

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details Product Status	
Product Status	
	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	14
Program Memory Size	2KB (2K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	125 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e0812ssc1866

GENERAL DESCRIPTION (Continued)

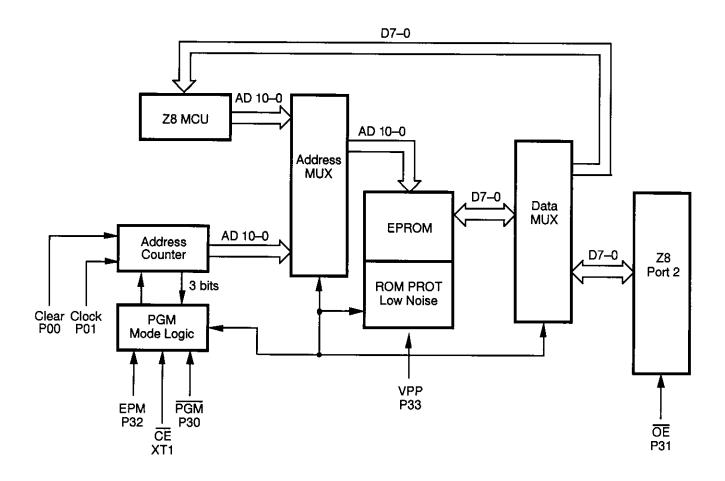


Figure 2. EPROM Programming Mode Block Diagram

DC ELECTRICAL CHARACTERISTICS

Standard Temperature

			$T_A = 0^{\circ}C$	to +70°C	Typical			
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
VINMAX	Max Input Voltage	4.5V	<u> </u>	12		V	I _{In} <250 μA	1
		5.5V		12		٧	I _{In} <250 μΑ	1
V _{CH}	Clock Input High Voltage	4.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	٧	Driven by External Clock Generator	
		5.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	V	Driven by External Clock Generator	- "
V _{CL}	Clock Input Low Voltage	4.5V	V _{SS} -0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
		5.5V	V _{SS} -0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	4.5V	0.7 V _{CC}	V _{CC} +0.3	2.8	V		
		5.5V	$0.7 V_{CC}$	V _{CC} +0.3	2.8	V		
V _{IL}	Input Low Voltage	4.5V	V _{SS} -0.3	0.2 V _{CC}	1.5	V		
		5.5V	V _{SS} -0.3	$0.2\mathrm{V_{CC}}$	1.5	٧		
V _{OH}	Output High Voltage	4.5V	V _{CC} -0.4		4.8	٧	$I_{OH} = -2.0 \text{ mA}$	5
		5.5V	V _{CC} -0.4		4.8	V	I _{OH} = -2.0 mA	5
	•	4.5V	V _{CC} -0.4		4.8	٧	Low Noise @ I _{OH} = -0.5 mA	*** **
	•	5.5V	V _{CC} -0.4		4.8	٧	Low Noise @ I _{OH} = -0.5 mA	
V _{OL1}	Output Low Voltage	4.5V		0.8	0.1	٧	$I_{OL} = +4.0 \text{ mA}$	5
	•	5.5V		0.4	0.1	V	I _{OL} = +4.0 mA	5
	•	4.5V		0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
	•	5.5V	<u>.</u>	0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
V _{OL2}	Output Low Voltage	4.5V		0.8	0.8	٧	I _{OL} = +12 mA,	5
	•	5.5V	-,	0.8	0.8	٧	l _{OL} = +12 mA,	5
VOFFSET	Comparator Input	4.5V		25.0	10.0	mV		
	Offset Voltage	5.5V		25.0	10.0	mV		
V_{LV}	V _{CC} Low Voltage Auto Reset		2.2	3.0	2.8	V	@ 6 MHz Max. Int. CLK Freq.	<u>-</u>
I _{IL}	Input Leakage	4.5V	-1.0	1.0		μА	V _{IN} = 0V, V _{CC}	
	(Input Bias Current of Comparator)	5.5V	-1.0	1.0	·	μА	V _{IN} = 0V, V _{CC}	*****
I _{OL}	Output Leakage	4.5V	-1.0	1.0		μA	V _{IN} = 0V, V _{CC}	
	-	5.5V	-1.0	1.0		μА	V _{IN} = 0V, V _{CC}	
V _{ICR}	Comparator Input Common Mode Voltage Range		0	V _{CC} -1.0		V		

			$T_A = 0^{\circ}C$	to +70°C	Typical			·
Sym	Parameter	V _{CC} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
Icc	Supply Current	4.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 2 MHz	5,7
		5.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 2 MHz	5,7
		4.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		5.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		4.5V	•	20.0	12.0	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
		5.5V		20.0	12.0	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
I _{CC1}	Standby Current	4.5V		4.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	5,7
		5.5V	~	4.0	2.5	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	5,7
		4.5V	.,	5.0	3.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 8 MHz	5,7
		5.5V	-	5.0	3.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 8 MHz	5,7
		4.5V		7.0	4.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 12 MHz	5,7
		5.5V		7.0	4.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 12 MHz	5,7
I _{cc}	Supply Current (Low Noise Mode)	4.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 1 MHz	7
		5.5V		11.0	6.8	mA	All Output and I/O Pins Floating @ 1 MHz	7
		4.5V		13.0	7.5	mA	All Output and I/O Pins Floating @ 2 MHz	7
		5.5V		13.0	7.5	mA	All Output and I/O Pins Floating @ 2 MHz	7
		4.5V		15.0	8.2		All Output and I/O Pins Floating @ 4 MHz	7
		5.5V		15.0	8.2	mA	All Output and I/O Pins Floating @ 4 MHz	7

DC ELECTRICAL CHARACTERISTICS (Continued)

		-	T _A = 0°0	C to +70°C	Typical			
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
I _{CC1}	Standby Current	4.5V		4.0	2.5	mA	HALT Mode V _{IN} = 0V,	7
	(Low Noise Mode)						V _{CC} @ 1 MHz	
		5.5V		4.0	2.5	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 1 MHz	
		4.5V		4.5	2.8	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 2 MHz	
		5.5V	*****	4.5	2.8	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 2 MHz	
		4.5V		5.0	3.0	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 4 MHz	
		5.5V		5.0	3.0	mA	HALT Mode V _{IN} = 0V,	7
							V _{CC} @ 4 MHz	
I_{CC2}	Standby Current	4.5V		10.0	1.0	μΑ	STOP Mode V _{IN} = 0V, V _{CC}	7,8
					· •		WDT is not Running	
		5.5V		10.0	1.0	μА	STOP Mode V _{IN} = 0V,V _{CC}	7,8
							WDT is not Running	
I _{ALL}	Auto Latch Low	4.5V		32.0	16	μА	0V < V _{IN} < V _{CC}	
	Current	5.5V		32.0	16	μА	0V < V _{IN} < V _{CC}	-
I _{ALH}	Auto Latch High	4.5V	make	-16.0	-8.0	μА	OV < V _{IN} < V _{CC}	-
	Current	5.5V		-16.0	-8.0	μА	0V < V _{IN} < V _{CC}	

- 1. Port 2 and Port 0 only
- 2. $V_{SS} = 0V = GND$
- 3. The device operates down to V_{LV} of the specified frequency for V_{LV} . The minimum operational V_{CC} is determined on the value of the voltage V_{LV} at the ambient temperature. The V_{LV} increases as the temperature decreases.
- 4. V_{CC} = 4.5 to 5.5V, typical values measured at V_{CC} = 5.0V. The V_{CC} voltage specification of 5.5 V guarantees 5.0 V \pm 0.5V with typical values measured at V_{CC} = 5.0V.
- 5. Standard Mode (not Low EMI Mode)
- 6. Z86E08 only
- 7. All outputs unloaded and all inputs are at $\rm V_{\rm CC}$ or $\rm V_{\rm SS}$ level.
- 8. If analog comparator is selected, then the comparator inputs must be at $V_{\rm CC}$ level.

DC ELECTRICAL CHARACTERISTICS

Extended Temperature

				40°C to)5°C	Typical			
Sym	Parameter	V _{cc} [4]	Min	Max	@ 25°C	Units	Conditions	Notes
$\overline{V_{\text{INMAX}}}$	Max Input Voltage	4.5V		12.0		V	I _{IN} < 250 μA	1
		5.5V	**	12.0	 	V	I _{IN} < 250 μA	1
V _{CH}	Clock Input High Voltage	4.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	V	Driven by External Clock Generator	
		5.5V	0.8 V _{CC}	V _{CC} +0.3	2.8	٧	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	4.5V	V _{SS} -0.3	0.2 V _{CC}	1.7	٧	Driven by External Clock Generator	
		5.5V		0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	4.5V	0.7 V _{CC}	V _{CC} +0.3	2.8	V		
		5.5V	0.7 V _{CC}	V _{CC} +0.3	2.8	٧	**	
V_{IL}	Input Low Voltage	4.5V	V _{ss} –0.3	0.2 V _{CC}	1.5	V		
		5.5V	V _{ss} -0.3	0.2 V _{CC}	1.5	V		
V_{OH}	Output High Voltage	4.5V	V _{CC} -0.4		4.8	V	I _{OH} = -2.0 mA	5
		5.5V	V _{CC} -0.4		4.8	V	I _{OH} = -2.0 mA	5
		4.5V	V _{CC} -0.4	<u> </u>		٧	Low Noise @ I _{OH} = -0.5 mA	
		5.5V	V _{CC} -0.4	•	**	V	Low Noise @ I _{OH} = -0.5 mA	
V _{OL1}	Output Low Voltage	4.5V		0.4	0.1	V	$I_{OL} = +4.0 \text{ mA}$	5
	•	5.5V		0.4	0.1	٧	$I_{OL} = +4.0 \text{ mA}$	5
		4.5V		0.4	0.1	٧	Low Noise @ I _{OL} = 1.0 mA	
	•	5.5V		0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
V _{OL2}	Output Low Voltage	4.5V		1.0	0.3	V	I _{OL} = +12 mA,	5
		5.5V		1.0	0.3	V	$I_{OL} = +12 \text{ mA},$	5
V_{OFFSET}	Comparator Input	4.5V		25.0	10.0	mV		
	Offset Voltage	5.5V		25.0	10.0	mV		
V _{LV}	V _{CC} Low Voltage Auto Reset		1.8	3.8	2.8	V	@ 6 MHz Max. Int. CLK Freq.	3
l _{i∟}	Input Leakage	4.5V		-1.0	1.0	μА	$V_{IN} = 0V, V_{CC}$	
	(Input Bias Current of Comparator)	5.5V		-1.0	1.0	μА	$V_{IN} = 0V$, V_{CC}	
I _{OL}	Output Leakage	4.5V		-1.0	1.0	μА	$V_{IN} = 0V_{I}V_{CC}$	
		5.5V		-1.0	1.0	μA	$V_{IN} = 0V, V_{CC}$	
V _{ICR}	Comparator Input Common Mode Voltage Range		Ö	V _{CC} –1.5		V		· . <u></u>

AC ELECTRICAL CHARACTERISTICS

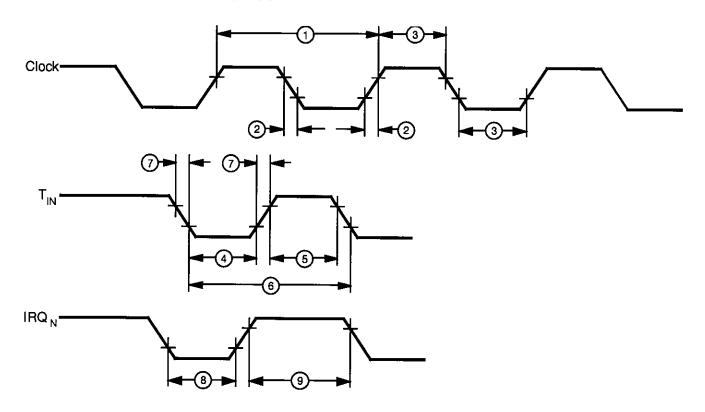


Figure 6. AC Electrical Timing Diagram

AC ELECTRICAL CHARACTERISTICS

Timing Table (Standard Mode for SCLK/TCLK = XTAL/2) Standard Temperature

15				7	T _A = 0 °C	to +70 °C	•	<u></u>	
				8 N	lHz	12	MHz		
No	Symbol	Parameter	V _{cc}	Min	Max	Min	Max	Units	Notes
1	TpC	Input Clock Period	4.5V	125	DC	83	DC	ns	1
			5.5V	125	DC	83	DC	ns	1
2	TrC,TfC	Clock Input Rise	4.5V	-8.	25		15	ns	1
		and Fall Times	5.5V		25		15	ns	1
3	TwC	Input Clock Width	4.5V	62		41		ns	1
			5.5V	62		41	•	ns	1
4	TwTinL	Timer Input Low Width	4.5V	100		100		ns	1
			5.5V	70	1	70		ns	1
5	TwTinH	Timer Input High Width	4.5V	5TpC		5TpC			1
			5.5V	5TpC		5TpC			1
6	TpTin	Timer Input Period	4.5V		8TpC	8TpC		***	1
			5.5V		8TpC	8TpC			1
7	TrTin,	Timer Input Rise	4.5V		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwlL	Int. Request Input	4.5V	70		70		ns	1,2
		Low Time	5.5V	70		70		ns	1,2
9	TwiH	Int. Request Input	4.5V		5TpC	5TpC			1,2
		High Time	5.5V		5TpC	5TpC			1,2
10	Twdt	Watch-Dog Timer	4.5V	12	<u> </u>	12		ms	1
		Delay Time for Timeout	5.5V	12	·	12	· ·	ms	1
11	Tpor	Power-On Reset Time	4.5V	20	80	20	80	ms	1
			5.5V	20	80	20	80	ms	1

^{1.} Timing Reference uses 0.7 $\rm V_{CC}$ for a logic 1 and 0.2 $\rm V_{CC}$ for a logic 0.

^{2.} Interrupt request through Port 3 (P33-P31).

AC ELECTRICAL CHARACTERISTICS

Timing Table (Standard Mode for SCLK/TCLK = XTAL/2) Extended Temperature

				T 8 M		to +105 °C 12 N		"	-
No	Symbol	Parameter	V _{cc}	Min	Max	Min	Max	Units	Notes
1	ТрС	Input Clock Period	4.5V	125	DC	83	DC	ns	1
			5.5V	125	DC	83	DC	ns	1
2	TrC,TfC	Clock Input Rise	4.5V		25		15	ns	1
		and Fall Times	5.5V		25		15	ns	1
3	TwC	Input Clock Width	4.5V		62		41	ns	1
			5.5V		62		41	ns	1
4	TwTinL	Timer Input Low Width	4.5V	70		70		ns	1
			5.5V	70		70	•	ns	1
5	TwTinH	Timer Input High Width	4.5V	5TpC		5TpC			1
			5.5V	5TpC		5TpC			1
6	TpTin	Timer Input Period	4.5V	8TpC		8TpC			1
		<u> </u>	5.5V	8TpC		8TpC			1
7	TrTin,	Timer Input Rise	4.5V		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwlL	Int. Request Input	4.5V	70		70		ns	1,2
		Low Time	5.5V	70		70	•	ns	1,2
9	TwiH	Int. Request Input	4.5V	5TpC		5TpC			1,2
		High Time	5.5V	5TpC		5TpC			1,2
10	Twdt	Watch-Dog Timer	4.5V	10		10		ms	1
		Delay Time for Timeout	5.5V	10		10		ms	1
11	Tpor	Power-On Reset Time	4.5V	12	100	12	100	ms	1
			5.5V	12	100	12	100	ms	1

^{1.} Timing Reference uses 0.7 $\rm V_{CC}$ for a logic 1 and 0.2 $\rm V_{CC}$ for a logic 0.

^{2.} Interrupt request made through Port 3 (P33-P31).

Table 3. Control Registers

				R	eset C	onditio	n			***************************************
Addr.	Reg.	D7	D6	D5	D4	D3	D2	D1	D0	Comments
FF	SPL	0	0	0	0	0	0	0	0	-
FD	RP	0	0	0	0	0	0	0	0	
FC	FLAGS	U	Ū	U	U	Ü	U	U	U	
FB	IMR	0	U	U	U	U	U	U	U	
FA	IRQ	U	U	0	0	0	0	0	0	IRQ3 is used for positive edge detection
F9	IPR	U	Ų	Ū	U	U	U	U	U	
F8*	P01M	U	U	U	0	U	U	0	1	
F7*	P3M	U	U	U	Ū	U	Ü	0	0	
F6*	P2M	1	1	1	1	1	1	1	1	Inputs after reset
F5	PRE0	U	U	Ū	U	U	U	Ū	0	
F4	TO	U	U	U	U	U	U	U	U	
F3	PRE1	U	Ū	U	Ū	U	Ü	0	0	
F2	T1	U	U	U	Ū	U	Ü	U	U	
F1	TMR	0	0	0	0	0	0	0	0	

Note: *Registers are not reset after a STOP-Mode Recovery using P27 pin. A subsequent reset will cause these control registers to be reconfigured as shown in Table 4 and the user must avoid bus contention on the port pins or it may affect device reliability.

The Z8 instructions can access registers directly or indirectly through an 8-bit address field. This allows short 4-bit register addressing using the Register Pointer.

In the 4-bit mode, the register file is divided into eight working register groups, each occupying 16 continuous locations. The Register Pointer (Figure 13) addresses the starting location of the active working-register group.

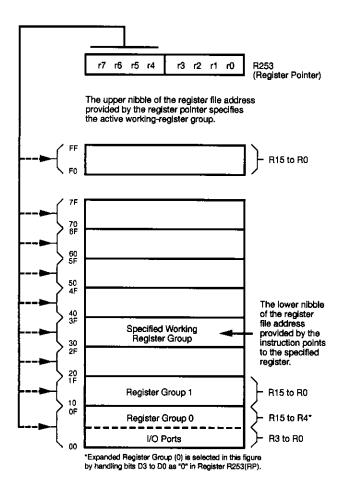


Figure 13. Register Pointer

Stack Pointer. The Z8 has an 8-bit Stack Pointer (R255) used for the internal stack that resides within the 124 general-purpose registers.

General-Purpose Registers (GPR). These registers are undefined after the device is powered up. The registers keep their last value after any reset, as long as the reset occurs in the $V_{\rm CC}$ voltage-specified operating range. **Note:** Register R254 has been designated as a general-purpose register and is set to 00 Hex after any reset or Stop-Mode Recovery.

Counter/Timer. There are two 8-bit programmable counter/timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the T0 can be driven by the internal clock source only (Figure 14).

The 6-bit prescalers divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both counter and prescaler reach the end of count, a timer interrupt request IRQ4 (T0) or IRQ5 (T1) is generated.

The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters are also programmed to stop upon reaching zero (Single-Pass Mode) or to automatically reload the initial value and continue counting (Modulo-N Continuous Mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and is either the internal microprocessor clock divided by four, or an external signal input through Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that is retriggerable or non-retriggerable, or used as a gate input for the internal clock.

Clock. The Z8 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, LC, RC, ceramic resonator, or any suitable external clock source (XTAL1 = INPUT, XTAL2 = OUTPUT). The crystal should be AT cut, up to 12 MHz max., with a series resistance (RS) of less than or equal to 100 Ohms.

The crystal should be connected across XTAL1 and XTAL2 using the vendors crystal recommended capacitors from each pin directly to device ground pin 14 (Figure 16). Note that the crystal capacitor loads should be connected to V_{SS} , Pin 14 to reduce Ground noise injection.

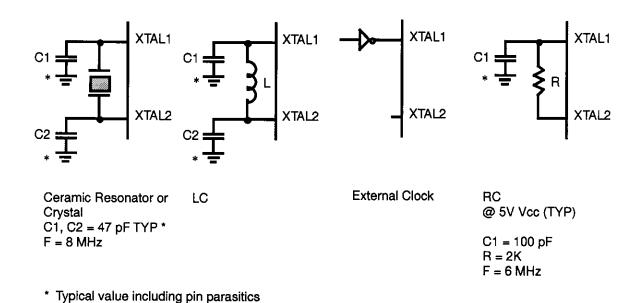


Figure 16. Oscillator Configuration

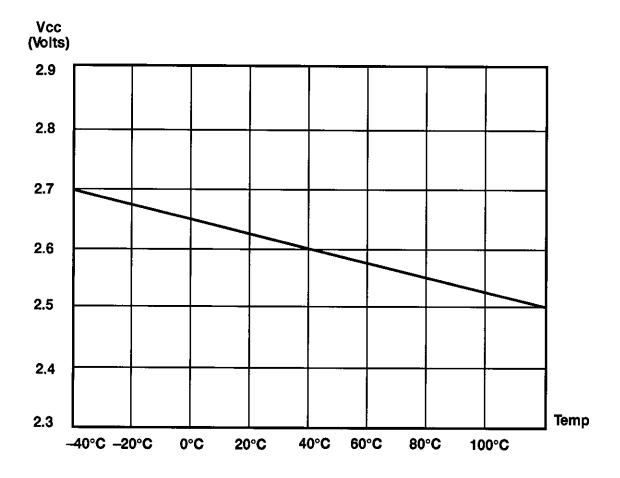


Figure 17. Typical Auto Reset Voltage (V_{LV}) vs. Temperature

Low EMI Emission

The Z8 can be programmed to operate in a low EMI Emission (Low Noise) Mode by means of an EPROM programmable bit option. Use of this feature results in:

- Less than 1 mA consumed during HALT Mode.
- All drivers slew rates reduced to 10 ns (typical).
- Internal SCLK/TCLK = XTAL operation limited to a maximum of 4 MHz-250 ns cycle time.
- Output drivers have resistances of 500 ohms (typical).
- Oscillator divide-by-two circuitry eliminated.

In addition to V_{DD} and GND (V_{SS}), the Z8 changes all its pin functions in the EPROM Mode. XTAL2 has no function, XTAL1 functions as \overline{CE} , P31 functions as \overline{OE} , P32 functions as EPM, P33 functions as V_{PP} , and P02 functions as \overline{PGM} .

ROM Protect. ROM Protect fully protects the Z8 ROM code from being read externally. When ROM Protect is selected, the instructions LDC and LDCI are supported (Z86E04/E08 and Z86C04/C08 do not support the instructions of LDE and LDEI). When the device is programmed for ROM Protect, the Low Noise feature will not automatically be enabled.

Please note that when using the device in a noisy environment, it is suggested that the voltages on the EPM and $\overline{\text{CE}}$ pins be clamped to V_{CC} through a diode to V_{CC} to prevent accidentally entering the OTP Mode. The V_{PP} requires both a diode and a 100 pF capacitor.

Auto Latch Disable. Auto Latch Disable option bit when programmed will globally disable all Auto Latches.

WDT Enable. The WDT Enable option bit, when programmed, will have the hardware enabled Permanent WDT enabled after exiting reset and can not be stopped in Halt or Stop Mode.

EPROM/Test Mode Disable. The EPROM/Test Mode Disable option bit, when programmed, will disable the EPROM Mode and the Factory Test Mode. Reading, verifying, and programming the Z8 will be disabled. To fully verify that this mode is disabled, the device must be power cycled.

User Modes. Table 7 shows the programming voltage of each mode.

Table 7. OTP Programming Table

V_{pp}	EPM	CE	ŌĒ	PGM	ADDR	DATA	V _{cc} *
NU	V _H	V _{IL}	V _{IL}	V _{IH}	ADDR	Out	5.0V
V _H	V _{IH}	V _{IL}	V _{IH}	V _{IL}	ADDR	In	6.4V
V _H	V _{IH}	V _{IL}	V _{IL}	V _{1H}	ADDR	Out	6.4V
V _H	V _H	V _H	V _{IH}	V _{IL}	NU	NU	6.4V
V _H	V _{IH}	V _H	V _{IH}	V _{IL}	NU	NU	6.4V
V _H	V _{IH}	V _H	V _{IL}	V _{IL}	NU	NU	6.4V
V _H	V _{IL}	V _H	VIH	V _{IL}	NU	NU	6.4V
V _H	V _{IL}	V _H	V _{IL}	V _{IL}	NU	NU	6.4V
	NU	NU V _H V _H V _{IH} V _H V _{IH} V _H V _H V _H V _{IH} V _H V _{IH} V _H V _{IH} V _H V _{IL}	NU V _H V _{IL} V _H V _{IH} V _{IL} V _H V _{IH} V _{IL} V _H V _{IH} V _H V _H V _{IH} V _H V _H V _{IL} V _H V _H V _{IL} V _H	NU V _H V _{IL} V _{IL} V _H V _{IH} V _{IL} V _{IH} V _H V _{IH} V _{IL} V _{IL} V _H V _I V _I V _I	NU V _H V _{IL} V _{IL} V _{IH} V _H V _{IH} V _{IL} V _{IH} V _{IL} V _H V _{IH} V _{IL} V _{IL} V _{IH} V _H V _{IH} V _H V _{IH} V _{IL} V _H V _{IH} V _H V _{IL} V _{IL} V _H V _{IL} V _I V _{IL} V _{IL}	NU V _H V _{IL} V _{IL} V _{IH} ADDR V _H V _{IH} V _{IL} V _{IH} V _{IL} ADDR V _H V _{IH} V _{IL} V _{IL} V _{IH} ADDR V _H V _H V _H V _{IL} NU V _H V _{IH} V _H V _{IL} NU V _H V _{IH} V _H V _{IL} NU V _H V _{IL} V _H V _{IL} NU	NU V _H V _{IL} V _{IL} V _{IH} ADDR Out V _H V _{IH} V _{IL} V _{IL} ADDR In V _H V _{IH} V _{IL} V _{IH} ADDR Out V _H V _H V _I V _I NU NU V _H V _{IH} V _I V _{IL} NU NU V _H V _I V _I V _I NU NU V _H V _{IL} V _I NU NU

- 1. $V_H = 12.75V \pm 0.25 V_{DC}$.
- 2. V_{IH} = As per specific Z8 DC specification.
- 3. V_{IL}= As per specific Z8 DC specification.
- 4. X = Not used, but must be set to V_H or V_{IH} level.
- 5. NU = Not used, but must be set to either V_{IH} or V_{IL} level.
- 6. Ipp during programming = 40 mA maximum.
- I_{CC} during programming, verify, or read = 40 mA maximum.
- 8. * V_{CC} has a tolerance of ±0.25V.

Internal Address Counter. The address of Z8 is generated internally with a counter clocked through pin P01 (Clock). Each clock signal increases the address by one and the "high" level of pin P00 (Clear) will reset the address to zero. Figure 18 shows the setup time of the serial address input.

Programming Waveform. Figures 19, 20, 21 and 22 show the programming waveforms of each mode. Table 8 shows the timing of programming waveforms.

Programming Algorithm. Figure 23 shows the flow chart of the Z8 programming algorithm.

Table 8. Timing of Programming Waveforms

Parameters	Name	Min	Max	Units
1	Address Setup Time	2		μs
2	Data Setup Time	2		μs
3	V _{PP} Setup	2		μs
4	V _{cc} Setup Time	2		μs
5	Chip Enable Setup Time	2	·· · · ·	μs
6	Program Pulse Width	0.95		ms
7	Data Hold Time	2	,	μS
8	OE Setup Time	2		μЅ
9	Data Access Time	188		ns
10	Data Output Float Time		100	ns
11	Overprogram Pulse Width	2.85		ms
12	EPM Setup Time	2		μS
13	PGM Setup Time	2		μs
14	Address to OE Setup Time	2		μs
15	Option Program Pulse Width	78		ms
16	OE Width	250	, - <u></u>	ns
17	Address Valid to OE Low	125		ns

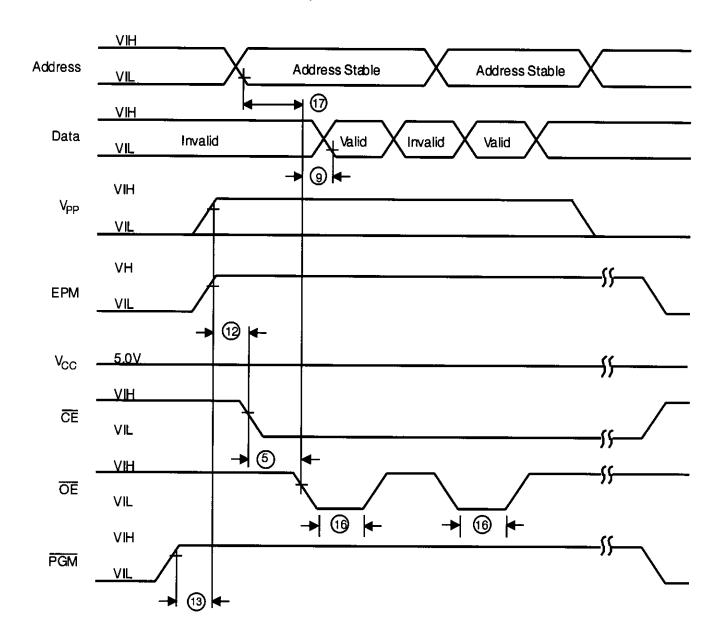


Figure 19. Z86E04/E08 Programming Waveform (EPROM Read)

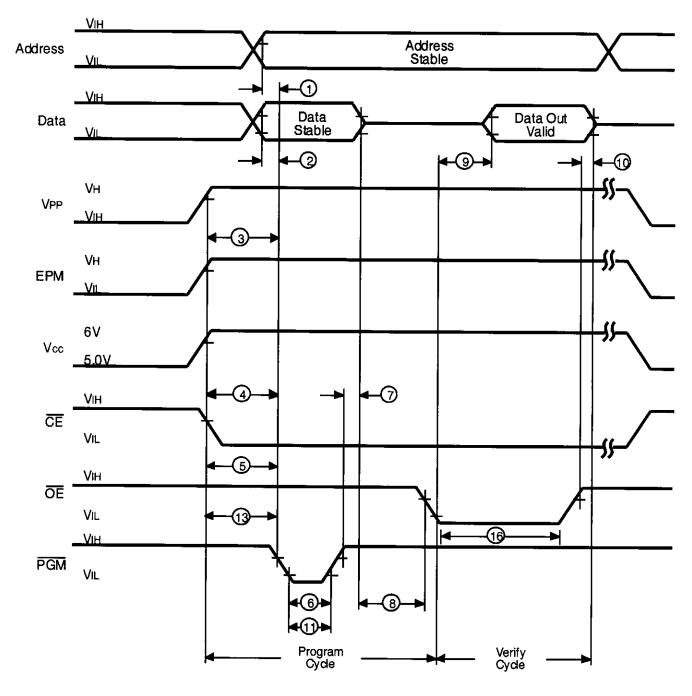


Figure 20. Z86E04/E08 Programming Waveform (Program and Verify)

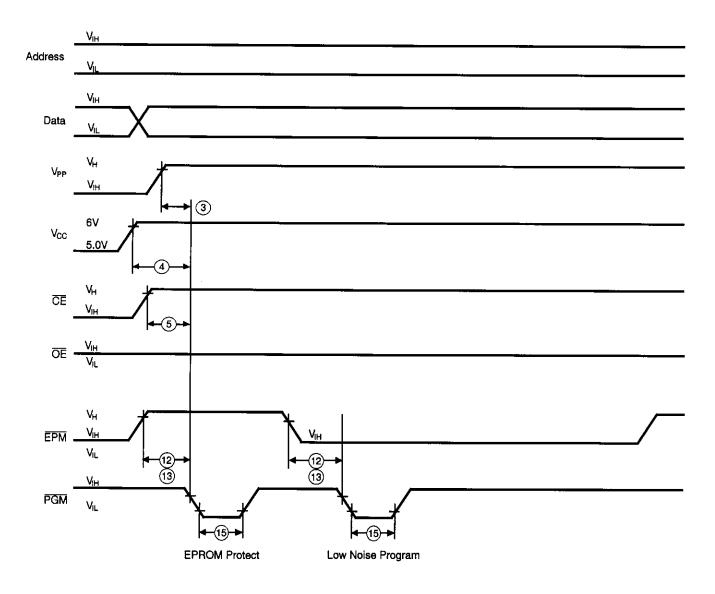


Figure 21. Z86E04/E08 Programming Options Waveform (EPROM Protect and Low Noise Program)

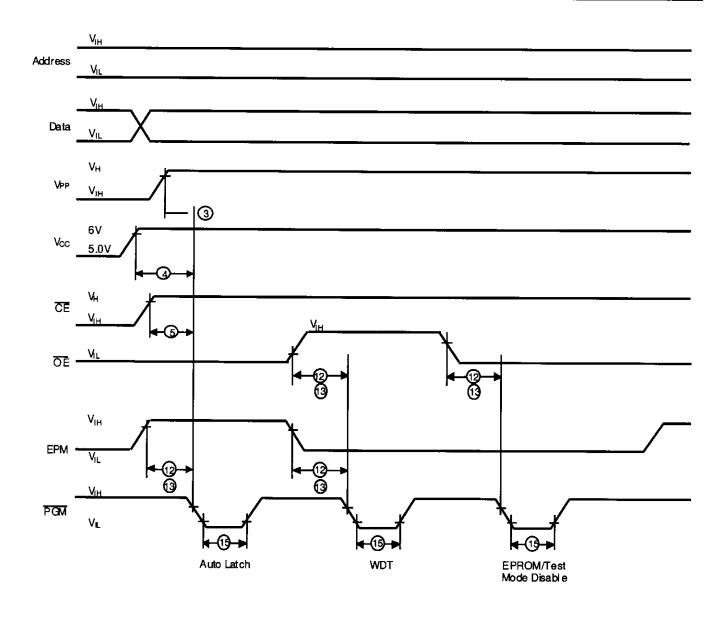


Figure 22. Z86E04/E08 Programming Options Waveform (Auto Latch Disable, Permanent WDT Enable and EPROM/Test Mode Disable)

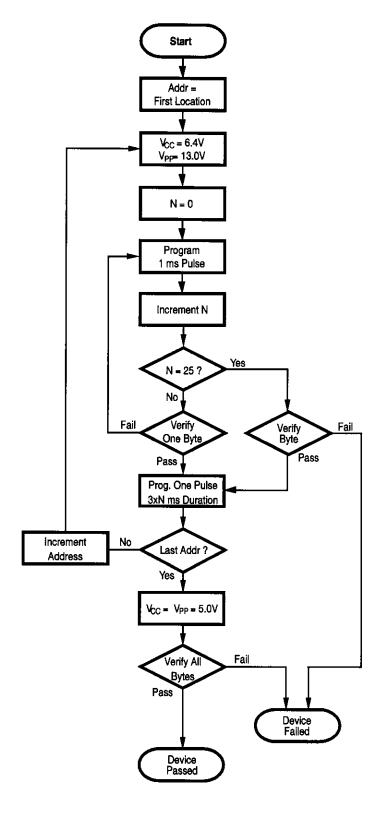
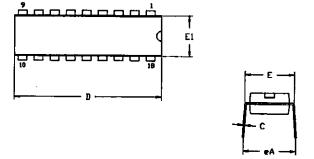
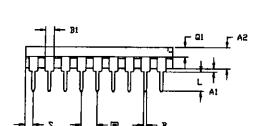
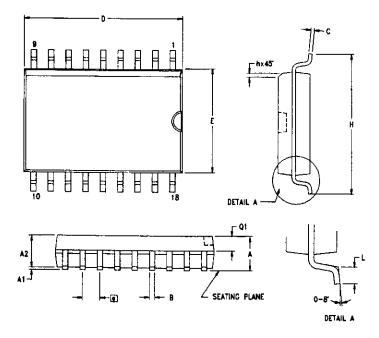




Figure 23. Z86E04/E08 Programming Algorithm

PACKAGE INFORMATION



LDEMYZ	MILLI	METER	INC	CH
	MIN	MAX	MIN	MAX
A1	0.51	0.81	.020	.032
SA	3.25	3.43	.128	.135
В	0.38	0.53	.015	.021
Bl	1.14	1.65	.045	.065
С	0.23	0.38	.009	.015
D	22.35	23.37	.880	.920
E	7.62	8.13	.300	.320
El	6.22	6.48	.245	.255
2	2,54	TYP	.100	TYP
eA	7.87	8.89	.310	.350
<u> </u>	3.18	3.81	.125	.150
Ωt	1.52	1.65	.060	.065
2	0.89	1.65	.035	.065

CONTROLLING DIMENSIONS : INCH

18-Pin DIP Package Diagram

SYMBOL	MILLI	METER	INCH			
21 MBDL	MIN	MAX	KIN	MAX		
A	2.40	2.65	0.094	0.104		
A1	0.10	0.30	0.004	0.012		
A2	2.24	2.44	0.088	0.096		
8	0.36	0.46	0.014	0.018		
С	0.23	0.30	0.009	0.012		
D	11.40	11.75	0.449	0.463		
Ε	7.40	7.60	0.291	0.299		
(1.27	TYP	0.05	O TYP		
Н	10.00	10.65	0.394	0.419		
h	0.30	0.50	0.012	0.020		
_ L	0.60	1.00	0.024	0.039		
Q1	0.97	1.07	0.038	0.042		

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

18-Pin SOIC Package Diagram