

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Discontinued at Digi-Key
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	14
Program Memory Size	2KB (2K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	125 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e0812psc1903

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN DESCRIPTION

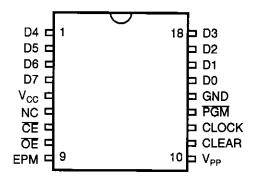


Figure 3. 18-Pin EPROM Mode Configuration

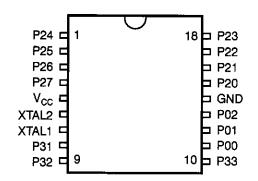


Figure 4. 18-Pin DIP/SOIC Mode Configuration

Table 1. 18-Pin DIP Pin Identification

EPROM Programming Mode									
Pin#	Symbol	Function	Direction						
1–4	D4-D7	Data 4, 5, 6, 7	In/Output						
5	V _{cc}	Power Supply							
6	NC	No Connection							
7	CE	Chip Enable	Input						
8	ŌĒ	Output Enable	Input						
9	EPM	EPROM Prog Mode	Input						
10	V _{PP}	Prog Voltage	Input						
11	Clear	Clear Clock	Input						
12	Clock	Address	Input						
13	PGM	Prog Mode	Input						
14	GND	Ground							
15–18	D0-D3	Data 0,1, 2, 3	In/Output						

Table 2. 18-Pin DIP/SOIC Pin Identification

Standard Mode								
Pin#	Symbol	Function	Direction					
1–4	P24-P27	Port 2, Pins 4,5,6,7	In/Output					
5	V _{CC}	Power Supply	<u></u>					
6	XTAL2	Crystal Osc. Clock	Output					
7	XTAL1	Crystal Osc. Clock	Input					
8	P31	Port 3, Pin 1, AN1	Input					
9	P32	Port 3, Pin 2, AN2	Input					
10	P33	Port 3, Pin 3, REF	Input					
11–13	P00-P02	Port 0, Pins 0,1,2	In/Output					
14	GND	Ground						
15–18	P20-P23	Port 2, Pins 0,1,2,3	In/Output					

ABSOLUTE MAXIMUM RATINGS

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability. Total power

dissipation should not exceed 462 mW for the package. Power dissipation is calculated as follows:

Total Power Dissipation = $V_{DD} \times [I_{DD} - (sum of I_{OH})]$ + sum of $[(V_{DD} - V_{OH}) \times I_{OH}]$ + sum of $(V_{0L} \times I_{0L})$

Parameter	Min	Max	Units	Note
Ambient Temperature under Bias	-40	+105	С	
Storage Temperature	-6 5	+150	С	
Voltage on any Pin with Respect to V _{ss}	-0.7	+12	٧	1
Voltage on V _{DD} Pin with Respect to V _{SS}	-0.3	+7	V	
Voltage on Pins 7, 8, 9, 10 with Respect to V _{SS}	-0.6	V _{DD} +1	V	2
Total Power Dissipation		1.65	W	·
Maximum Allowable Current out of V _{SS}	-	300	mA	
Maximum Allowable Current into V _{DD}	- \ W.L	220	mA	
Maximum Allowable Current into an Input Pin	-600	+600	μА	3
Maximum Allowable Current into an Open-Drain Pin	-600	+600	μA	4
Maximum Allowable Output Current Sinked by Any I/O Pin		25	mA	
Maximum Allowable Output Current Sourced by Any I/O Pin		25	mA	
Total Maximum Output Current Sinked by a Port		60	mA	
Total Maximum Output Current Sourced by a Port		45	mA	

Notes:

- 1. This applies to all pins except where otherwise noted. Maximum current into pin must be \pm 600 μ A.
- 2. There is no input protection diode from pin to V_{DD} (not applicable to EPROM Mode).
- 3. This excludes Pin 6 and Pin 7.
- 4. Device pin is not at an output Low state.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to Ground. Positive current flows into the referenced pin (Figure 5).

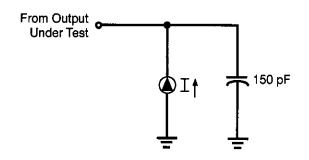


Figure 5. Test Load Diagram

CAPACITANCE

 $T_A = 25$ °C, $V_{CC} = GND = 0V$, f = 1.0 MHz, unmeasured pins returned to GND.

Parameter	Min	Max
Input capacitance	0	10 pF
Output capacitance	0	20 pF
I/O capacitance	0	25 pF

DC ELECTRICAL CHARACTERISTICS

Standard Temperature

			$T_A = 0^{\circ}C$	to +70°C	Typical			
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
VINMAX	Max Input Voltage	4.5V	<u> </u>	12		V	I _{In} <250 μA	1
		5.5V		12		٧	I _{In} <250 μΑ	1
V _{CH}	Clock Input High Voltage	4.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	٧	Driven by External Clock Generator	
		5.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	V	Driven by External Clock Generator	- "
V _{CL}	Clock Input Low Voltage	4.5V	V _{SS} -0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
		5.5V	V _{SS} -0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	4.5V	0.7 V _{CC}	V _{CC} +0.3	2.8	V		
		5.5V	$0.7 V_{CC}$	V _{CC} +0.3	2.8	V		
V _{IL}	Input Low Voltage	4.5V	V _{SS} -0.3	0.2 V _{CC}	1.5	V		
		5.5V	V _{SS} -0.3	$0.2\mathrm{V_{CC}}$	1.5	٧		
V _{OH}	Output High Voltage	4.5V	V _{CC} -0.4		4.8	٧	$I_{OH} = -2.0 \text{ mA}$	5
	_	5.5V	V _{CC} -0.4		4.8	V	I _{OH} = -2.0 mA	5
	•	4.5V	V _{CC} -0.4		4.8	٧	Low Noise @ I _{OH} = -0.5 mA	*** **
	•	5.5V	V _{CC} -0.4		4.8	٧	Low Noise @ I _{OH} = -0.5 mA	
V _{OL1}	Output Low Voltage	4.5V		0.8	0.1	٧	$I_{OL} = +4.0 \text{ mA}$	5
	•	5.5V		0.4	0.1	V	I _{OL} = +4.0 mA	5
	•	4.5V		0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
	•	5.5V	<u>.</u>	0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
V _{OL2}	Output Low Voltage	4.5V		0.8	0.8	٧	I _{OL} = +12 mA,	5
	•	5.5V	-,	0.8	0.8	٧	l _{OL} = +12 mA,	5
VOFFSET	Comparator Input	4.5V		25.0	10.0	mV		
	Offset Voltage	5.5V		25.0	10.0	mV		
V_{LV}	V _{CC} Low Voltage Auto Reset		2.2	3.0	2.8	V	@ 6 MHz Max. Int. CLK Freq.	<u>.</u>
I _{IL}	Input Leakage	4.5V	-1.0	1.0		μА	V _{IN} = 0V, V _{CC}	
	(Input Bias Current of Comparator)	5.5V	-1.0	1.0	·	μА	V _{IN} = 0V, V _{CC}	*****
I _{OL}	Output Leakage	4.5V	-1.0	1.0		μA	V _{IN} = 0V, V _{CC}	
	-	5.5V	-1.0	1.0		μА	V _{IN} = 0V, V _{CC}	
V _{ICR}	Comparator Input Common Mode Voltage Range		0	V _{CC} -1.0		V		

			$T_A = 0^{\circ}C$	to +70°C	Typical			·
Sym	Parameter	V _{CC} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
Icc	Supply Current	4.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 2 MHz	5,7
		5.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 2 MHz	5,7
		4.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		5.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		4.5V	•	20.0	12.0	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
		5.5V		20.0	12.0	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
I _{CC1}	Standby Current	4.5V		4.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	5,7
		5.5V	~	4.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	5,7
		4.5V	.,	5.0	3.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 8 MHz	5,7
		5.5V	-	5.0	3.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 8 MHz	5,7
		4.5V		7.0	4.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 12 MHz	5,7
		5.5V		7.0	4.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 12 MHz	5,7
I _{cc}	Supply Current (Low Noise Mode)	4.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 1 MHz	7
		5.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 1 MHz	7
		4.5V		13.0	7.5	mA	All Output and I/O Pins Floating @ 2 MHz	7
		5.5V		13.0	7.5	mA	All Output and I/O Pins Floating @ 2 MHz	7
		4.5V		15.0	8.2		All Output and I/O Pins Floating @ 4 MHz	7
		5.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 4 MHz	7

DC ELECTRICAL CHARACTERISTICS (Continued)

			• • • • • • • • • • • • • • • • • • • •	40°C to 5°C	Typical			
Sym	Parameter	V _{CC} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
Icc	Supply Current	4.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 2 MHz	5,7
		5.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 2 MHz	5,7
		4.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		5.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		4.5V	_	20.0	12.0	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
		5.5V		20.0	12.0	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
I _{CC1}	Standby Current	4.5V		5.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	5,7
		5.5V		5.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	5,7
		4.5V	-10-	5.0	3.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 8 MHz	5,7
		5.5V		5.0	3.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 8 MHz	5,7
		4.5V	=	7.0	4.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 12 MHz	5,7
		5.5V		7.0	4.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 12 MHz	5,7
Icc	Supply Current (Low Noise Mode)	4.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 1 MHz	7
		5.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 1 MHz	7
		4.5V	,	13.0	7.5	mA	All Output and I/O Pins Floating @ 2 MHz	7
		5.5V		13.0	7.5	mA	All Output and I/O Pins Floating @ 2 MHz	7
		4.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 4 MHz	7
		5.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 4 MHz	7

LOW NOISE VERSION

Low EMI Emission

The Z86E04/E08 can be programmed to operate in a Low EMI Emission Mode by means of a mask ROM bit option. Use of this feature results in:

- All pre-driver slew rates reduced to 10 ns typical.
- Internal SCLK/TCLK operation limited to a maximum of 4 MHz-250 ns cycle time.
- Output drivers have resistances of 500 Ohms (typical).
- Oscillator divide-by-two circuitry eliminated.

The Low EMI Mode is mask-programmable to be selected by the customer at the time the ROM code is submitted.

PIN FUNCTIONS

OTP Programming Mode

D7–D0 Data Bus. Data can be read from, or written to, the EPROM through this data bus.

 $V_{\rm CC}$ Power Supply. It is typically 5V during EPROM Read Mode and 6.4V during the other modes (Program, Program Verify, and so on).

CE Chip Enable (active Low). This pin is active during EPROM Read Mode, Program Mode, and Program Verify Mode.

OE Output Enable (active Low). This pin drives the Data Bus direction. When this pin is Low, the Data Bus is output. When High, the Data Bus is input.

EPM *EPROM Program Mode.* This pin controls the different EPROM Program Modes by applying different voltages.

 \mathbf{V}_{PP} Program Voltage. This pin supplies the program voltage.

Clear Clear (active High). This pin resets the internal address counter at the High Level.

Clock Address Clock. This pin is a clock input. The internal address counter increases by one with one clock cycle.

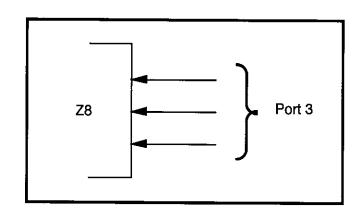
PGM Program Mode (active Low). A Low level at this pin programs the data to the EPROM through the Data Bus.

Application Precaution

The production test-mode environment may be enabled accidentally during normal operation if *excessive noise* surges above V_{CC} occur on the XTAL1 pin.

In addition, processor operation of Z8 OTP devices may be affected by *excessive noise* surges on the V_{pp} , \overline{CE} , EPM, \overline{OE} pins while the microcontroller is in Standard Mode.

Recommendations for dampening voltage surges in both test and OTP Mode include the following:


- Using a clamping diode to V_{CC}.
- Adding a capacitor to the affected pin.

Note: Programming the EPROM/Test Mode Disable option will prevent accidental entry into EPROM Mode or Test Mode.

PIN FUNCTIONS (Continued)

Port 3, P33–P31. Port 3 is a 3-bit, CMOS-compatible port with three fixed input (P33–P31) lines. These three input lines can be configured under software control as digital Schmitt-trigger inputs or analog inputs.

These three input lines are also used as the interrupt sources IRQ0–IRQ3, and as the timer input signal T_{IN} (Figure 9).

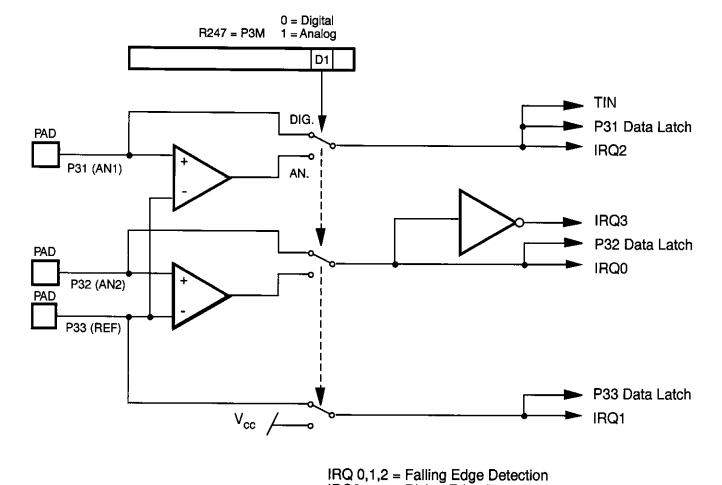


Figure 9. Port 3 Configuration

= Rising Edge Detection

IRQ3

Program Memory. The Z86E04/E08 addresses up to 1K/2KB of Internal Program Memory (Figure 11). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. Bytes 0–1024/2048 are on-chip one-time programmable ROM.

Identifiers 1023/2047 3FFH/7FFH Location of On-Chip First Byte of ROM Instruction Executed After RESET 12 0CH IRQ5 0BH 11 10 IRQ5 0AH IRQ4 9 09H IRQ4 8 08H 7 **IRQ3** 07H Interrupt Vector 6 06H IRQ3 (Lower Byte) IRQ2 5 05H 04H IRQ2 Interrupt Vector 3 IRQ1 03H (Upper Byte) IRQ1 2 02H 1 IRQ0 01H 0 00H IRQ0

Figure 11. Program Memory Map

Register File. The Register File consists of three I/O port registers, 124 general-purpose registers, and 14 control and status registers R0–R3, R4–R127 and R241–R255, respectively (Figure 12). General-purpose registers occupy the 04H to 7FH address space. I/O ports are mapped as per the existing CMOS Z8.

Location		Identifiers
255 (FFH)	Stack Pointer (Bits 7-0)	SPL
254 (FE)	General-Purpose Register	GPR
253 (FD)	Register Pointer	RP
252 (FC)	Program Control Flags	FLAGS
251 (FB)	Interrupt Mask Register	IMR
250 (FA)	Interrupt Request Register	IRQ
249 (F9)	Interrupt Priority Register	IPR
248 (F8)	Ports 0-1 Mode	P01M
247 (F7)	Port 3 Mode	РЗМ
246 (F6)	Port 2 Mode	P2M
245 (F5)	TO Prescaler	PRE0
244 (F4)	Timer/Counter 0	Τ 0
243 (F3)	T1 Prescaler	PRE1
242 (F2)	Timer/Counter 1	T1
241 (F1H)	Timer Mode	TMR
128	Not Implemented	
127 (7FH)	General-Purpose Registers	
4		
3	Port 3	P3
2	Port 2	P2
1	Reserved	P1
0 (00H)	Port 0	P0

Figure 12. Register File

The Z8 instructions can access registers directly or indirectly through an 8-bit address field. This allows short 4-bit register addressing using the Register Pointer.

In the 4-bit mode, the register file is divided into eight working register groups, each occupying 16 continuous locations. The Register Pointer (Figure 13) addresses the starting location of the active working-register group.

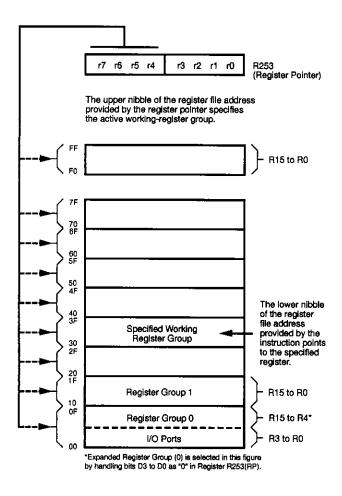
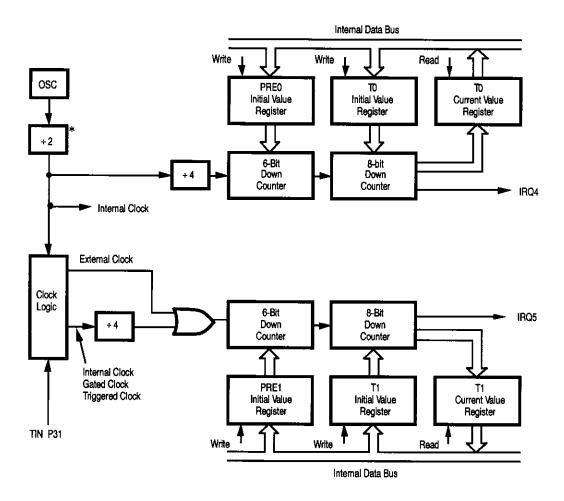


Figure 13. Register Pointer

Stack Pointer. The Z8 has an 8-bit Stack Pointer (R255) used for the internal stack that resides within the 124 general-purpose registers.

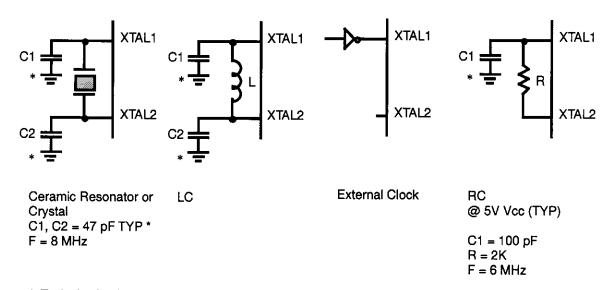

General-Purpose Registers (GPR). These registers are undefined after the device is powered up. The registers keep their last value after any reset, as long as the reset occurs in the $V_{\rm CC}$ voltage-specified operating range. **Note:** Register R254 has been designated as a general-purpose register and is set to 00 Hex after any reset or Stop-Mode Recovery.

Counter/Timer. There are two 8-bit programmable counter/timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the T0 can be driven by the internal clock source only (Figure 14).

The 6-bit prescalers divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both counter and prescaler reach the end of count, a timer interrupt request IRQ4 (T0) or IRQ5 (T1) is generated.

The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters are also programmed to stop upon reaching zero (Single-Pass Mode) or to automatically reload the initial value and continue counting (Modulo-N Continuous Mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and is either the internal microprocessor clock divided by four, or an external signal input through Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that is retriggerable or non-retriggerable, or used as a gate input for the internal clock.



^{*} Note: By passed, if Low EMI Mode is selected.

Figure 14. Counter/Timers Block Diagram

Clock. The Z8 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, LC, RC, ceramic resonator, or any suitable external clock source (XTAL1 = INPUT, XTAL2 = OUTPUT). The crystal should be AT cut, up to 12 MHz max., with a series resistance (RS) of less than or equal to 100 Ohms.

The crystal should be connected across XTAL1 and XTAL2 using the vendors crystal recommended capacitors from each pin directly to device ground pin 14 (Figure 16). Note that the crystal capacitor loads should be connected to $V_{\rm SS}$, Pin 14 to reduce Ground noise injection.

^{*} Typical value including pin parasitics

Figure 16. Oscillator Configuration

Table 5. Typical Frequency vs. RC Values V_{CC} = 5.0V @ 25°C

Load Capacitor										
	33	pFd	56	56 pFd		pFd	0.00 1μFd			
Resistor (R)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)		
1.0M	33K	31K	20K	20K	12K	11K	1.4K	1.4K		
560K	56K	52K	34K	32K	20K	19K	2.5K	2.4K		
220K	144K	130K	84K	78K	48K	45K	6K	6K		
100K	315K	270K	182K	164K	100K	95K	12K	12K		
56K	552K	480K	330K	300K	185K	170K	23K	22K		
20K	1.4M	1M	884K	740K	500K	450K	65K	61K		
10K	2.6M	2M	1.6M	1.3M	980K	820K	130K	123K		
5K	4.4M	3M	2.8M	2M	1.7K	1.3M	245K	225K		
2K	8M	5M	6M	4M	3.8K	2.7M	600K	536K		
1K	12M	7M	8.8M	6M	6.3K	4.2M	1.0M	950K		

Notes:

A = STD Mode Frequency. B = Low EMI Mode Frequency.

Table 6. Typical Frequency vs. RC Values V_{cc} = 3.3V @ 25°C

Load Capacitor										
Resistor (R)	33	pFd	56 pFd		100	pFd	0.00 1μFd			
	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)	A(Hz)	B(Hz)		
1.0M	18K	18K	12K	12K	7.4K	7.7K	1K	1K		
560K	30K	30K	20K	20K	12K	12K	1.6K	1.6K		
220K	70K	70K	47K	47K	30K	30K	4K	4K		
100K	150K	148K	97K	96K	60K	60K	8K	8K		
56K	268K	250K	176K	170K	100K	100K	15K	15K		
20K	690M	600K	463K	416K	286K	266K	40K	40K		
10K	1.2M	1M	860K	730K	540K	480K	80K	76K		
5K	2M	1.7M	1.5M	1.2M	950K	820K	151K	138K		
2K	4.6M	3M	3.3M	2.4M	2.2M	1.6M	360K	316K		
1K	7M	4.6M	5M	3.6M	3.6K	2.6M	660K	565K		

Notes:

A = STD Mode Frequency.

B = Low EMI Mode Frequency.

Figure 19. Z86E04/E08 Programming Waveform (EPROM Read)

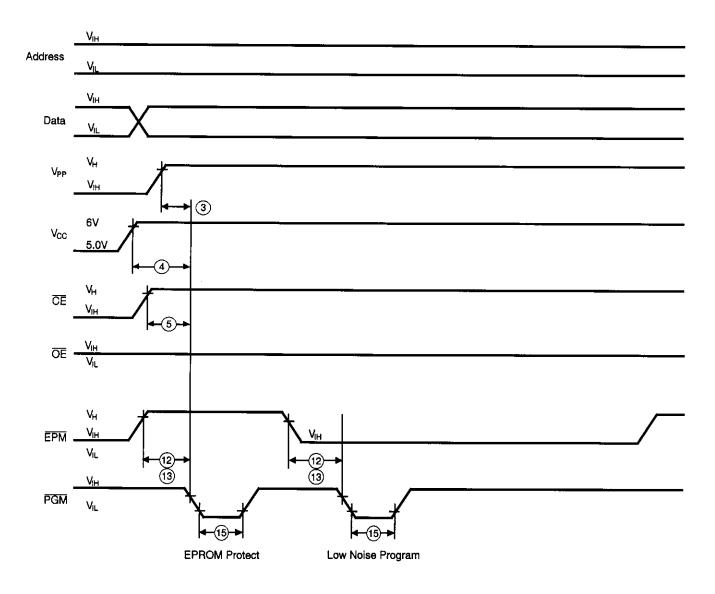


Figure 21. Z86E04/E08 Programming Options Waveform (EPROM Protect and Low Noise Program)

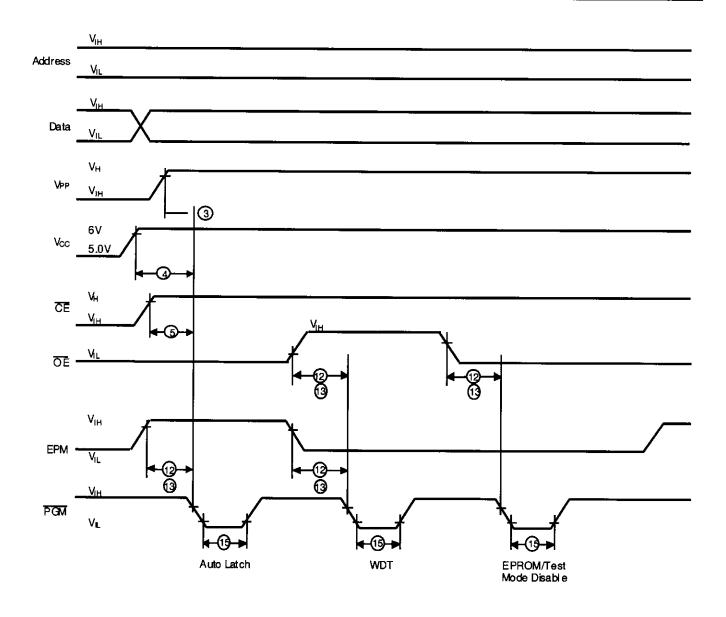


Figure 22. Z86E04/E08 Programming Options Waveform (Auto Latch Disable, Permanent WDT Enable and EPROM/Test Mode Disable)

Figure 23. Z86E04/E08 Programming Algorithm

Z8 CONTROL REGISTERS (Continued)

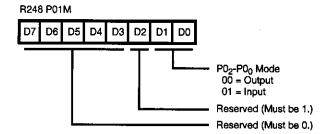


Figure 31. Port 0 and 1 Mode Register (F8_H: Write Only)

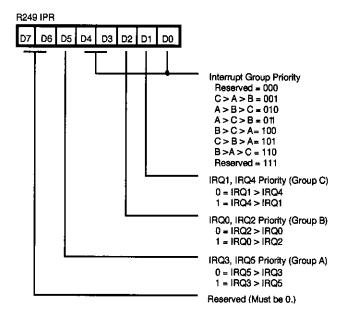


Figure 32. Interrupt Priority Register (F9_H: Write Only)

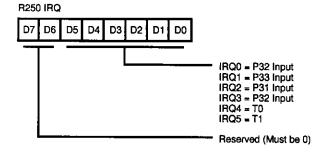


Figure 33. Interrupt Request Register (FA_H: Read/Write)

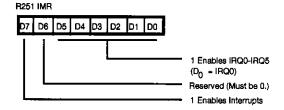


Figure 34. Interrupt Mask Register (FB_H: Read/Write)

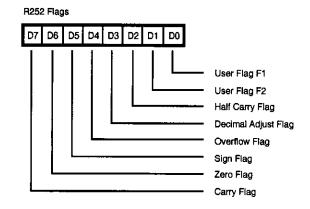


Figure 35. Flag Register (FC_H: Read/Write)

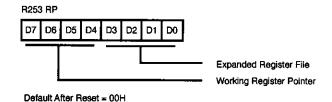


Figure 36. Register Pointer (FD_H: Read/Write)

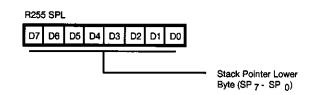
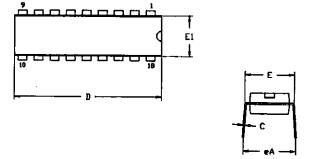
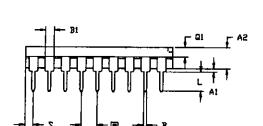
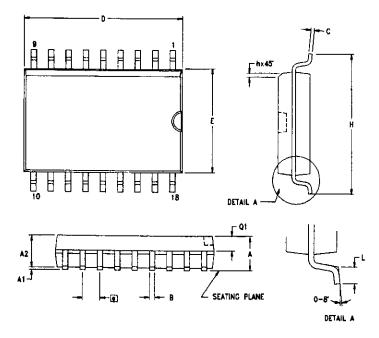




Figure 37. Stack Pointer (FF_H: Read/Write)

PACKAGE INFORMATION



LDEMYZ	MILLI	METER	INC	CH
	MIN	MAX	MIN	MAX
A1	0.51	0.81	.020	.032
SA	3.25	3.43	.128	.135
В	0.38	0.53	.015	.021
Bl	1.14	1.65	.045	.065
С	0.23	0.38	.009	.015
D	22.35	23.37	.880	.920
E	7.62	8.13	.300	.320
El	6.22	6.48	.245	.255
	2,54	TYP	.100	TYP
eA	7.87	8.89	.310	.350
<u> </u>	3.18	3.81	.125	.150
Ωt	1.52	1.65	.060	.065
2	0.89	1.65	.035	.065

CONTROLLING DIMENSIONS : INCH

18-Pin DIP Package Diagram

SYMBOL	MILLIMETER		INCH	
	MIN	MAX	KIN	MAX
A	2.40	2.65	0.094	0.104
A1	0.10	0.30	0.004	0.012
A2	2.24	2.44	0.088	0.096
8	0.36	0.46	0.014	0.018
С	0.23	0.30	0.009	0.012
D	11.40	11.75	0.449	0.463
E	7.40	7.60	0.291	0.299
(1.27 TYP		0.050 TYP	
Н	10.00	10.65	0.394	0.419
h	0.30	0.50	0.012	0.020
_ L	0.60	1.00	0.024	0.039
Q1	0.97	1.07	0.038	0.042

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

18-Pin SOIC Package Diagram

Pre-Characterization Product:

The product represented by this CPS is newly introduced and Zilog has not completed the full characterization of the product. The CPS states what Zilog knows about this product at this time, but additional features or nonconformance with some aspects of the CPS may be

found, either by Zilog or its customers in the course of further application and characterization work. In addition, Zilog cautions that delivery may be uncertain at times, due to start-up yield issues.

© 1998 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY, IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMATION SET FORTH HEREIN OR REGARDING THE FREEDOM OF THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 FAX 408 370-8056 Internet: http://www.zilog.com