	12	100	12	100	ms	1

^{1.} Timing Reference uses 0.7 $\rm V_{CC}$ for a logic 1 and 0.2 $\rm V_{CC}$ for a logic 0.

^{2.} Interrupt request made through Port 3 (P33-P31).

AC ELECTRICAL CHARACTERISTICS

Low Noise Mode, Standard Temperature

				Т	_= 0 °C t	o +70 °C			
				1 M		4 M	Hz		
No	Symbol	Parameter	v_{cc}	Min	Max	Min	Max	Units	Notes
1	TPC	Input Clock Period	4.5V	1000	DC	250	DC	ns	1
		-	5.5V	1000	DC	250	DC	ns	1
2	TrC	Clock Input Rise	4.5V		25		25	ns	1
	TfC	and Fall Times	5.5V		25	,	25	ns	1
3	TwC	Input Clock Width	4.5V	500		125		ns	1
		-	5.5V	500		125		ns	1
4.	TwTinL	Timer Input Low Width	4.5V	70	•	70		ns	1
		-	5.5V	70		70		ns	1
5	TwTinH	Timer Input High Width	4.5V	2.5TpC		2.5TpC			1
		-	5.5V	2.5TpC		2.5TpC		.,	1
6	TpTin	Timer Input Period	4.5V	4TpC		4TpC			1
		-	5.5V	4TpC		4TpC			1
7	TrTin,	Timer Input Rise	4.5V	· ·	100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwiL	Int. Request Input	4.5V	70		70	_	ns	1,2
	Low Time	•	5.5V	70		70		ns	1,2
9	TwiH	Int. Request Input	4.5V	2.5TpC		2.5TpC			1,2
	High Time	•	5.5V	2.5TpC		2.5TpC			1,2
10	Twdt	Watch-Dog Timer	4.5V	12		12		ms	1
		Delay Time for Timeout	5.5V	12		12		ms	1

- Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.
 Interrupt request through Port 3 (P33–P31).

PIN FUNCTIONS (Continued)

XTAL1, XTAL2 Crystal In, Crystal Out (time-based input and output, respectively). These pins connect a parallel-resonant crystal, LC, or an external single-phase clock (8 MHz or 12 MHz max) to the on-chip clock oscillator and buffer.

Port 0, P02—P00. Port 0 is a 3-bit bidirectional, Schmitt-triggered CMOS-compatible I/O port. These three I/O lines can be globally configured under software control to be inputs or outputs (Figure 7).

Auto Latch. The Auto Latch puts valid CMOS levels on all CMOS inputs (except P33, P32, P31) that are not externally driven. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer. On Power-up and Reset, the Auto Latch will set the ports to an undetermined state of 0 or 1. Default condition is Auto Latches enabled.

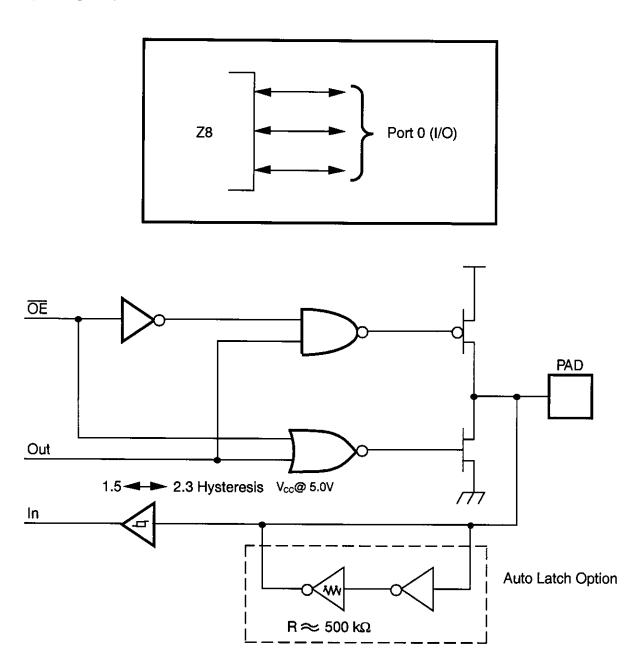


Figure 7. Port 0 Configuration

Program Memory. The Z86E04/E08 addresses up to 1K/2KB of Internal Program Memory (Figure 11). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. Bytes 0–1024/2048 are on-chip one-time programmable ROM.

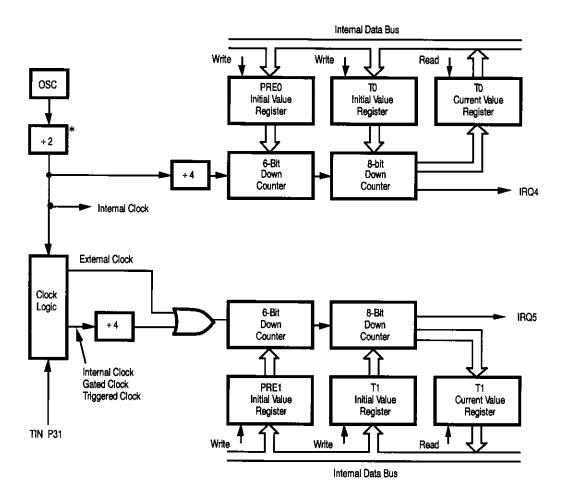

Identifiers 1023/2047 3FFH/7FFH Location of On-Chip First Byte of ROM Instruction Executed After RESET 12 0CH IRQ5 0BH 11 10 IRQ5 0AH IRQ4 9 09H IRQ4 8 08H 7 **IRQ3** 07H Interrupt Vector 6 06H IRQ3 (Lower Byte) IRQ2 5 05H 04H IRQ2 Interrupt Vector 3 IRQ1 03H (Upper Byte) IRQ1 2 02H 1 IRQ0 01H 0 00H IRQ0

Figure 11. Program Memory Map

Register File. The Register File consists of three I/O port registers, 124 general-purpose registers, and 14 control and status registers R0–R3, R4–R127 and R241–R255, respectively (Figure 12). General-purpose registers occupy the 04H to 7FH address space. I/O ports are mapped as per the existing CMOS Z8.

Location		Identifiers
255 (FFH)	Stack Pointer (Bits 7-0)	SPL
254 (FE)	General-Purpose Register	GPR
253 (FD)	Register Pointer	RP
252 (FC)	Program Control Flags	FLAGS
251 (FB)	Interrupt Mask Register	IMR
250 (FA)	Interrupt Request Register	IRQ
249 (F9)	Interrupt Priority Register	IPR
248 (F8)	Ports 0-1 Mode	P01M
247 (F7)	Port 3 Mode	РЗМ
246 (F6)	Port 2 Mode	P2M
245 (F5)	TO Prescaler	PRE0
244 (F4)	Timer/Counter 0	Τ 0
243 (F3)	T1 Prescaler	PRE1
242 (F2)	Timer/Counter 1	T1
241 (F1H)	Timer Mode	TMR
128	Not Implemented	
127 (7FH)	General-Purpose Registers	
4		
3	Port 3	P3
2	Port 2	P2
1	Reserved	P1
0 (00H)	Port 0	P0

Figure 12. Register File

^{*} Note: By passed, if Low EMI Mode is selected.

Figure 14. Counter/Timers Block Diagram

Interrupts. The Z8 has six interrupts from six different sources. These interrupts are maskable and prioritized (Figure 15). The sources are divided as follows: the falling edge of P31 (AN1), P32 (AN2), P33 (REF), the rising edge of P32 (AN2), and two counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests (Table 4).

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All Z8 interrupts are vectored through locations in program memory. When an Interrupt machine cycle is activated, an Interrupt Request is granted. This disables all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit starting address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests needs service.

Note: User must select any Z86E08 mode in Zilog's C12 ICEBOX[™] emulator. The rising edge interrupt is not supported on the CCP emulator (a hardware/software workaround must be employed).

Table 4. Interrupt Types, Sources, and Vectors

Name	Source	Vector Location	Comments
IRQ0	AN2(P32)	0,1	External (F)Edge
IRQ1	REF(P33)	2,3	External (F)Edge
IRQ2	AN1(P31)	4,5	External (F)Edge
IRQ3	AN2(P32)	6,7	External (R)Edge
IRQ4	TO	8,9	Internal
IRQ5	T1	10,11	Internal

Notes:

F = Falling edge triggered

R = Rising edge triggered

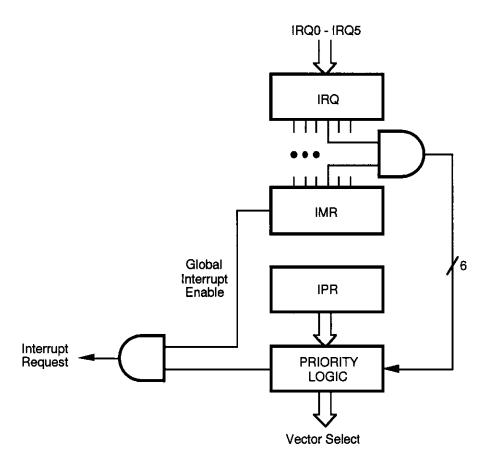
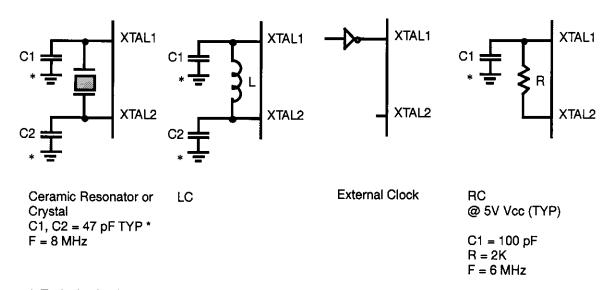



Figure 15. Interrupt Block Dlagram

Clock. The Z8 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, LC, RC, ceramic resonator, or any suitable external clock source (XTAL1 = INPUT, XTAL2 = OUTPUT). The crystal should be AT cut, up to 12 MHz max., with a series resistance (RS) of less than or equal to 100 Ohms.

The crystal should be connected across XTAL1 and XTAL2 using the vendors crystal recommended capacitors from each pin directly to device ground pin 14 (Figure 16). Note that the crystal capacitor loads should be connected to $V_{\rm SS}$, Pin 14 to reduce Ground noise injection.

^{*} Typical value including pin parasitics

Figure 16. Oscillator Configuration

Table 5. Typical Frequency vs. RC Values V_{CC} = 5.0V @ 25°C

			Loa	d Capacitor				
	33	pFd	56	56 pFd		100 pFd		1μFd
Resistor (R)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)
1.0M	33K	31K	20K	20K	12K	11K	1.4K	1.4K
560K	56K	52K	34K	32K	20K	19K	2.5K	2.4K
220K	144K	130K	84K	78K	48K	45K	6K	6K
100K	315K	270K	182K	164K	100K	95K	12K	12K
56K	552K	480K	330K	300K	185K	170K	23K	22K
20K	1.4M	1M	884K	740K	500K	450K	65K	61K
10K	2.6M	2M	1.6M	1.3M	980K	820K	130K	123K
5K	4.4M	3M	2.8M	2M	1.7K	1.3M	245K	225K
2K	8M	5M	6M	4M	3.8K	2.7M	600K	536K
1K	12M	7M	8.8M	6 M	6.3K	4.2M	1.0M	950K

Notes:

A = STD Mode Frequency. B = Low EMI Mode Frequency.

Table 6. Typical Frequency vs. RC Values V_{cc} = 3.3V @ 25°C

	Load Capacitor										
Resistor (R)	33	pFd	56 pFd		100	pFd	0.00 1μFd				
	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)			
1.0M	18K	18K	12K	12K	7.4K	7.7K	1K	1K			
560K	30K	30K	20K	20K	12K	12K	1.6K	1.6K			
220K	70K	70K	47K	47K	30K	30K	4K	4K			
100K	150K	148K	97K	96K	60K	60K	8K	8K			
56K	268K	250K	176K	170K	100K	100K	15K	15K			
20K	690M	600K	463K	416K	286K	266K	40K	40K			
10K	1.2M	1M	860K	730K	540K	480K	80K	76K			
5K	2M	1.7M	1.5M	1.2M	950K	820K	151K	138K			
2K	4.6M	3M	3.3M	2.4M	2.2M	1.6M	360K	316K			
1K	7M	4.6M	5M	3.6M	3.6K	2.6M	660K	565K			

Notes:

A = STD Mode Frequency.

B = Low EMI Mode Frequency.

HALT Mode. This instruction turns off the internal CPU clock but not the crystal oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2 and IRQ3 remain active. The device is recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after the HALT.

Note: On the C12 ICEBOX, the IRQ3 does not wake the device out of HALT Mode.

STOP Mode. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 μA . The STOP Mode is released by a RESET through a Stop-Mode Recovery (pin P27). A Low input condition on P27 releases the STOP Mode. Program execution begins at location 000C(Hex). However, when P27 is used to release the STOP Mode, the I/O port Mode registers are not reconfigured to their default power-on conditions. This prevents any I/O, configured as output when the STOP instruction was executed, from glitching to an unknown state. To use the P27 release approach with STOP Mode, use the following instruction:

LD

P2M, #1XXX XXXXB

NOP STOP

X = Dependent on user's application.

Note: A low level detected on P27 pin will take the device out of STOP Mode even if configured as an output.

In order to enter STOP or HALT Mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user executes a NOP (opcode=FFH) immediately before the appropriate SLEEP instruction, such as:

FF 6F NOP STOP ; clear the pipeline ; enter STOP Mode

~

FF 7**F** NOP HALT ; clear the pipeline

; enter HALT Mode

Watch-Dog Timer (WDT). The Watch-Dog Timer is enabled by instruction WDT. When the WDT is enabled, it cannot be stopped by the instruction. With the WDT instruction, the WDT is refreshed when it is enabled within every 1 Twdt period; otherwise, the controller resets itself, The WDT instruction affects the flags accordingly; Z=1, S=0, V=0.

WDT = 5F (Hex)

Opcode WDT (5FH). The first time Opcode 5FH is executed, the WDT is enabled and subsequent execution clears the WDT counter. This must be done at least every T_{WDT} ; otherwise, the WDT times out and generates a reset. The generated reset is the same as a power-on reset of T_{POR} , plus 18 XTAL clock cycles. The software enabled WDT does not run in STOP Mode.

Opcode WDH (4FH). When this instruction is executed it enables the WDT during HALT. If not, the WDT stops when entering HALT. This instruction does not clear the counters, it just makes it possible to have the WDT running during HALT Mode. A WDH instruction executed without executing WDT (5FH) has no effect.

Permanent WDT. Selecting the hardware enabled Permanent WDT option, will automatically enable the WDT upon exiting reset. The permanent WDT will always run in HALT Mode and STOP Mode, and it cannot be disabled.

Auto Reset Voltage (V_{LV}). The Z8 has an auto-reset builtin. The auto-reset circuit resets the Z8 when it detects the V_{CC} below V_{LV} .

Figure 17 shows the Auto Reset Voltage versus temperature. If the V_{CC} drops below the VCC operating voltage range, the Z8 will function down to the V_{LV} unless the internal clock frequency is higher than the specified maximum V_{LV} frequency.

Internal Address Counter. The address of Z8 is generated internally with a counter clocked through pin P01 (Clock). Each clock signal increases the address by one and the "high" level of pin P00 (Clear) will reset the address to zero. Figure 18 shows the setup time of the serial address input.

Programming Waveform. Figures 19, 20, 21 and 22 show the programming waveforms of each mode. Table 8 shows the timing of programming waveforms.

Programming Algorithm. Figure 23 shows the flow chart of the Z8 programming algorithm.

Table 8. Timing of Programming Waveforms

Parameters	Name	Min	Max	Units
1	Address Setup Time	2		μs
2	Data Setup Time	2		μs
3	V _{PP} Setup	2		μs
4	V _{cc} Setup Time	2		μs
5	Chip Enable Setup Time	2	·· · · ·	μs
6	Program Pulse Width	0.95		ms
7	Data Hold Time	2	,	μS
8	OE Setup Time	2		μЅ
9	Data Access Time	188		ns
10	Data Output Float Time		100	ns
11	Overprogram Pulse Width	2.85		ms
12	EPM Setup Time	2		μS
13	PGM Setup Time	2		μs
14	Address to OE Setup Time	2		μs
15	Option Program Pulse Width	78		ms
16	OE Width	250	, <u></u>	ns
17	Address Valid to OE Low	125		ns

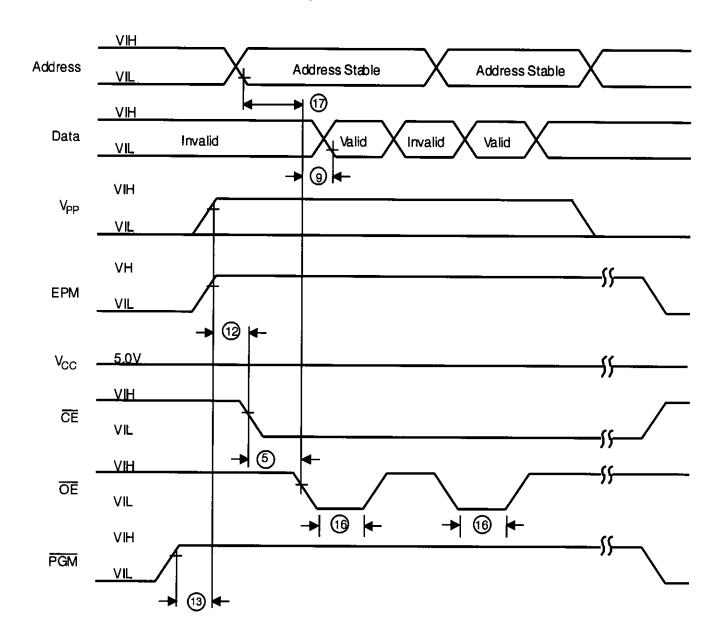


Figure 19. Z86E04/E08 Programming Waveform (EPROM Read)

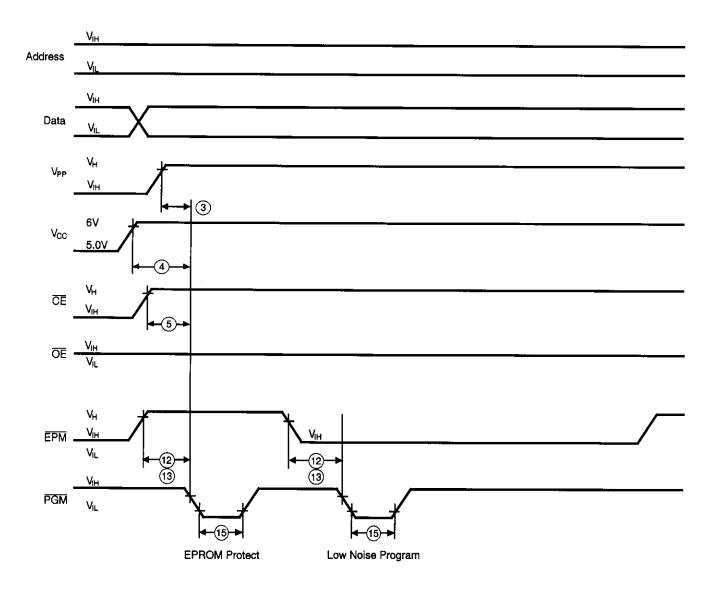


Figure 21. Z86E04/E08 Programming Options Waveform (EPROM Protect and Low Noise Program)

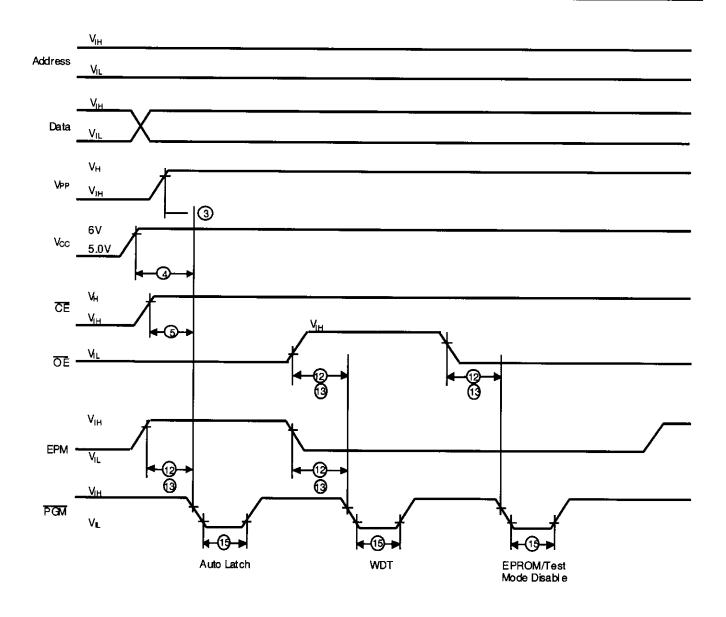
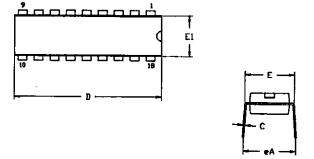
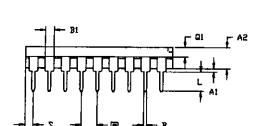
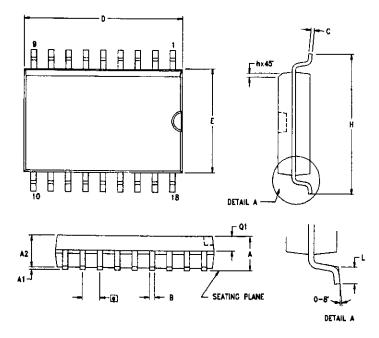




Figure 22. Z86E04/E08 Programming Options Waveform (Auto Latch Disable, Permanent WDT Enable and EPROM/Test Mode Disable)

PACKAGE INFORMATION



LOEMYZ	MILLIMETER		INCH	
	MIN	MAX	MIN	MAX
A1	0.51	0.81	.020	.032
SA	3.25	3.43	.128	.135
В	0.38	0.53	.015	.021
Bl	1.14	1.65	.045	.065
С	0.23	0.38	.009	.015
D	22.35	23.37	.880	.920
E	7.62	8.13	.300	320
El	6.22	6.48	.245	.255
2	2.54 TYP		,100 TYP	
eA	7.87	8.89	.310	.350
<u> </u>	3.18	3.81	.125	.150
Ωį	1.52	1.65	.060	.065
2	0.89	1.65	.035	.065

CONTROLLING DIMENSIONS : INCH

18-Pin DIP Package Diagram

SYMBOL	MILLIMETER		INCH	
	MIN	MAX	KIN	MAX
A	2.40	2.65	0.094	0.104
A1	0.10	0.30	0.004	0.012
A2	2.24	2.44	0.088	0.096
8	0.36	0.46	0.014	0.018
С	0.23	0.30	0.009	0.012
D	11.40	11.75	0.449	0.463
E	7.40	7.60	0.291	0.299
(1.27 TYP		0.050 TYP	
Н	10.00	10.65	0.394	0.419
h	0.30	0.50	0.012	0.020
_ L	0.60	1.00	0.024	0.039
Q1	0.97	1.07	0.038	0.042

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

18-Pin SOIC Package Diagram

ORDERING INFORMATION

Z86E04

Z86E08

Standard Temperature

Standard Temperature

40 -		
18-Pin	DIP	

18-Pin SOIC

18-Pin DIP

18-Pin SOIC

Z86E0412PSC

Z86E0412SSC

Z86E0812PSC

Z86E0812SSC

Z86E0412PEC

Z86E0412SEC

Z86E0812PEC

Z86E0812SEC

For fast results, contact your local Zilog sales office for assistance in ordering the part(s) desired.

Codes

Preferred Package

Speeds

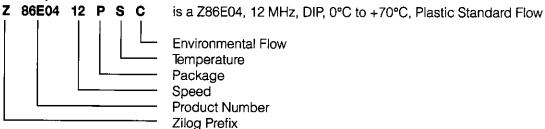
P = Plastic DIP

12 =12 MHz

Longer Lead Time

S = SOIC

Environmental


C = Plastic Standard

Preferred Temperature

 $S = 0^{\circ}C$ to $+70^{\circ}C$

E = -40°C to +105°C

