
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	14
Program Memory Size	1KB (1K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	125 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e0412ssc1866tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

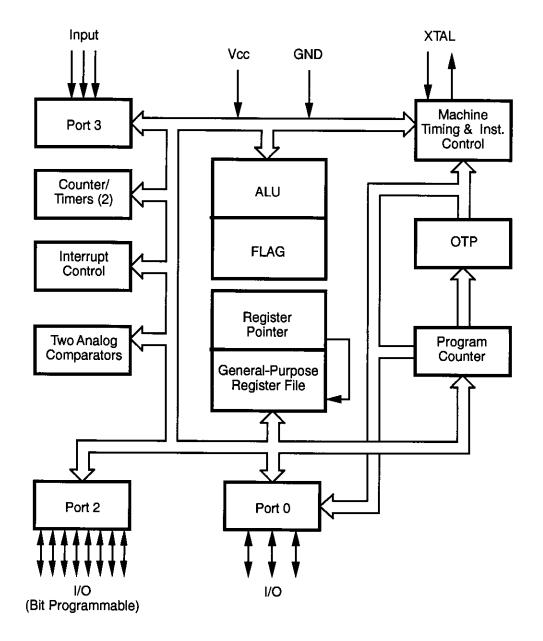


Figure 1. Functional Block Diagram

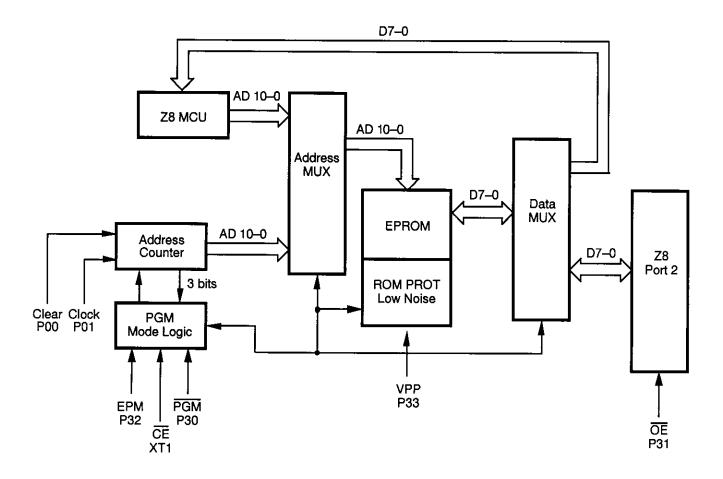


Figure 2. EPROM Programming Mode Block Diagram

ABSOLUTE MAXIMUM RATINGS

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability. Total power dissipation should not exceed 462 mW for the package. Power dissipation is calculated as follows:

Total Power Dissipation = $V_{DD} \times [I_{DD} - (\text{sum of } I_{OH})]$ + sum of $[(V_{DD} - V_{OH}) \times I_{OH}]$ + sum of $(V_{0L} \times I_{0L})$

Min	Max	Units	Note
-40	+105	С	
-65	+150	С	
-0.7	+12	V	1
-0.3	+7	V -	
-0.6	V _{DD} +1	V	2
	1.65	W	·
	300	mA	
	220	mA	
-600	+600	μA	3
-600	+600		4
	25	mA	
	25	mA	
	60	mA	
	45	mA	
	40 65 0.7 0.3 0.6	$\begin{array}{c ccc} -40 & \pm 105 \\ -65 & \pm 150 \\ -0.7 & \pm 12 \\ -0.3 & \pm 7 \\ -0.6 & V_{DD} \pm 1 \\ \hline & 1.65 \\ 300 \\ 220 \\ -600 & \pm 600 \\ -600 & \pm 600 \\ 25 \\ 25 \\ 60 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Notes:

1. This applies to all pins except where otherwise noted. Maximum current into pin must be \pm 600 μ A.


2. There is no input protection diode from pin to V_{DD} (not applicable to EPROM Mode).

3. This excludes Pin 6 and Pin 7.

4. Device pin is not at an output Low state.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to Ground. Positive current flows into the referenced pin (Figure 5).

CAPACITANCE

 $T_A = 25^{\circ}C$, $V_{CC} = GND = 0V$, f = 1.0 MHz, unmeasured pins returned to GND.

Parameter	Min	Max
Input capacitance	0	10 pF
Output capacitance	0	20 pF
I/O capacitance	0	25 pF

			$T_A = 0^{\circ}C$	to +70°C	Typical			
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
I _{CC}	Supply Current	4.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 2 MHz	5,7
		5.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 2 MHz	5,7
		4.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		5.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		4.5V		20.0	12.0	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
		5.5V		20.0	12.0	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
I _{CC1}	Standby Current	4.5V		4.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	5,7
		5.5V		4.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	5,7
		4.5V		5.0	3.0	mA	HALT Mode $V_{IN} = 0V$, $V_{CC} @ 8 MHz$	5,7
		5.5V		5.0	3.0	mA	HALT Mode $V_{IN} = 0V$, $V_{CC} @ 8 MHz$	5,7
		4.5V		7.0	4.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 12 MHz	5,7
		5.5V		7.0	4.0	mA	HALT Mode $V_{IN} = 0V$, $V_{CC} @ 12 MHz$	5,7
I _{CC}	Supply Current (Low Noise Mode)	4.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 1 MHz	7
		5.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 1 MHz	7
		4.5V		13.0	7.5	mA	All Output and I/O Pins Floating @ 2 MHz	7
		5.5V		13.0	7.5	mA	All Output and I/O Pins Floating @ 2 MHz	7
		4.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 4 MHz	7
		5.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 4 MHz	7

AC ELECTRICAL CHARACTERISTICS

Timing Table (Standard Mode for SCLK/TCLK = XTAL/2) Standard Temperature

15				ר	Г _А = 0 °С	to +70 °C	>		
				8 N	ſHz	12	MHz		
No	Symbol	Parameter	v_{cc}	Min	Max	Min	Max	Units	Notes
1	ТрС	Input Clock Period	4.5V	125	DC	83	DC	ns	1
			- 5.5V	125	DC	83	DC	ns	1
2	TrC,TfC	Clock Input Rise	4.5V	a.	25		15	ns	1
		and Fall Times	5.5V		25		15	ns	1
3	TwC	Input Clock Width	4.5V	62	·	41		ns	1
			5.5V	62		41		ns	1
4	TwTinL	Timer Input Low Width	4.5V	100		100		ns	1
			5.5V	70	1	70		ns	- 1
5	TwTinH	H Timer Input High Width	4.5V	5TpC		5TpC			1
			5.5V	5TpC		5TpC			1
6	TpTin	Timer Input Period	4.5V		8TpC	8TpC			1
			5.5V		8TpC	8TpC			1
7	TrTin,	Timer Input Rise	4.5V		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwiŁ	Int. Request Input	4.5V	70		70		ns	1,2
		Low Time	5.5V	70		70		ns	1,2
9	TwiH	Int. Request Input	4.5V		5TpC	5TpC			1,2
		High Time	5.5V		5TpC	5TpC			1,2
10	Twdt	Watch-Dog Timer	4.5V	12		12		ms	1
		Delay Time for Timeout	5.5V	12		12		ms	1
11	Tpor	Power-On Reset Time	4.5V	20	80	20	80	ms	1
			5.5V	20	80	20	80	ms	1

Notes:

1. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.

2. Interrupt request through Port 3 (P33-P31).

AC ELECTRICAL CHARACTERISTICS

Timing Table (Standard Mode for SCLK/TCLK = XTAL/2)

Extended Temperature

				T _A =40 °C to +105 °C 8 MHz 12 MHz					
No	Rumhal	Deveneter	v	_					
	Symbol	Parameter	V _{cc}	Min	Max	Min	Max	Units	Notes
1	ТрС	Input Clock Period	4.5V	125	DC	83	DC	ns	1
			5.5V	125	DC	83	DC	ns	1
2	TrC,TfC	Clock Input Rise	4.5V		25		15	ns	1
		and Fall Times	5.5V	-	25		15	ns	1
3	TwC	Input Clock Width	4.5V		62		41	ns	1
	•		5.5V		62		41	ns	1
4	TwTinL	Timer Input Low Width	4.5V	70		70		ns	1
			5.5V	70		70		ns	1
5	TwTinH Timer Ing	Timer Input High Width	4.5V	5TpC		5TpC			1
			5.5V	5TpC		5TpC			1
6	TpTin	Timer Input Period	4.5V	8TpC		8TpC			1
			5.5V	8TpC		8TpC			- 1
7	TrTin,	Timer Input Rise	4.5V		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwiL	Int. Request Input	4.5V	70		70		ns	1,2
		Low Time	5.5V	70		70		ns	1,2
9	TwiH	Int. Request Input	4.5V	5TpC		5TpC			1,2
		High Time	5.5V	5TpC		5TpC			1,2
10	Twdt	Watch-Dog Timer	4.5V	10		10		ms	1
		Delay Time for Timeout	5.5V	10		10		ms	1
11	Tpor	Power-On Reset Time	4.5V	12	100	12	100	ms	1
			5.5V	12	100	12	100	ms	1

Notes:

1. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.

2. interrupt request made through Port 3 (P33-P31).

Comparator Inputs. Two analog comparators are added to input of Port 3, P31, and P32, for interface flexibility. The comparators reference voltage P33 (REF) is common to both comparators.

Typical applications for the on-board comparators; Zero crossing detection, A/D conversion, voltage scaling, and threshold detection. In Analog Mode, P33 input functions serve as a reference voltage to the comparators.

The dual comparator (common inverting terminal) features a single power supply which discontinues power in STOP

Mode. The common voltage range is 0-4 V when the V_{CC} is 5.0V; the power supply and common mode rejection ratios are 90 dB and 60 dB, respectively.

Interrupts are generated on either edge of Comparator 2's output, or on the falling edge of Comparator 1's output. The comparator output is used for interrupt generation, Port 3 data inputs, or $T_{\rm IN}$ through P31. Alternatively, the comparators can be disabled, freeing the reference input (P33) for use as IRQ1 and/or P33 input.

FUNCTIONAL DESCRIPTION

The following special functions have been incorporated into the Z8 devices to enhance the standard Z8 core architecture to provide the user with increased design flexibility.

RESET. This function is accomplished by means of a Power-On Reset or a Watch-Dog Timer Reset. Upon power-up, the Power-On Reset circuit waits for T_{POR} ms, plus 18 clock cycles, then starts program execution at address 000C (Hex) (Figure 10). The Z8 control registers' reset value is shown in Table 3.

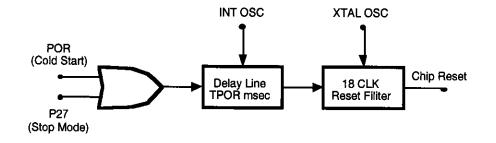
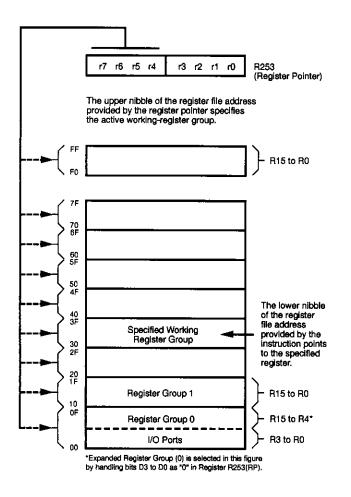


Figure 10. Internal Reset Configuration

Power-On Reset (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for a POR timer function. The POR time allows V_{CC} and the oscillator circuit to stabilize before instruction execution begins. The POR timer circuit is a one-shot timer triggered by one of the four following conditions:


Watch-Dog Timer Reset. The WDT is a retriggerable one-shot timer that resets the Z8 if it reaches its terminal count. The WDT is initially enabled by executing the WDT instruction and is retriggered on subsequent execution of the WDT instruction. The timer circuit is driven by an onboard RC oscillator.

- Power-bad to power-good status
- Stop-Mode Recovery
- WDT time-out
- WDH time-out

FUNCTIONAL DESCRIPTION (Continued)

The Z8 instructions can access registers directly or indirectly through an 8-bit address field. This allows short 4-bit register addressing using the Register Pointer.

In the 4-bit mode, the register file is divided into eight working register groups, each occupying 16 continuous locations. The Register Pointer (Figure 13) addresses the starting location of the active working-register group.

Stack Pointer. The Z8 has an 8-bit Stack Pointer (R255) used for the internal stack that resides within the 124 general-purpose registers.

General-Purpose Registers (GPR). These registers are undefined after the device is powered up. The registers keep their last value after any reset, as long as the reset occurs in the V_{CC} voltage-specified operating range. Note: Register R254 has been designated as a general-purpose register and is set to 00 Hex after any reset or Stop-Mode Recovery.

Counter/Timer. There are two 8-bit programmable counter/timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the T0 can be driven by the internal clock source only (Figure 14).

The 6-bit prescalers divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both counter and prescaler reach the end of count, a timer interrupt request IRQ4 (T0) or IRQ5 (T1) is generated.

The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters are also programmed to stop upon reaching zero (Single-Pass Mode) or to automatically reload the initial value and continue counting (Modulo-N Continuous Mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and is either the internal microprocessor clock divided by four, or an external signal input through Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that is retriggerable or non-retriggerable, or used as a gate input for the internal clock.

Clock. The Z8 on-chip oscillator has a high-gain, parallelresonant amplifier for connection to a crystal, LC, RC, ceramic resonator, or any suitable external clock source (XTAL1 = INPUT, XTAL2 = OUTPUT). The crystal should be AT cut, up to 12 MHz max., with a series resistance (RS) of less than or equal to 100 Ohms. The crystal should be connected across XTAL1 and XTAL2 using the vendors crystal recommended capacitors from each pin directly to device ground pin 14 (Figure 16). Note that the crystal capacitor loads should be connected to V_{SS} , Pin 14 to reduce Ground noise injection.

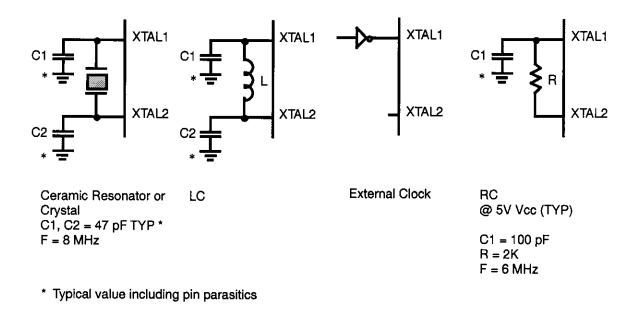


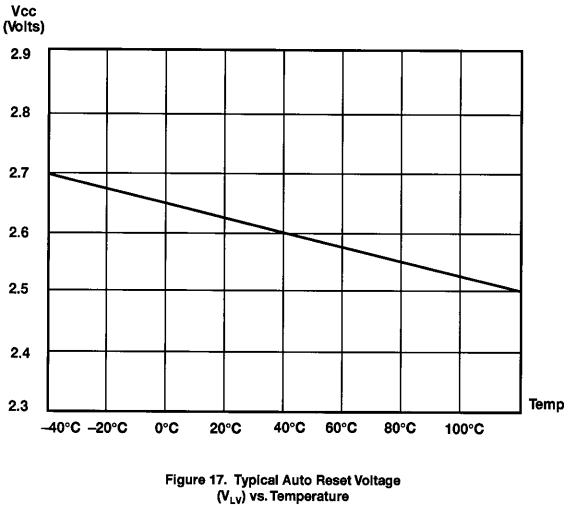
Figure 16. Oscillator Configuration

			Loa	d Capacitor				
	33	pFd	56	oFd	100	pFd	0.00	1μFd
Resistor (R)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)
1.0M	33K	31K	20K	20K	12K	11K	1.4K	1.4K
560K	56K	52K	34K	32K	20K	19K	2.5K	2.4K
220K	144K	130K	84K	78K	48K	45K	6K	6K
100K	315K	270K	182K	164K	100K	95K	12K	12K
56K	552K	480K	330K	300K	185K	170K	23K	22K
20K	1.4M	1 M	884K	740K	500K	450K	65K	61K
10K	2.6M	2M	1.6M	1.3M	980K	820K	130K	123K
5K	4.4M	3M	2.8M	2M	1.7K	1.3M	245K	225K
2K	8M	5M	6M	4M	3.8K	2.7M	600K	536K
1K	12M	7M	8.8M	6M	6.3K	4.2M	1.0M	950K

Notes:

A = STD Mode Frequency. B = Low EMI Mode Frequency.

Table 6. Typical Frequency vs. RC Values V_{cc} = 3.3V @ 25°C


Load Capacitor									
Resistor (R)	33 pFd		56 pFd		100	100 pFd		0.00 1µFd	
	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	
1.0M	18K	18K	12K	12K	7.4K	7.7K	1K	1K	
560K	30K	30K	20K	20K	12K	12K	1.6K	1.6K	
220K	70K	70K	47K	47K	30K	30K	4K	4K	
100K	150K	148K	97K	96K	60K	60K	8K	8K	
56K	268K	250K	176K	170K	100K	100K	15K	15K	
20K	690M	600K	463K	416K	286K	266K	40K	40K	
10K	1.2M	1M	860K	730K	540K	480K	80K	76K	
5K	2M	1.7M	1.5M	1.2M	950K	820K	151K	138K	
2K	4.6M	3M	3.3M	2.4M	2.2M	1.6M	360K	316K	
1K	7M	4.6M	5M	3.6M	3.6K	2.6M	660K	565K	

Notes:

A = STD Mode Frequency.

B = Low EMI Mode Frequency.

FUNCTIONAL DESCRIPTION (Continued)

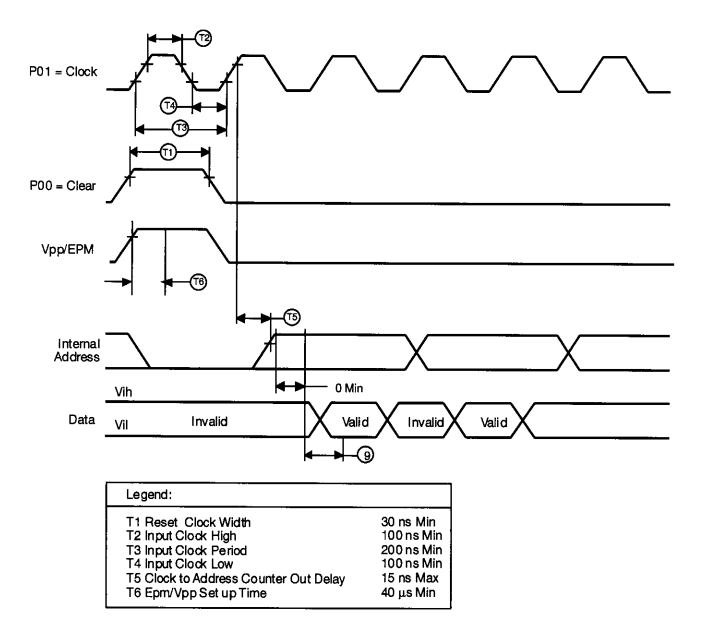


Figure 18. Z86E04/E08 Address Counter Waveform

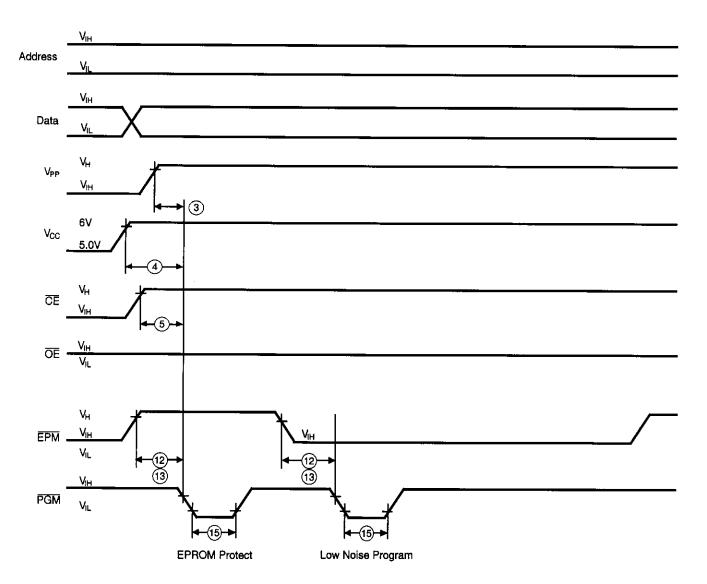


Figure 21. Z86E04/E08 Programming Options Waveform (EPROM Protect and Low Noise Program) Zilog

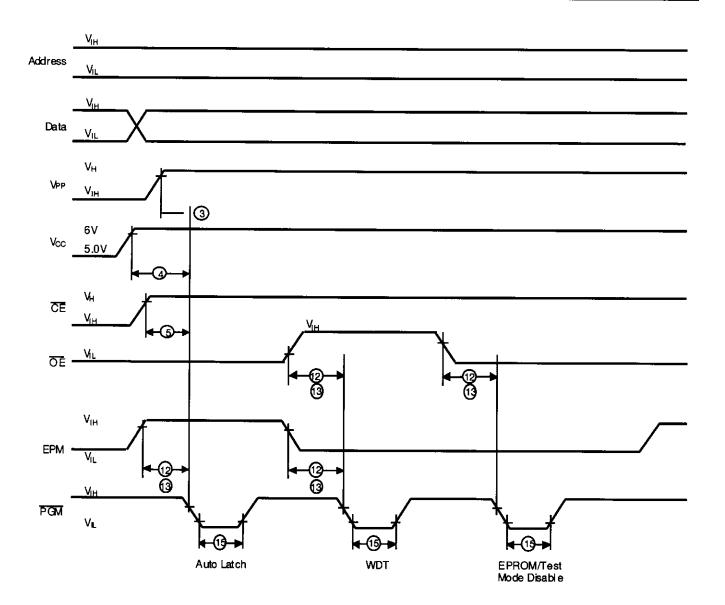


Figure 22. Z86E04/E08 Programming Options Waveform (Auto Latch Disable, Permanent WDT Enable and EPROM/Test Mode Disable)

FUNCTIONAL DESCRIPTION (Continued)

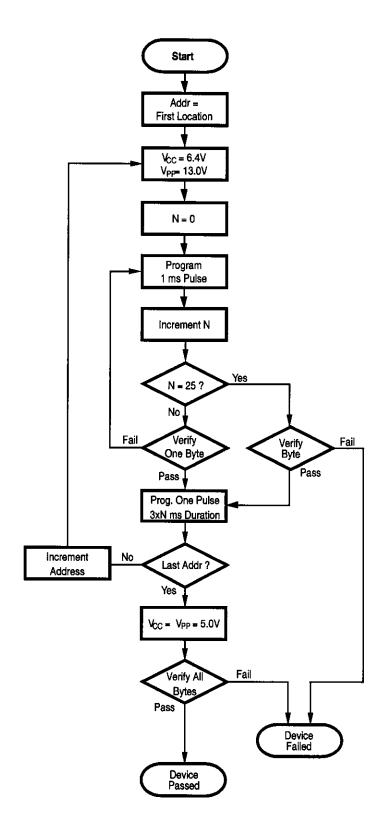
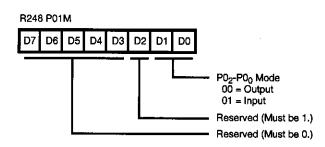
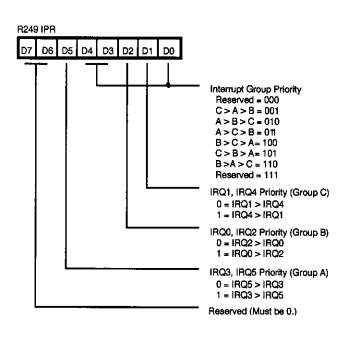
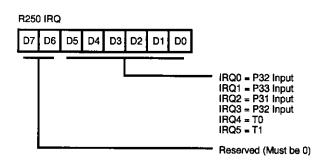




Figure 23. Z86E04/E08 Programming Algorithm


Z8 CONTROL REGISTERS (Continued)

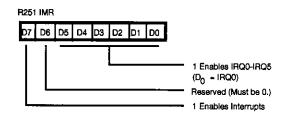
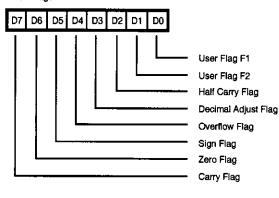

Figure 31. Port 0 and 1 Mode Register (F8_H: Write Only)

Figure 32. Interrupt Priority Register (F9_H: Write Only)



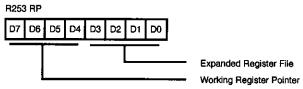


Figure 34. Interrupt Mask Register (FB_H: Read/Write)

R252 Flags

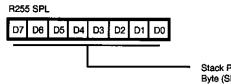
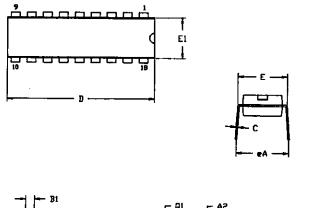


Figure 35. Flag Register (FC_H: Read/Write)

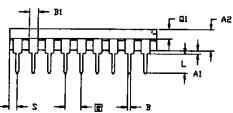
Default After Reset = 00H

Figure 36. Register Pointer (FD_H: Read/Write)

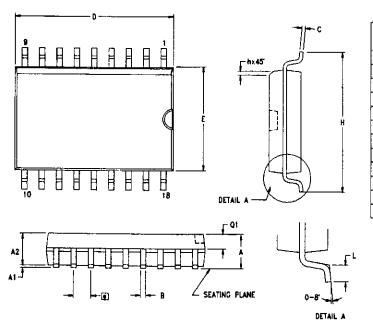


Stack Pointer Lower Byte (SP 7 - SP 0)

Figure 37. Stack Pointer (FF_H: Read/Write)


PACKAGE INFORMATION

Zilog



SYMBOL	MILLI	METER	IN	CH .
	MIN	MAX	MIN	MAX
<u>A1</u>	0.51	0.81	.020	.032
54	3.25	3.43	.128	.135
B	0.38	0.53	.015	.021
B1	1.14	1.65	.045	.065
С	0.23	0.38	.009	.015
D	22.35	23.37	.880	.920
E	7.62	8.13	.300	.320
El	6.22	6.48	.245	.255
E	2.54	TYP	.100	TYP
eA	7.87	8.89	.310	.350
L	3.19	3.81	.125	.150
Q1	1.52	1.65	.060	.065
S	0.89	1.65	.035	.065

CONTROLLING DIMENSIONS : INCH

18-Pin DIP Package Diagram

CYLIDOL	MILLI	METER	II	ICH
SYMBOL	MIN	MAX	KIN	MAX
A	2.40	2.65	0.094	0.104
A1	0.10	0.30	0.004	0.012
A2	2.24	2.44	0.088	0.096
8	0.36	0.46	0.014	0.018
C	0.23	0.30	0.009	0.012
D	11.40	11.75	0.449	0.463
E	7.40	7.60	0.291	0.299
(9)	1.27	TYP	0.05	O TYP
н	10.00	10.65	0.394	0.419
h	0.30	0.50	0.012	0.020
L	0.60	1.00	0.024	0.039
Q1	0.97	1.07	0.038	0.042

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

18-Pin SOIC Package Diagram

ORDERING INFORMATION

Z86E04

Z86E08

Standard To	emperature	Standard Te	emperature
18-Pin DIP	18-Pin SOIC	18-Pin DIP	18-Pin SOIC
Z86E0412PSC	Z86E0412SSC	Z86E0812PSC	Z86E0812SSC
Z86E0412PEC	Z86E0412SEC	Z86E0812PEC	Z86E0812SEC

For fast results, contact your local Zilog sales office for assistance in ordering the part(s) desired.

Codes

Preferred Package P = Plastic DIP

Longer Lead Time S = SOIC

Speeds 12 =12 MHz

Environmental C = Plastic Standard

Preferred Temperature

 $S = 0^{\circ}C$ to +70°C E = -40°C to +105°C

Example:	
Z 86E04 12 P S C	is a Z86E04, 12 MHz, DIP, 0°C to +70°C, Plastic Standard Flow Environmental Flow Temperature Package Speed Product Number Zilog Prefix

Pre-Characterization Product:

The product represented by this CPS is newly introduced and Zilog has not completed the full characterization of the product. The CPS states what Zilog knows about this product at this time, but additional features or nonconformance with some aspects of the CPS may be

© 1998 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY, IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMATION SET FORTH HEREIN OR REGARDING THE FREEDOM OF THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. found, either by Zilog or its customers in the course of further application and characterization work. In addition, Zilog cautions that delivery may be uncertain at times, due to start-up yield issues.

Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 FAX 408 370-8056 Internet: http://www.zilog.com