E·XFL

Zilog - Z86E0812HSG1903 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	14
Program Memory Size	2KB (2K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	125 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e0812hsg1903

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

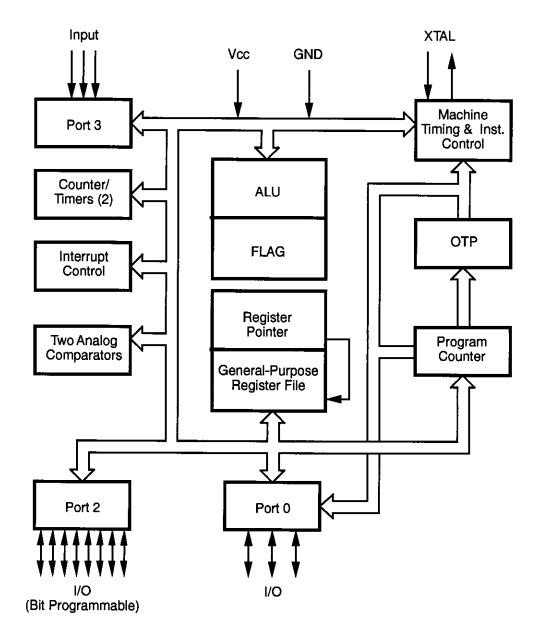


Figure 1. Functional Block Diagram

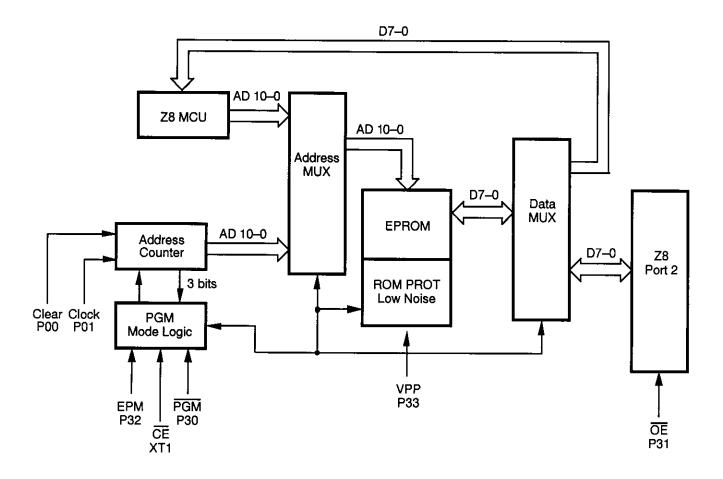
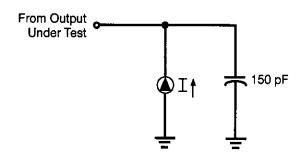



Figure 2. EPROM Programming Mode Block Diagram

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to Ground. Positive current flows into the referenced pin (Figure 5).

CAPACITANCE

 $T_A = 25^{\circ}C$, $V_{CC} = GND = 0V$, f = 1.0 MHz, unmeasured pins returned to GND.

Parameter	Min	Max	
Input capacitance	0	10 pF	
Output capacitance	0	20 pF	
I/O capacitance	0	25 pF	

DC ELECTRICAL CHARACTERISTICS

Standard Temperature

			T _A = 0°C	to +70°C	Typical			
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
VINMAX	Max Input Voltage	4.5V		12		V	I _{in} ≪250 µА	1
		5.5V		12		۷	I _{In} ≪250 µА	1
V _{CH}	Clock Input High Voitage	4.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	V	Driven by External Clock Generator	
		5.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	4.5V	V _{SS} 0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
		5.5V	V _{SS} -0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	4.5V	0.7 V _{CC}	V _{CC} +0.3	2.8	V	· · · · · · · · · · · · · · · · · · ·	
.		5.5V	0.7 V _{CC}	V _{CC} +0.3	2.8	V		
VIL	Input Low Voltage	4.5V	V _{SS} 0.3	0.2 V _{CC}	1.5	V		
		5.5V	V _{ss} -0.3	0.2 V _{CC}	1.5	V		
V _{OH}	Output High Voltage	4.5V	V _{cc} -0.4		4.8	V	I _{OH} = -2.0 mA	5
	-	5.5V	V _{cc} -0.4		4.8	۷	l _{OH} = -2.0 mA	5
	_	4.5V	V _{CC} -0.4		4.8	۷	Low Noise @ I _{OH} = -0.5 mA	
		5.5V	V _{cc} -0.4		4.8	۷	Low Noise @ I _{OH} =0.5 mA	
V _{OL1}	Output Low Voltage	4.5V		0.8	0.1	۷	I _{OL} = +4.0 mA	5
	-	5.5V		0.4	0.1	V	I _{OL} = +4.0 mA	5
	-	4.5V		0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
	-	5.5V		0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
V _{OL2}	Output Low Voltage	4.5V		0.8	0.8	V	l _{oL} = +12 mA,	5
	-	5.5V		0.8	0.8	٧	l _{OL} = +12 mA,	5
VOFFSET	Comparator Input	4.5V		25.0	10.0	mV		
	Offset Voltage	5.5V		25.0	10.0	mV		
V _{LV}	V _{CC} Low Voltage Auto Reset		2.2	3.0	2.8	V	@ 6 MHz Max. Int. CLK Freq.	
I _{IL}	Input Leakage	4.5V	-1.0	1.0		μA	$V_{IN} = 0V, V_{CC}$	
	(Input Bias Current of Comparator) -	5.5V	-1.0	1.0	·	μĀ	V _{IN} = 0V, V _{CC}	
IOL	Output Leakage	4.5V	-1.0	1.0		 μΑ	V _{IN} = 0V, V _{CC}	
	-	5.5V	-1.0	1.0		μA	$V_{\rm IN} = 0V, V_{\rm CC}$	
V _{ICR}	Comparator Input Common Mode Voltage Range		0	V _{cc} -1.0		V		

DC ELECTRICAL CHARACTERISTICS (Continued)

T _A = 0°C to +70°C Typical								
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
I _{CC1}	Standby Current (Low Noise Mode)	4.5V	·	4.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 1 MHz	7
		5.5V		4.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 1 MHz	7
		4.5V		4.5	2.8	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	7
		5.5V		4.5	2.8	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	7
		4.5V		5.0	3.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 4 MHz	7
		5.5V		5.0	3.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 4 MHz	7
I _{CC2}	Standby Current	4.5V		10.0	1.0	μA	STOP Mode V _{IN} = 0V, V _{CC} WDT is not Running	7,8
		5.5V		10.0	1.0	μA	STOP Mode V _{IN} = 0V,V _{CC} WDT is not Running	7,8
I _{ALL}	Auto Latch Low	4.5V	<u></u>	32.0	16	μA	$0V < V_{IN} < V_{CC}$	
	Current	5.5V		32.0	16	μA	$0V < V_{IN} < V_{CC}$	
	Auto Latch High	4.5V		-16.0	-8.0	μA	OV < V _{IN} < V _{CC}	
	Current	5.5V		-16.0	-8.0	μA	$0V < V_{IN} < V_{CC}$	

Notes:

1. Port 2 and Port 0 only

2. $V_{SS} = 0V = GND$

 The device operates down to V_{LV} of the specified frequency for V_{LV}. The minimum operational V_{CC} is determined on the value of the voltage V_{LV} at the ambient temperature. The V_{LV} increases as the temperature decreases.

4. V_{CC} = 4.5 to 5.5V, typical values measured at V_{CC} = 5.0V.

The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5V with typical values measured at V_{CC} = 5.0V.

5. Standard Mode (not Low EMI Mode)

6. Z86E08 only

7. All outputs unloaded and all inputs are at $V_{CC} \text{ or } V_{SS}$ level.

8. If analog comparator is selected, then the comparator inputs must be at V_{CC} level.

Low Noise Mode, Extended Temperature

			T₄= -40 °C to +105 °C						
				1 Ŵ		4 M			
No	Symbol	Parameter	V _{cc}	Min	Max	Min	Мах	Units	Notes
1	TPC	Input Clock Period	4.5V	1000	DC	250	DC	ns	1
			5.5V	1000	DC	250	DC	ns	1
2	TrC	Clock Input Rise	4.5V		25		25	ns	1
	TfC	and Fall Times	5.5V		25		25	ns	1
3	TwC	Input Clock Width	4.5V	500		125		ns	1
			5.5V	500		125		ns	1
4.	TwTinL	Timer Input Low Width	4.5V	70		70		ns	1
		5.5V	70		70		ns	1	
5	5 TwTinH	Timer Input High Width	4.5V	2.5TpC		2.5TpC		-	1
			5.5V	2.5TpC		2.5TpC			1
6	TpTin Time	Timer Input Period	4.5V		4TpC	4TpC	".		1
			5.5V		4TpC	4TpC			1
7	TrTin,	Timer Input Rise	4.5V		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwIL	Int. Request Input	4.5V	70		70		ns	1,2
		Low Time	5.5V	70		70		ns	1,2
9	TwiH	H Int. Request Input	4.5V	2.5TpC		2.5TpC			1,2
	High Time	5.5V	2.5TpC		2.5TpC			1,2	
10	Twdt	Watch-Dog Timer	4.5V	10		10		ms	1
	Delay Time for Timeout		5.5V	10		10		ms	1

Notes:

1. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.

2. Interrupt request through Port 3 (P33-P31).

Port 2, P27–P20. Port 2 is an 8-bit, bit programmable, bidirectional, Schmitt-triggered CMOS-compatible I/O port. These eight I/O lines can be configured under software

control to be inputs or outputs, independently. Bits programmed as outputs can be globally programmed as either push-pull or open-drain (Figure 8).

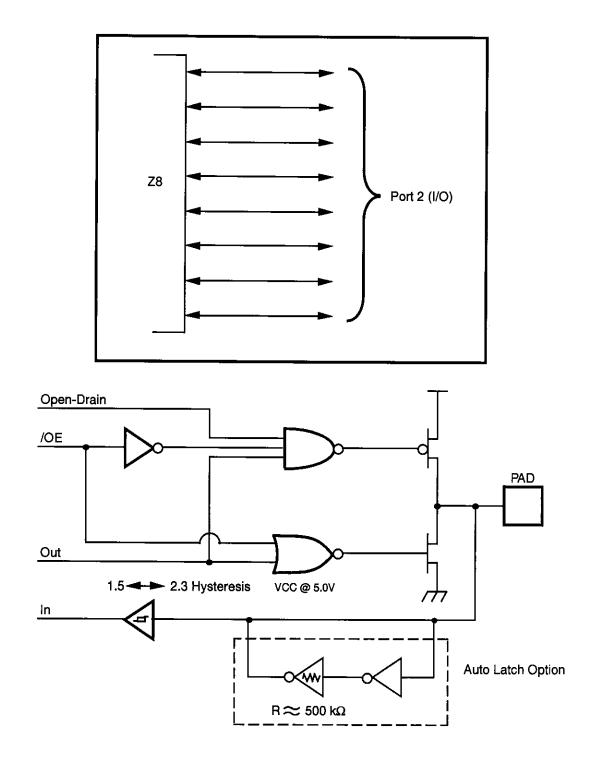


Figure 8. Port 2 Configuration

PIN FUNCTIONS (Continued)

Port 3, P33–P31. Port 3 is a 3-bit, CMOS-compatible port with three fixed input (P33–P31) lines. These three input lines can be configured under software control as digital Schmitt-trigger inputs or analog inputs.

These three input lines are also used as the interrupt sources IRQ0–IRQ3, and as the timer input signal $T_{\rm IN}$ (Figure 9).

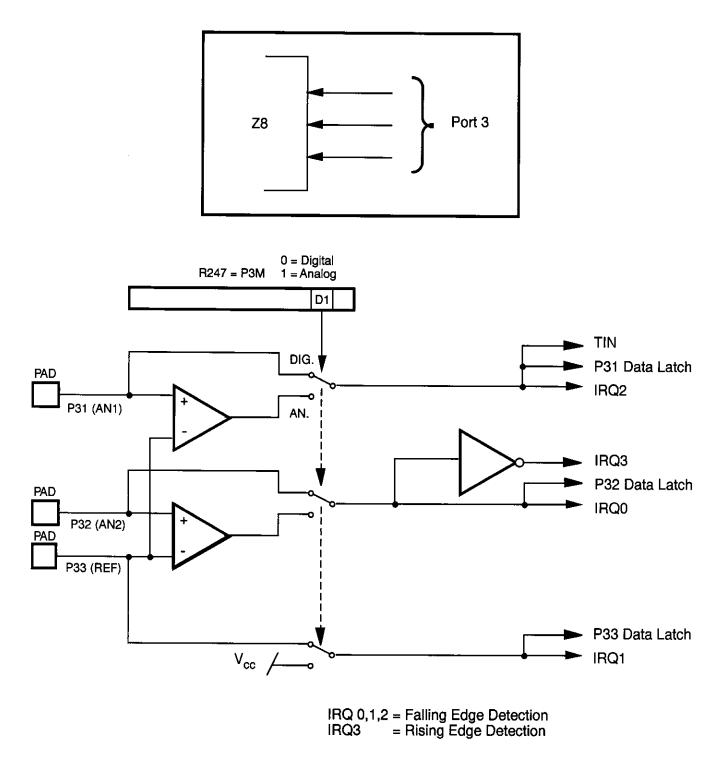


Figure 9. Port 3 Configuration

Comparator Inputs. Two analog comparators are added to input of Port 3, P31, and P32, for interface flexibility. The comparators reference voltage P33 (REF) is common to both comparators.

Typical applications for the on-board comparators; Zero crossing detection, A/D conversion, voltage scaling, and threshold detection. In Analog Mode, P33 input functions serve as a reference voltage to the comparators.

The dual comparator (common inverting terminal) features a single power supply which discontinues power in STOP

Mode. The common voltage range is 0-4 V when the V_{CC} is 5.0V; the power supply and common mode rejection ratios are 90 dB and 60 dB, respectively.

Interrupts are generated on either edge of Comparator 2's output, or on the falling edge of Comparator 1's output. The comparator output is used for interrupt generation, Port 3 data inputs, or $T_{\rm IN}$ through P31. Alternatively, the comparators can be disabled, freeing the reference input (P33) for use as IRQ1 and/or P33 input.

FUNCTIONAL DESCRIPTION

The following special functions have been incorporated into the Z8 devices to enhance the standard Z8 core architecture to provide the user with increased design flexibility.

RESET. This function is accomplished by means of a Power-On Reset or a Watch-Dog Timer Reset. Upon power-up, the Power-On Reset circuit waits for T_{POR} ms, plus 18 clock cycles, then starts program execution at address 000C (Hex) (Figure 10). The Z8 control registers' reset value is shown in Table 3.

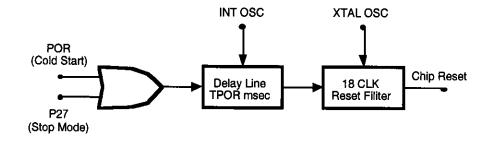


Figure 10. Internal Reset Configuration

Power-On Reset (POR). A timer circuit clocked by a dedicated on-board RC oscillator is used for a POR timer function. The POR time allows V_{CC} and the oscillator circuit to stabilize before instruction execution begins. The POR timer circuit is a one-shot timer triggered by one of the four following conditions:

Watch-Dog Timer Reset. The WDT is a retriggerable one-shot timer that resets the Z8 if it reaches its terminal count. The WDT is initially enabled by executing the WDT instruction and is retriggered on subsequent execution of the WDT instruction. The timer circuit is driven by an onboard RC oscillator.

- Power-bad to power-good status
- Stop-Mode Recovery
- WDT time-out
- WDH time-out

Interrupts. The Z8 has six interrupts from six different sources. These interrupts are maskable and prioritized (Figure 15). The sources are divided as follows: the falling edge of P31 (AN1), P32 (AN2), P33 (REF), the rising edge of P32 (AN2), and two counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests (Table 4).

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All Z8 interrupts are vectored through locations in program memory. When an Interrupt machine cycle is activated, an Interrupt Request is granted. This disables all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit starting address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests needs service.

Note: User must select any Z86E08 mode in Zilog's C12 ICEBOX[™] emulator. The rising edge interrupt is not supported on the CCP emulator (a hardware/software workaround must be employed).

Name	Source	Vector Location	Comments
IRQ0	AN2(P32)	0,1	External (F)Edge
IRQ1	REF(P33)	2,3	External (F)Edge
IRQ2	AN1(P31)	4,5	External (F)Edge
IRQ3	AN2(P32)	6,7	External (R)Edge
IRQ4	Т0	8,9	Internal
IRQ5	T1	10,11	Internal
	ng edge triggered ng edge triggered		

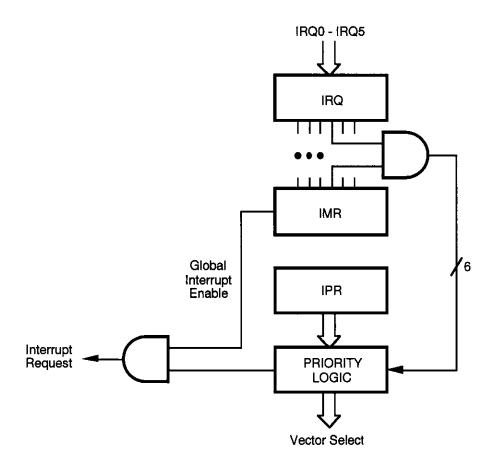


Figure 15. Interrupt Block Dlagram

Clock. The Z8 on-chip oscillator has a high-gain, parallelresonant amplifier for connection to a crystal, LC, RC, ceramic resonator, or any suitable external clock source (XTAL1 = INPUT, XTAL2 = OUTPUT). The crystal should be AT cut, up to 12 MHz max., with a series resistance (RS) of less than or equal to 100 Ohms. The crystal should be connected across XTAL1 and XTAL2 using the vendors crystal recommended capacitors from each pin directly to device ground pin 14 (Figure 16). Note that the crystal capacitor loads should be connected to V_{SS} , Pin 14 to reduce Ground noise injection.

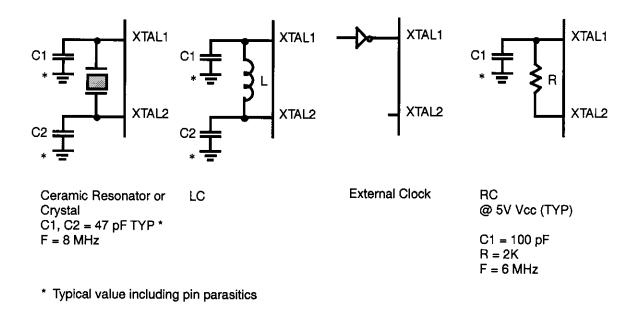


Figure 16. Oscillator Configuration

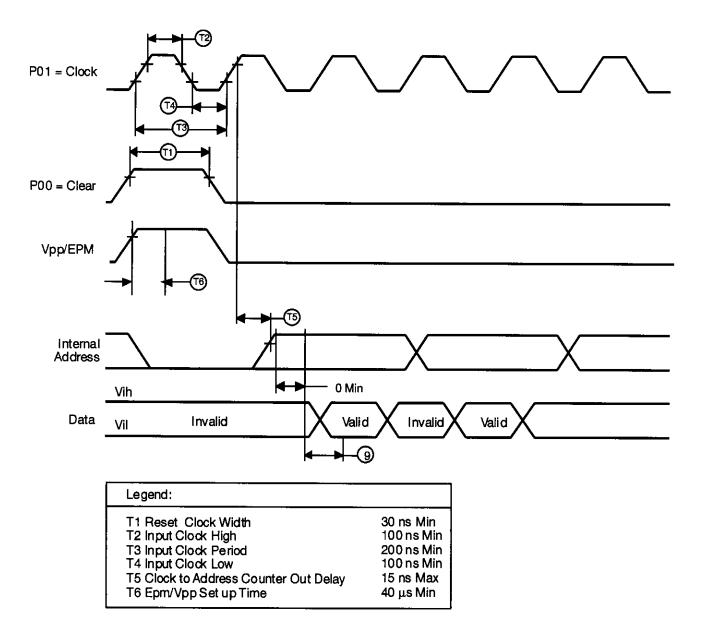
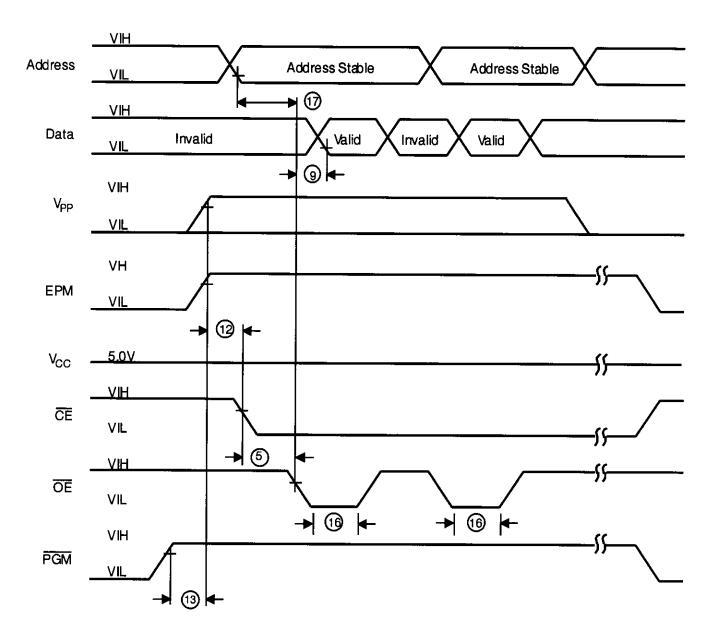
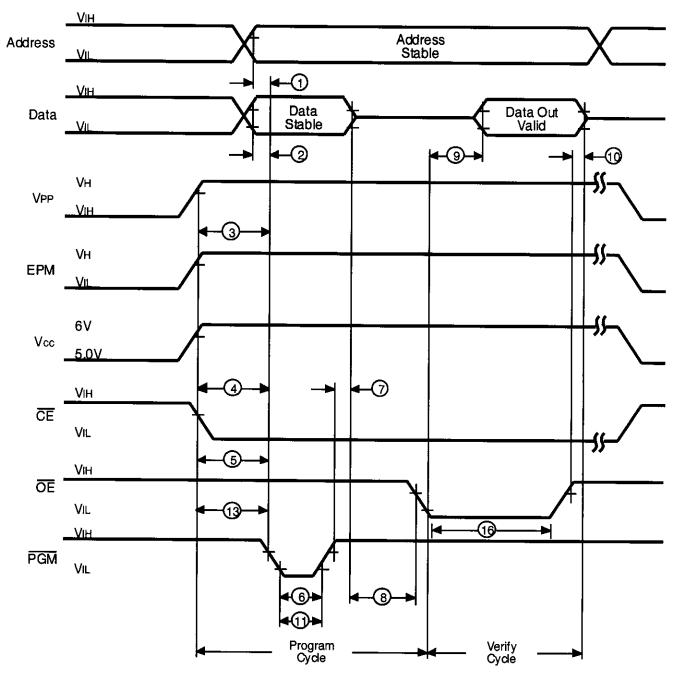
Internal Address Counter. The address of Z8 is generated internally with a counter clocked through pin P01 (Clock). Each clock signal increases the address by one and the "high" level of pin P00 (Clear) will reset the address to zero. Figure 18 shows the setup time of the serial address input. **Programming Waveform.** Figures 19, 20, 21 and 22 show the programming waveforms of each mode. Table 8 shows the timing of programming waveforms.

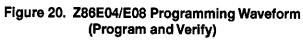
Programming Algorithm. Figure 23 shows the flow chart of the Z8 programming algorithm.

Parameters	Name	Min	Max	Units
1	Address Setup Time	2	·	μs
2	Data Setup Time	2		μs
3	V _{PP} Setup	2		μs
4	V _{cc} Setup Time	2		μs
5	Chip Enable Setup Time	2	·····	μs
6	Program Pulse Width	0.95		ms
7	Data Hold Time	2		μs
8	OE Setup Time	2		μs
9	Data Access Time	188		ns
10	Data Output Float Time		100	ns
11	Overprogram Pulse Width	2.85		ms
12	EPM Setup Time	2		μs
13	PGM Setup Time	2		μs
14	Address to OE Setup Time	2		μs
15	Option Program Pulse Width	78		ms
16	OE Width	250		ns
17	Address Valid to OE Low	125		กร

Table 8. Timing of Programming Waveforms

Zilog


Figure 18. Z86E04/E08 Address Counter Waveform

. _____

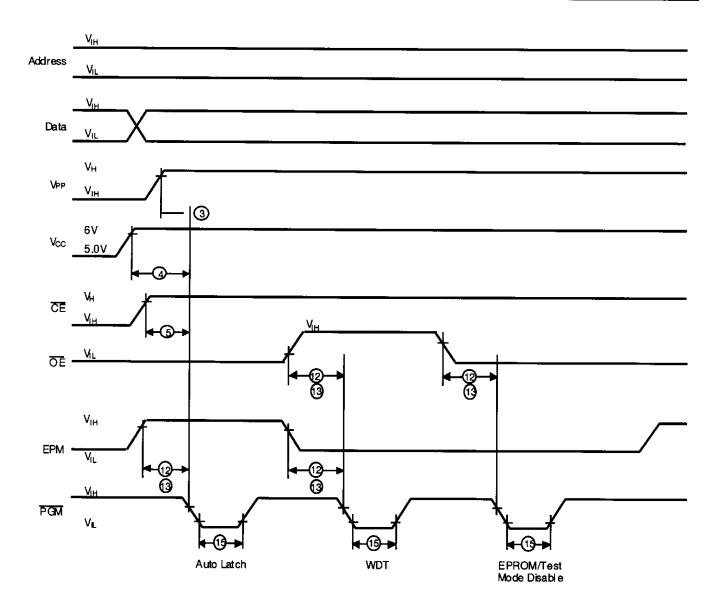


Figure 22. Z86E04/E08 Programming Options Waveform (Auto Latch Disable, Permanent WDT Enable and EPROM/Test Mode Disable)

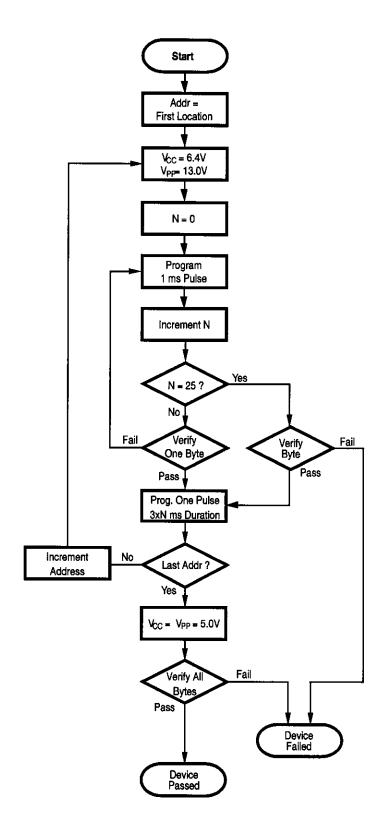


Figure 23. Z86E04/E08 Programming Algorithm

T₀ Initial Value (When Written)

(Range: 1-256 Decimal

Z8 CONTROL REGISTERS

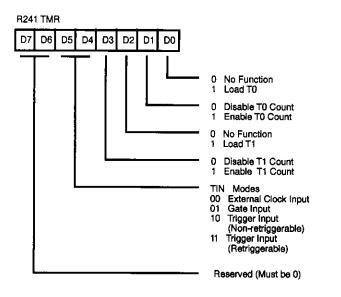
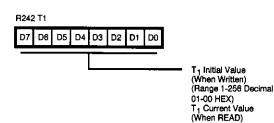
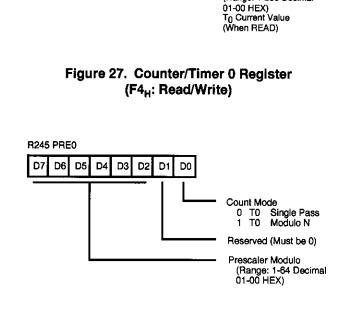
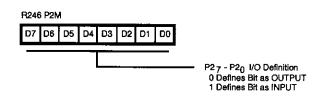




Figure 24. Timer Mode Register (F1_H: Read/Write)


D3 D2

D1 D0

B244 T0

D7 D6 D5 D4

Figure 28. Prescaler 0 Register (F5_H: Write Only)

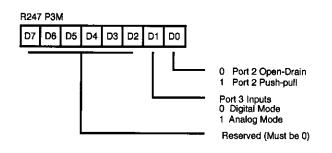


Figure 30. Port 3 Mode Register (F7_H: Write Only)

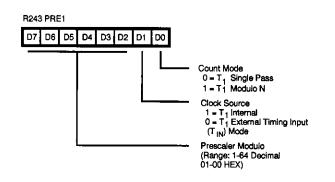


Figure 26. Prescaler 1 Register (F3_H: Write Only)

ORDERING INFORMATION

Z86E04

Z86E08

Standard To	emperature	Standard Temperature		
18-Pin DIP	18-Pin SOIC	18-Pin DIP	18-Pin SOIC	
Z86E0412PSC	Z86E0412SSC	Z86E0812PSC	Z86E0812SSC	
Z86E0412PEC	Z86E0412SEC	Z86E0812PEC	Z86E0812SEC	

For fast results, contact your local Zilog sales office for assistance in ordering the part(s) desired.

Codes

Preferred Package P = Plastic DIP

Longer Lead Time S = SOIC

Speeds 12 =12 MHz

Environmental C = Plastic Standard

Preferred Temperature

 $S = 0^{\circ}C$ to +70°C E = -40°C to +105°C

Example:					
Z 86E04 12 P S C	is a Z86E04, 12 MHz, DIP, 0°C to +70°C, Plastic Standard Flow Environmental Flow Temperature Package Speed Product Number Zilog Prefix				

Pre-Characterization Product:

The product represented by this CPS is newly introduced and Zilog has not completed the full characterization of the product. The CPS states what Zilog knows about this product at this time, but additional features or nonconformance with some aspects of the CPS may be

© 1998 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY, IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMATION SET FORTH HEREIN OR REGARDING THE FREEDOM OF THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. found, either by Zilog or its customers in the course of further application and characterization work. In addition, Zilog cautions that delivery may be uncertain at times, due to start-up yield issues.

Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 FAX 408 370-8056 Internet: http://www.zilog.com