
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	14
Program Memory Size	1KB (1K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	125 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e0412sec1903tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN DESCRIPTION

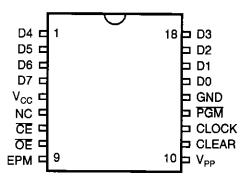
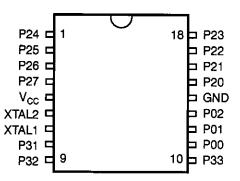


Figure 3. 18-Pin EPROM Mode Configuration

Table 1. 18-Pin DiP Pin Identification

EPROM	Programmi	ng Mode			
Pin #	Symbol	Function	Direction		
1-4	D4–D7	Data 4, 5, 6, 7	In/Output		
5	V _{cc}	Power Supply			
6	NC	No Connection			
7	CE	Chip Enable	Input		
8	ŌĔ	Output Enable	Input		
9	EPM	EPROM Prog Mode	Input		
10	V _{PP}	Prog Voltage	Input		
11	Clear	Clear Clock	Input		
12	Clock	Address	Input		
13	PGM	Prog Mode	Input		
14	GND	Ground	· · · · ·		
15–18	D0-D3	Data 0,1, 2, 3	In/Output		



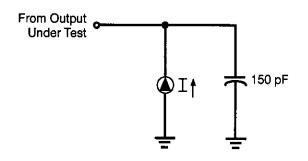

Figure 4. 18-Pin DIP/SOIC Mode Configuration

Table 2. 18-Pin DIP/SOIC Pin Identification

Standa	rd Mode		
Pin #	Symbol	Function	Direction
1-4	P24-P27	Port 2, Pins 4,5,6,7	In/Output
5	V _{CC}	Power Supply	
6	XTAL2	Crystal Osc. Clock	Output
7	XTAL1	Crystal Osc. Clock	Input
8	P31	Port 3, Pin 1, AN1	Input
9	P32	Port 3, Pin 2, AN2	Input
10	P33	Port 3, Pin 3, REF	Input
11–13	P00-P02	Port 0, Pins 0,1,2	In/Output
14	GND	Ground	
15–18	P20-P23	Port 2, Pins 0,1,2,3	In/Output

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to Ground. Positive current flows into the referenced pin (Figure 5).

CAPACITANCE

 $T_A = 25^{\circ}C$, $V_{CC} = GND = 0V$, f = 1.0 MHz, unmeasured pins returned to GND.

Parameter	Min	Max		
Input capacitance	0	10 pF		
Output capacitance	0	20 pF		
I/O capacitance	0	25 pF		

DC ELECTRICAL CHARACTERISTICS

Standard Temperature

			T _A = 0°C	to +70°C	Typical			
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
VINMAX	Max Input Voltage	4.5V		12		V	I _{in} ≪250 µА	1
		5.5V		12		۷	I _{In} ≪250 µА	1
V _{CH}	Clock Input High Voitage	4.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	V	Driven by External Clock Generator	
		5.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	4.5V	V _{SS} 0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
		5.5V	V _{SS} -0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	4.5V	0.7 V _{CC}	V _{CC} +0.3	2.8	V	· · · · · · · · · · · · · · · · · · ·	
.		5.5V	0.7 V _{CC}	V _{CC} +0.3	2.8	V		
VIL	Input Low Voltage	4.5V	V _{SS} 0.3	0.2 V _{CC}	1.5	V		
		5.5V	V _{ss} -0.3	0.2 V _{CC}	1.5	V		
V _{OH}	Output High Voltage	4.5V	V _{cc} -0.4		4.8	V	I _{OH} = -2.0 mA	5
	_	5.5V	V _{cc} -0.4		4.8	۷	l _{OH} = -2.0 mA	5
	_	4.5V	V _{CC} -0.4		4.8	۷	Low Noise @ I _{OH} = -0.5 mA	
		5.5V	V _{cc} -0.4		4.8	۷	Low Noise @ I _{OH} =0.5 mA	
V _{OL1}	Output Low Voltage	4.5V		0.8	0.1	۷	I _{OL} = +4.0 mA	5
	-	5.5V		0.4	0.1	V	I _{OL} = +4.0 mA	5
	-	4.5V		0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
	-	5.5V		0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
V _{OL2}	Output Low Voltage	4.5V		0.8	0.8	V	l _{oL} = +12 mA,	5
	-	5.5V		0.8	0.8	٧	l _{OL} = +12 mA,	5
VOFFSET	Comparator Input	4.5V		25.0	10.0	mV		
	Offset Voltage	5.5V		25.0	10.0	mV		
V _{LV}	V _{CC} Low Voltage Auto Reset		2.2	3.0	2.8	V	@ 6 MHz Max. Int. CLK Freq.	<u>,</u>
I _{IL}	Input Leakage	4.5V	-1.0	1.0		μA	$V_{IN} = 0V, V_{CC}$	
	(Input Bias Current of Comparator) -	5.5V	-1.0	1.0	·	μĀ	V _{IN} = 0V, V _{CC}	
IOL	Output Leakage	4.5V	-1.0	1.0		 μΑ	V _{IN} = 0V, V _{CC}	
	-	5.5V	-1.0	1.0		μA	$V_{\rm IN} = 0V, V_{\rm CC}$	
V _{ICR}	Comparator Input Common Mode Voltage Range		0	V _{cc} –1.0		V		

DC ELECTRICAL CHARACTERISTICS (Continued)

			$T_A = 0^{\circ}C$	c to +70°C	Typical		-	
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
I _{CC1}	Standby Current (Low Noise Mode)	4.5V	·	4.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 1 MHz	7
		5.5V		4.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 1 MHz	7
		4.5V		4.5	2.8	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	7
		5.5V		4.5	2.8	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	7
		4.5V		5.0	3.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 4 MHz	7
		5.5V		5.0	3.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 4 MHz	7
I _{CC2}	Standby Current	4.5V		10.0	1.0	μA	STOP Mode V _{IN} = 0V, V _{CC} WDT is not Running	7,8
		5.5V		10.0	1.0	μA	STOP Mode V _{IN} = 0V,V _{CC} WDT is not Running	7,8
I _{ALL}	Auto Latch Low	4.5V	<u></u>	32.0	16	μA	$0V < V_{IN} < V_{CC}$	
	Current	5.5V		32.0	16	μA	$0V < V_{IN} < V_{CC}$	
	Auto Latch High	4.5V		-16.0	-8.0	μA	OV < V _{IN} < V _{CC}	
	Current	5.5V		-16.0	-8.0	μA	$0V < V_{IN} < V_{CC}$	

Notes:

1. Port 2 and Port 0 only

2. $V_{SS} = 0V = GND$

 The device operates down to V_{LV} of the specified frequency for V_{LV}. The minimum operational V_{CC} is determined on the value of the voltage V_{LV} at the ambient temperature. The V_{LV} increases as the temperature decreases.

4. V_{CC} = 4.5 to 5.5V, typical values measured at V_{CC} = 5.0V.

The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5V with typical values measured at V_{CC} = 5.0V.

5. Standard Mode (not Low EMI Mode)

6. Z86E08 only

7. All outputs unloaded and all inputs are at $V_{CC} \text{ or } V_{SS}$ level.

8. If analog comparator is selected, then the comparator inputs must be at V_{CC} level.

AC ELECTRICAL CHARACTERISTICS

Timing Table (Standard Mode for SCLK/TCLK = XTAL/2)

Extended Temperature

				T 8 M		to +105 °C ; 12 N			
No	Rumhal	Deveneter	v	_					
	Symbol	Parameter	V _{cc}	Min	Max	Min	Max	Units	Notes
1	ТрС	Input Clock Period	4.5V	125	DC	83	DC	ns	1
			5.5V	125	DC	83	DC	ns	1
2	TrC,TfC	Clock Input Rise	4.5V		25		15	ns	1
		and Fall Times	5.5V	-	25		15	ns	1
3	TwC	Input Clock Width	4.5V		62		41	ns	1
			5.5V		62		41	ns	1
4	TwTinL	Timer Input Low Width	4.5V	70		70		ns	1
			5.5V	70		70		ns	1
5	TwTinH	Timer Input High Width	4.5V	5TpC		5TpC			1
			5.5V	5TpC		5TpC			1
6	TpTin	Timer Input Period	4.5V	8TpC		8TpC			1
			5.5V	8TpC		8TpC			- 1
7	TrTin,	Timer Input Rise	4.5V		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwiL	Int. Request Input	4.5V	70		70		ns	1,2
		Low Time	5.5V	70		70		ns	1,2
9	TwiH	Int. Request Input	4.5V	5TpC		5TpC			1,2
		High Time	5.5V	5TpC		5TpC			1,2
10	Twdt	Watch-Dog Timer	4.5V	10		10		ms	1
		Delay Time for Timeout	5.5V	10		10		ms	1
11	Tpor	Power-On Reset Time	4.5V	12	100	12	100	ms	1
			5.5V	12	100	12	100	ms	1

Notes:

1. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.

2. interrupt request made through Port 3 (P33-P31).

AC ELECTRICAL CHARACTERISTICS

Low Noise Mode, Standard Temperature

				т	= 0 °C t	o +70 °C			
				1 M		4 M	Hz		
No	Symbol	Parameter	V _{cc}	Min	Max	Min	Max	Units	Notes
1	TPC	Input Clock Period	4.5V	1000	DC	250	DC	ns	1
		-	5.5V	1000	DC	250	DC	ns	1
2	TrC	Clock Input Rise	4.5V		25	•	25	ns	1
	TfC	and Fall Times	5.5V		25		25	ns	1
3	TwC	Input Clock Width	4.5V	500		125		ns	1
		-	5.5V	500		125	•	ns	1
4.	TwTinL.	Timer Input Low Width	4.5V	70		70		ns	1
		-	5.5V	70		70		ns	1
5	TwTinH	Timer Input High Width	4.5V	2.5TpC		2.5TpC		·	1
		-	5.5V	2.5TpC		2.5TpC			1
6	TpTin	Timer Input Period	4.5V	4TpC		4TpC			1
		-	5.5V	4TpC		4TpC			1
7	TrTin,	Timer Input Rise	4.5V		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwiL	Int. Request Input	4.5V	70		70	-	ns	1,2
	Low Time	=	5.5V	70		70		ns	1,2
9	TwiH	Int. Request Input	4.5V	2.5TpC		2.5TpC	·····-		1,2
	High Time	•	5.5V	2.5TpC		2.5TpC			1,2
10	Twdt	Watch-Dog Timer	4.5V	12		12		ms	1
		Delay Time for Timeout	5.5V	12		12		ms	1

Notes:

1. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).

Zilog

Low Noise Mode, Extended Temperature

				T۸	= -40 °C	; to +105 °	С		
				1 Ŵ		4 M			
No	Symbol	Parameter	V _{cc}	Min	Max	Min	Max	Units	Notes
1	TPC	Input Clock Period	4.5V	1000	DC	250	DC	ns	1
			5.5V	1000	DC	250	DC	ns	1
2	TrC	Clock Input Rise	4.5V		25		25	ns	1
	TfC	and Fall Times	5.5V		25		25	ns	1
3	TwC	Input Clock Width	4.5V	500		125		ns	1
			5.5V	500		125		ns	1
4.	TwTinL	Timer Input Low Width	4.5V	70		70		ns	1
			5.5V	70		70		ns	1
5	TwTinH	Timer Input High Width	4.5V	2.5TpC		2.5TpC			1
			5.5V	2.5TpC		2.5TpC			1
6	TpTin	Timer Input Period	4.5V		4TpC	4TpC	".		1
			5.5V		4TpC	4TpC			1
7	TrTin,	Timer Input Rise	4.5V		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwIL	Int. Request Input	4.5V	70		70		ns	1,2
		Low Time	5.5V	70		70		ns	1,2
9	TwiH	Int. Request Input	4.5V	2.5TpC		2.5TpC			1,2
		High Time	5.5V	2.5TpC		2.5TpC			1,2
10	Twdt	Watch-Dog Timer	4.5V	10		10		ms	1
		Delay Time for Timeout	5.5V	10		10		ms	1

Notes:

1. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.

2. Interrupt request through Port 3 (P33-P31).

LOW NOISE VERSION

Low EMI Emission

The Z86E04/E08 can be programmed to operate in a Low EMI Emission Mode by means of a mask ROM bit option. Use of this feature results in:

- All pre-driver slew rates reduced to 10 ns typical.
- Internal SCLK/TCLK operation limited to a maximum of 4 MHz–250 ns cycle time.

PIN FUNCTIONS

OTP Programming Mode

D7–D0 Data Bus. Data can be read from, or written to, the EPROM through this data bus.

 V_{CC} Power Supply. It is typically 5V during EPROM Read Mode and 6.4V during the other modes (Program, Program Verify, and so on).

CE Chip Enable (active Low). This pin is active during EPROM Read Mode, Program Mode, and Program Verify Mode.

OE Output Enable (active Low). This pin drives the Data Bus direction. When this pin is Low, the Data Bus is output. When High, the Data Bus is input.

EPM *EPROM Program Mode.* This pin controls the different EPROM Program Modes by applying different voltages.

 $\boldsymbol{V}_{\mathsf{PP}}$ Program Voltage. This pin supplies the program voltage.

Clear Clear (active High). This pin resets the internal address counter at the High Level.

- Output drivers have resistances of 500 Ohms (typical).
- Oscillator divide-by-two circuitry eliminated.

The Low EMI Mode is mask-programmable to be selected by the customer at the time the ROM code is submitted.

Clock Address Clock. This pin is a clock input. The internal address counter increases by one with one clock cycle.

PGM *Program Mode* (active Low). A Low level at this pin programs the data to the EPROM through the Data Bus.

Application Precaution

The production test-mode environment may be enabled accidentally during normal operation if *excessive noise* surges above V_{CC} occur on the XTAL1 pin.

In addition, processor operation of Z8 OTP devices may be affected by *excessive noise* surges on the V_{PP} , \overline{CE} , EPM, \overline{OE} pins while the microcontroller is in Standard Mode.

Recommendations for dampening voltage surges in both test and OTP Mode include the following:

- Using a clamping diode to V_{CC}.
- Adding a capacitor to the affected pin.

Note: Programming the EPROM/Test Mode Disable option will prevent accidental entry into EPROM Mode or Test Mode.

PIN FUNCTIONS (Continued)

XTAL1, XTAL2 *Crystal In, Crystal Out* (time-based input and output, respectively). These pins connect a parallelresonant crystal, LC, or an external single-phase clock (8 MHz or 12 MHz max) to the on-chip clock oscillator and buffer.

Port 0, P02–P00. Port 0 is a 3-bit bidirectional, Schmitttriggered CMOS-compatible I/O port. These three I/O lines can be globally configured under software control to be inputs or outputs (Figure 7). Auto Latch. The Auto Latch puts valid CMOS levels on all CMOS inputs (except P33, P32, P31) that are not externally driven. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer. On Power-up and Reset, the Auto Latch will set the ports to an undetermined state of 0 or 1. Default condition is Auto Latches enabled.

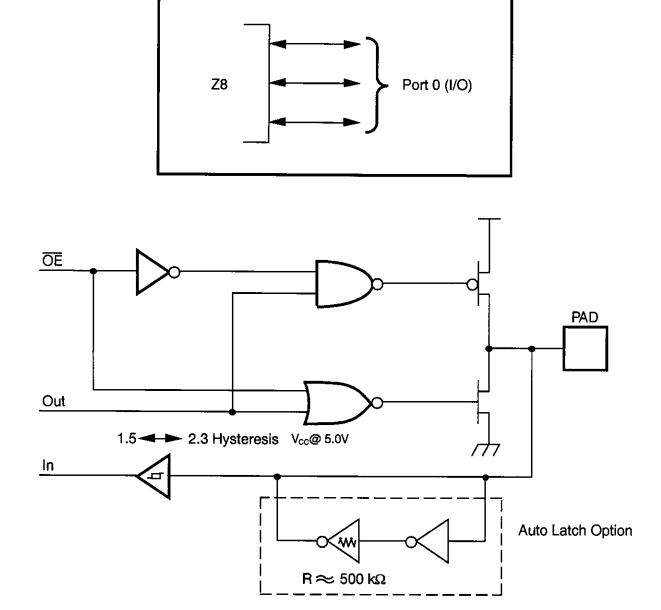


Figure 7. Port 0 Configuration

PIN FUNCTIONS (Continued)

Port 3, P33–P31. Port 3 is a 3-bit, CMOS-compatible port with three fixed input (P33–P31) lines. These three input lines can be configured under software control as digital Schmitt-trigger inputs or analog inputs.

These three input lines are also used as the interrupt sources IRQ0–IRQ3, and as the timer input signal $T_{\rm IN}$ (Figure 9).

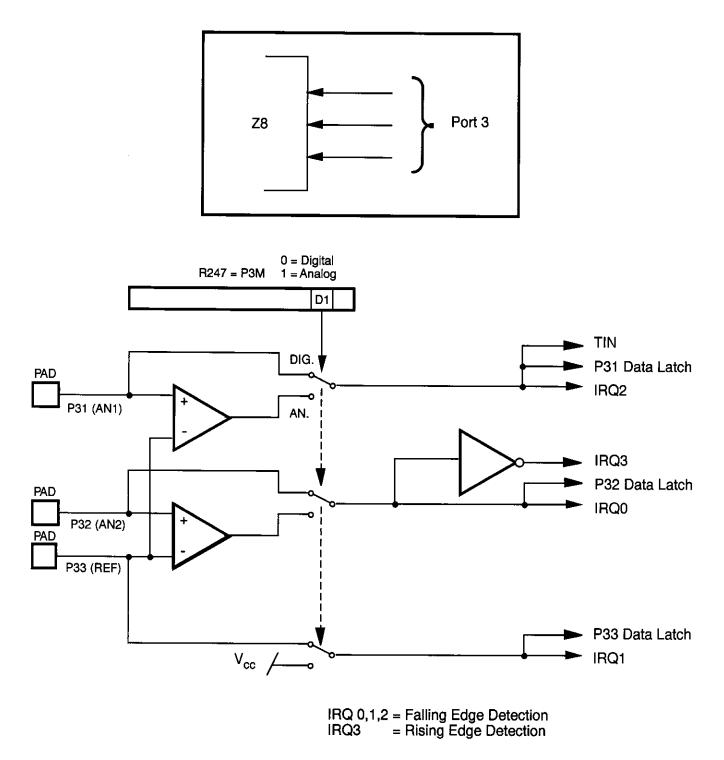
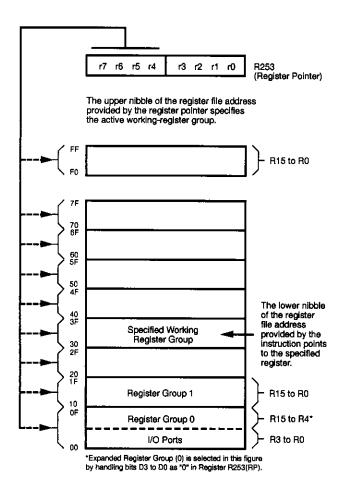


Figure 9. Port 3 Configuration

FUNCTIONAL DESCRIPTION (Continued)

				R	eset C	onditio	n			
Addr.	Reg.	D7	D6	D5	D4	D3	D2	D1	D0	Comments
FF	SPL	0	0	0	0	0	0	0	0	
FD	RP	0	0	0	0	0	0	0	0	
FC	FLAGS	U	U	U	U	U	U	U	U	· · · · · · · · · · · · · · · · · · ·
FB	IMR	0	U	U	U	U	U	U	U	
FA	IRQ	U	U	0	0	0	0	0	0	IRQ3 is used for positive edge detection
F9	IPR	U	Ų	U	U	U	U	U	U	
F8*	P01M	U	U	U	0	U	U	0	1	
F7*	P3M	U	U	U	Ū	U	U	0	0	
F6*	P2M	1	1	1	1	1	1	1	1	Inputs after reset
F5	PRE0	U	U	U	U	U	U	U	0	
F4	T0	U	U	U	U	U	U	U	U	
F3	PRE1	U	Ū	U	Ū	U	Ŭ	0	0	
F2	T1	U	U	U	Ū	U	U	U	U	
F1	TMR	0	0	0	0	0	0	0	0	


Table 3. Control Registers

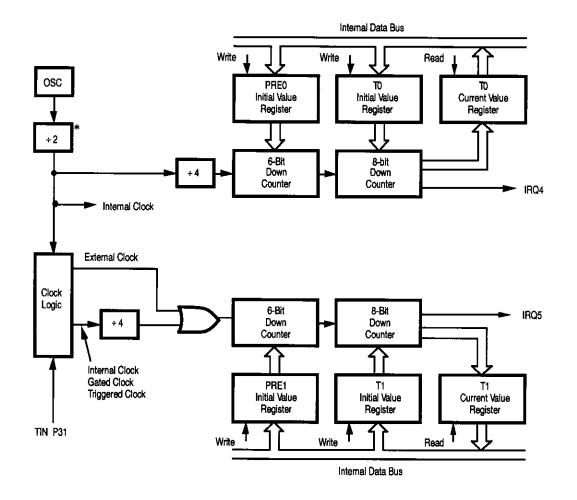
Note: *Registers are not reset after a STOP-Mode Recovery using P27 pin. A subsequent reset will cause these control registers to be reconfigured as shown in Table 4 and the user must avoid bus contention on the port pins or it may affect device reliability.

FUNCTIONAL DESCRIPTION (Continued)

The Z8 instructions can access registers directly or indirectly through an 8-bit address field. This allows short 4-bit register addressing using the Register Pointer.

In the 4-bit mode, the register file is divided into eight working register groups, each occupying 16 continuous locations. The Register Pointer (Figure 13) addresses the starting location of the active working-register group.

Stack Pointer. The Z8 has an 8-bit Stack Pointer (R255) used for the internal stack that resides within the 124 general-purpose registers.


General-Purpose Registers (GPR). These registers are undefined after the device is powered up. The registers keep their last value after any reset, as long as the reset occurs in the V_{CC} voltage-specified operating range. Note: Register R254 has been designated as a general-purpose register and is set to 00 Hex after any reset or Stop-Mode Recovery.

Counter/Timer. There are two 8-bit programmable counter/timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the T0 can be driven by the internal clock source only (Figure 14).

The 6-bit prescalers divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both counter and prescaler reach the end of count, a timer interrupt request IRQ4 (T0) or IRQ5 (T1) is generated.

The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters are also programmed to stop upon reaching zero (Single-Pass Mode) or to automatically reload the initial value and continue counting (Modulo-N Continuous Mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and is either the internal microprocessor clock divided by four, or an external signal input through Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that is retriggerable or non-retriggerable, or used as a gate input for the internal clock.

* Note: By passed, if Low EMI Mode is selected.

Figure 14. Counter/Timers Block Diagram

Load Capacitor										
	33	3 pFd	56	oFd	100	pFd	0.00	1μFd		
Resistor (R)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)		
1.0M	33K	31K	20K	20K	12K	11K	1.4K	1.4K		
560K	56K	52K	34K	32K	20K	19K	2.5K	2.4K		
220K	144K	130K	84K	78K	48K	45K	6K	6K		
100K	315K	270K	182K	164K	100K	95K	12K	12K		
56K	552K	480K	330K	300K	185K	170K	23K	22K		
20K	1.4M	1 M	884K	740K	500K	450K	65K	61K		
10K	2.6M	2M	1.6M	1.3M	980K	820K	130K	123K		
5K	4.4M	3M	2.8M	2M	1.7K	1.3M	245K	225K		
2K	8M	5M	6M	4M	3.8K	2.7M	600K	536K		
1K	12M	7M	8.8M	6M	6.3K	4.2M	1.0M	950K		

Notes:

A = STD Mode Frequency. B = Low EMI Mode Frequency.

Table 6. Typical Frequency vs. RC Values V_{cc} = 3.3V @ 25°C

				Load Capac	itor				
Resistor (R)	33 pFd		56	pFd	100	pFd	0.00 1µFd		
	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	
1.0M	18K	18K	12K	12K	7.4K	7.7K	1K	1K	
560K	30K	30K	20K	20K	12K	12K	1.6K	1.6K	
220K	70K	70K	47K	47K	30K	30K	4K	4K	
100K	150K	148K	97K	96K	60K	60K	8K	8K	
56K	268K	250K	176K	170K	100K	100K	15K	15K	
20K	690M	600K	463K	416K	286K	266K	40K	40K	
10K	1.2M	1M	860K	730K	540K	480K	80K	76K	
5K	2M	1.7M	1.5M	1.2M	950K	820K	151K	138K	
2K	4.6M	3M	3.3M	2.4M	2.2M	1.6M	360K	316K	
1K	7M	4.6M	5M	3.6M	3.6K	2.6M	660K	565K	

Notes:

A = STD Mode Frequency.

B = Low EMI Mode Frequency.

Z86E04/E08 CMOS Z8 OTP Microcontrollers

Low EMI Emission

The Z8 can be programmed to operate in a low EMI Emission (Low Noise) Mode by means of an EPROM programmable bit option. Use of this feature results in:

- Less than 1 mA consumed during HALT Mode.
- All drivers slew rates reduced to 10 ns (typical).
- Internal SCLK/TCLK = XTAL operation limited to a maximum of 4 MHz-250 ns cycle time.
- Output drivers have resistances of 500 ohms (typical).
- Oscillator divide-by-two circuitry eliminated.

In addition to V_{DD} and GND (V_{SS}), the Z8 changes all its pin functions in the EPROM Mode. XTAL2 has no function, XTAL1 functions as \overline{CE} , P31 functions as \overline{OE} , P32 functions as EPM, P33 functions as V_{PP}, and P02 functions as PGM.

ROM Protect. ROM Protect fully protects the Z8 ROM code from being read externally. When ROM Protect is selected, the instructions LDC and LDCI **are supported** (Z86E04/E08 and Z86C04/C08 do not support the instructions of LDE and LDEI). When the device is programmed for ROM Protect, the Low Noise feature will not automatically be enabled.

Please note that when using the device in a noisy environment, it is suggested that the voltages on the EPM and \overline{CE} pins be clamped to V_{CC} through a diode to V_{CC} to prevent accidentally entering the OTP Mode. The V_{PP} requires both a diode and a 100 pF capacitor.

Auto Latch Disable. Auto Latch Disable option bit when programmed will globally disable all Auto Latches.

WDT Enable. The WDT Enable option bit, when programmed, will have the hardware enabled Permanent WDT enabled after exiting reset and can not be stopped in Halt or Stop Mode.

EPROM/Test Mode Disable. The EPROM/Test Mode Disable option bit, when programmed, will disable the EPROM Mode and the Factory Test Mode. Reading, verifying, and programming the Z8 will be disabled. To fully verify that this mode is disabled, the device must be power cycled.

User Modes. Table 7 shows the programming voltage of each mode.

Programming Modes	$V_{_{PP}}$	EPM	CE	ŌĒ	PGM	ADDR	DATA	V _{cc} *
EPROM READ	NU	V _H	VIL	V _{IL}	V _{IH}	ADDR	Out	5.0V
PROGRAM	V _H	V _{IH}	VIL	VIH	V _{IL}	ADDR	In	6.4V
PROGRAM VERIFY	V _H	ViH	VIL	VIL	V _{IH}	ADDR	Out	6.4V
EPROM PROTECT	V _H	V _H	V _H	ViH	V _{IL}	NU	NU	6.4V
LOW NOISE SELECT	V _H	V _{IH}	V _H	VIH	V _{IL}	NU	NU	6.4V
AUTO LATCH DISABLE	V _H	VIH	V _H	V _{IL}	V _{IL}	NU	NU	6.4V
WDT ENABLE	V _H	V _{IL}	V _H	VIH	VIL	NU	NU	6.4V
EPROM/TEST MODE	V _H	V _{IL}	V _H	V _{IL}	V _{IL}	NU	NU	6.4V

Table 7. OTP Programming Table

Notes:

- 1. $V_{H} = 12.75V \pm 0.25 V_{DC}$.
- 2. V_{IH} = As per specific Z8 DC specification.
- 3. V_{IL}= As per specific Z8 DC specification.
- 4. X = Not used, but must be set to V_H or V_{IH} level.
- 5. NU = Not used, but must be set to either V_{IH} or V_{IL} level.
- 6. I_{PP} during programming = 40 mA maximum.
- 7. I_{CC} during programming, verify, or read = 40 mA maximum.
- 8. * V_{CC} has a tolerance of ±0.25V.

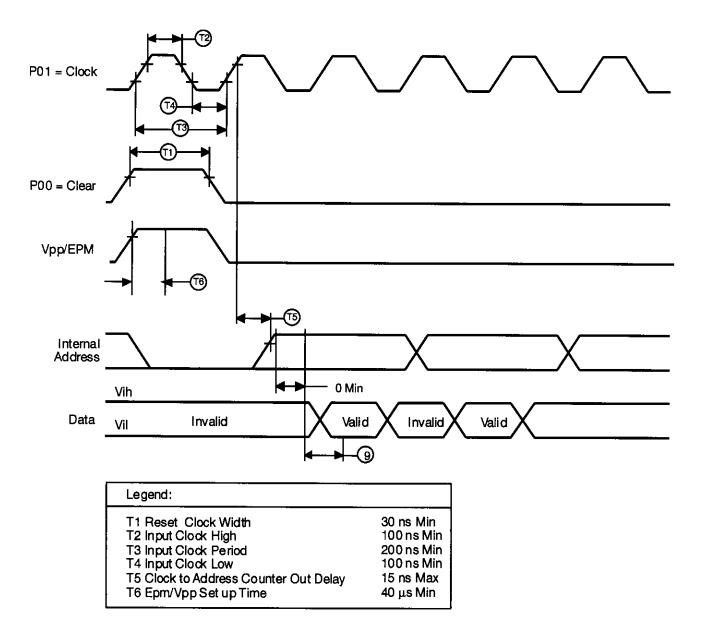


Figure 18. Z86E04/E08 Address Counter Waveform

FUNCTIONAL DESCRIPTION (Continued)

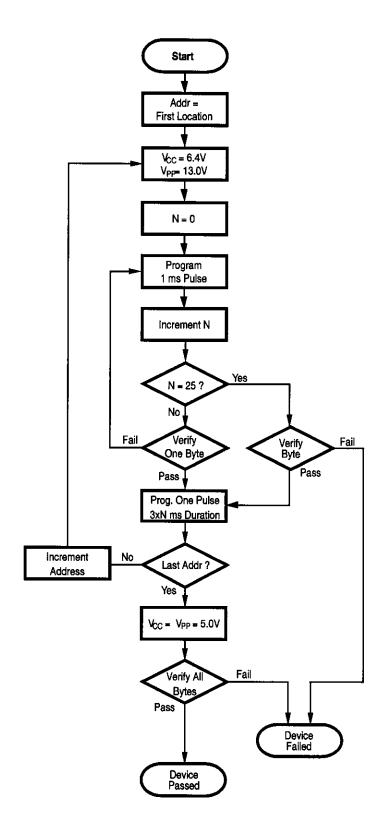


Figure 23. Z86E04/E08 Programming Algorithm

T₀ Initial Value (When Written)

(Range: 1-256 Decimal

Z8 CONTROL REGISTERS

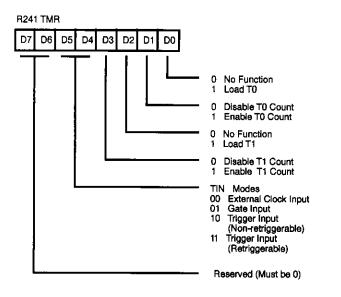
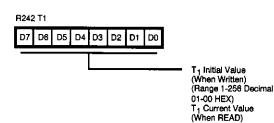
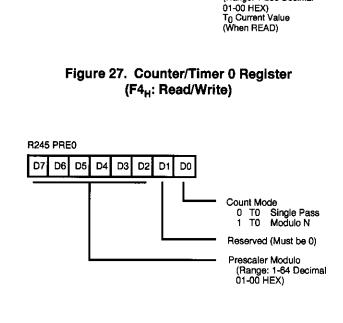
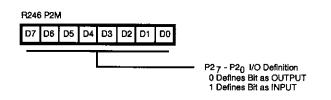




Figure 24. Timer Mode Register (F1_H: Read/Write)


D3 D2

D1 D0

R244 T0

D7 D6 D5 D4

Figure 28. Prescaler 0 Register (F5_H: Write Only)

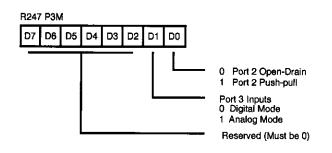


Figure 30. Port 3 Mode Register (F7_H: Write Only)

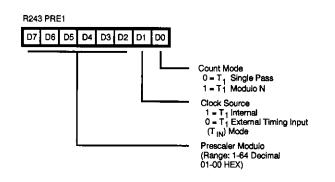


Figure 26. Prescaler 1 Register (F3_H: Write Only)

ORDERING INFORMATION

Z86E04

Z86E08

Standard To	emperature	Standard Temperature			
18-Pin DIP	18-Pin SOIC	18-Pin DIP	18-Pin SOIC		
Z86E0412PSC	Z86E0412SSC	Z86E0812PSC	Z86E0812SSC		
Z86E0412PEC	Z86E0412SEC	Z86E0812PEC	Z86E0812SEC		

For fast results, contact your local Zilog sales office for assistance in ordering the part(s) desired.

Codes

Preferred Package P = Plastic DIP

Longer Lead Time S = SOIC

Speeds 12 =12 MHz

Environmental C = Plastic Standard

Preferred Temperature

 $S = 0^{\circ}C$ to +70°C E = -40°C to +105°C

Example:				
Z 86E04 12 P S C	is a Z86E04, 12 MHz, DIP, 0°C to +70°C, Plastic Standard Flow Environmental Flow Temperature Package Speed Product Number Zilog Prefix			

Pre-Characterization Product:

The product represented by this CPS is newly introduced and Zilog has not completed the full characterization of the product. The CPS states what Zilog knows about this product at this time, but additional features or nonconformance with some aspects of the CPS may be

© 1998 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY, IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMATION SET FORTH HEREIN OR REGARDING THE FREEDOM OF THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. found, either by Zilog or its customers in the course of further application and characterization work. In addition, Zilog cautions that delivery may be uncertain at times, due to start-up yield issues.

Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 FAX 408 370-8056 Internet: http://www.zilog.com