STMicroelectronics - STM32F101V8T6TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	36MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	80
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f101v8t6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Introc	duction						
2	Desci	ription .						
	2.1	Device overview						
	2.2	Full con	npatibility throughout the family					
	2.3		ew					
		2.3.1	ARM [®] Cortex [®] -M3 core with embedded Flash and SRAM					
		2.3.2	Embedded Flash memory					
		2.3.3	CRC (cyclic redundancy check) calculation unit					
		2.3.4	Embedded SRAM					
		2.3.5	Nested vectored interrupt controller (NVIC)					
		2.3.6	External interrupt/event controller (EXTI)					
		2.3.7	Clocks and startup					
		2.3.8	Boot modes					
		2.3.9	Power supply schemes					
		2.3.10	Power supply supervisor					
		2.3.11	Voltage regulator					
		2.3.12	Low-power modes					
		2.3.13	DMA					
		2.3.14	RTC (real-time clock) and backup registers					
		2.3.15	Independent watchdog18					
		2.3.16	Window watchdog					
		2.3.17	SysTick timer					
		2.3.18	General-purpose timers (TIMx)					
		2.3.19	I^2C bus					
		2.3.20	Universal synchronous/asynchronous receiver transmitter (USART)19					
		2.3.21	Serial peripheral interface (SPI)					
		2.3.22	GPIOs (general-purpose inputs/outputs)					
		2.3.23	ADC (analog to digital converter)					
		2.3.24	Temperature sensor					
		2.3.25	Serial wire JTAG debug port (SWJ-DP) 20					
3	Pinou	its and	pin description					

STM32F101x8, STM32F101xB

4	Memo	ory mapping							
5	Electrical characteristics								
	5.1	Parameter conditions							
		5.1.1	Minimum and maximum values						
		5.1.2	Typical values						
		5.1.3	Typical curves						
		5.1.4	Loading capacitor						
		5.1.5	Pin input voltage						
		5.1.6	Power supply scheme						
		5.1.7	Current consumption measurement						
	5.2	Absolute	e maximum ratings						
	5.3	Operatir	ng conditions						
		5.3.1	General operating conditions						
		5.3.2	Operating conditions at power-up / power-down						
		5.3.3	Embedded reset and power control block characteristics						
		5.3.4	Embedded reference voltage						
		5.3.5	Supply current characteristics						
		5.3.6	External clock source characteristics						
		5.3.7	Internal clock source characteristics						
		5.3.8	PLL characteristics						
		5.3.9	Memory characteristics						
		5.3.10	EMC characteristics						
		5.3.11	Absolute maximum ratings (electrical sensitivity)53						
		5.3.12	I/O current injection characteristics						
		5.3.13	I/O port characteristics						
		5.3.14	NRST pin characteristics						
		5.3.15	TIM timer characteristics						
		5.3.16	Communications interfaces						
		5.3.17	12-bit ADC characteristics						
		5.3.18	Temperature sensor characteristics						
6	Packa	ige chai	racteristics						
	6.1	Package	e mechanical data						
	6.2	UFQFPI	N48 package information 73						
	6.3	VFQFP	N36 package information						

List of Figures

Figure 1.	STM32F101xx medium-density access line block diagram	12
Figure 2.	Clock tree	13
Figure 3.	STM32F101xx medium-density access line LQFP100 pinout	21
Figure 4.	STM32F101xx medium-density access line LQFP64 pinout	22
Figure 5.	STM32F101xx medium-density access line LQFP48 pinout	22
Figure 6.	STM32F101xx medium-density access line UFQPFN48 pinout.	23
Figure 7.	STM32F101xx medium-density access line VFQPFN36 pinout	23
Figure 8.	Memory map	29
Figure 9.	Pin loading conditions.	
Figure 10.	Pin input voltage	31
Figure 11.	Power supply scheme	31
Figure 12.	Current consumption measurement scheme	32
Figure 13.	Typical current consumption in Run mode versus frequency (at 3.6 V) -	
	code with data processing running from RAM, peripherals enabled.	38
Figure 14.	Typical current consumption in Run mode versus frequency (at 3.6 V) -	
	code with data processing running from RAM, peripherals disabled	38
Figure 15.	Typical current consumption on V _{BAT} with RTC on versus temperature at different	
		40
Figure 16.	Typical current consumption in Stop mode with regulator in Run mode versus	
	temperature at V _{DD} = 3.3 V and 3.6 V	40
Figure 17.	Typical current consumption in Stop mode with regulator in Low-power mode versus	
	temperature at V _{DD} = 3.3 V and 3.6 V	41
Figure 18.	Typical current consumption in Standby mode versus temperature at V_{DD} = 3.3 V and 3.6 V	41
Figure 19.	High-speed external clock source AC timing diagram	
Figure 20.	Low-speed external clock source AC timing diagram.	
Figure 21.	Typical application with an 8 MHz crystal.	
Figure 22.	Typical application with a 32.768 kHz crystal	
Figure 23.	Standard I/O input characteristics - CMOS port	
Figure 24.	Standard I/O input characteristics - TTL port	
Figure 25.	5 V tolerant I/O input characteristics - CMOS port	
Figure 26.	5 V tolerant I/O input characteristics - TTL port	
Figure 27.	I/O AC characteristics definition	
Figure 28.	Recommended NRST pin protection	
Figure 29.	I ² C bus AC waveforms and measurement circuit ⁽¹⁾	
Figure 30.	SPI timing diagram - slave mode and CPHA = 0	66
Figure 31.	SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾	66
Figure 32.	SPI timing diagram - master mode ⁽¹⁾	67
Figure 33.	ADC accuracy characteristics	
Figure 34.	Typical connection diagram using the ADC	71
Figure 35.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	71
Figure 36.	Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	72
Figure 37.	UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline	
Figure 38.	UFQFPN48 recommended footprint	74
Figure 39.	UFQFPN48 marking example (package top view)	75
Figure 40.	VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat	
	package outline	76
Figure 41.	VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat	

2.1 Device overview

Figure 1 shows the general block diagram of the device family.

medium-density access line)										
i i	Peripheral	STM32	F101Tx	STM32	STM32F101Cx		F101Rx	STM32F101Vx		
Flash - K	bytes	64	128	64	128	64	128	64	128	
SRAM - K	lbytes	10	16	10	16	10	16	10	16	
Timers	General -purpose	3		3		3		3		
	SPI	1		2		2		2		
cation	l ² C	1		2		2		2		
Communication	USART	2	2	3	3	3		3		
-	nchronized ADC of channels	110 channels		110 channels		116 channels		116 channels		
GPIOs		2	26	37		51		80		
CPU frequency		36 MHz								
Operating voltage		2.0 to 3.6 V								
Operating	g temperatures	Ambient temperature: -40 to +85 °C (see Tab Junction temperature: -40 to +105 °C (see Tab								
Packages	Packages		VFQFPN36		LQFP48, UFQFPN48		LQFP64		LQFP100	

Table 2. Device features and peripheral counts (STM32F101xxmedium-density access line)

2.3.17 SysTick timer

This timer is dedicated for OS, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

2.3.18 General-purpose timers (TIMx)

There are three synchronizable general-purpose timers embedded in the STM32F101xx medium-density access line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture, output compare, PWM or one pulse mode output. This gives up to 12 input captures / output compares / PWMs on the largest packages.

The general-purpose timers can work together via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

2.3.19 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.

They support dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded. They can be served by DMA and they support SM Bus 2.0/PM Bus.

2.3.20 Universal synchronous/asynchronous receiver transmitter (USART)

The available USART interfaces communicate at up to 2.25 Mbit/s. They provide hardware management of the CTS and RTS signals, support IrDA SIR ENDEC, are ISO 7816 compliant and have LIN Master/Slave capability.

The USART interfaces can be served by the DMA controller.

2.3.21 Serial peripheral interface (SPI)

Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in fullduplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

Both SPIs can be served by the DMA controller.

2.3.22 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the

DocID13586 Rev 17

	Pir	ıs						Alternate functions ⁽³⁾⁽⁴⁾		
LQFP48/ UFQFPN48	LQFP64	LQFP100	VFQFPN36	Pin name	Type ⁽¹⁾	I / O level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap	
-	-	1	-	PE2	I/O	FT	PE2	TRACECLK	-	
-	-	2	-	PE3	I/O	FT	PE3	TRACED0	_	
-	-	3	-	PE4	I/O	FT	PE4	TRACED1	-	
-	-	4	-	PE5	I/O	FT	PE5	TRACED2	_	
-	-	5	-	PE6	I/O	FT	PE6	TRACED3	-	
1	1	6	-	V _{BAT}	S	-	V _{BAT}	-	-	
2	2	7	-	PC13-TAMPER- RTC ⁽⁵⁾	I/O	-	PC13 ⁽⁶⁾	TAMPER-RTC	-	
3	3	8	-	PC14- OSC32_IN ⁽⁵⁾	I/O	-	PC14 ⁽⁶⁾	OSC32_IN	-	
4	4	9	-	PC15- OSC32_OUT ⁽⁵⁾	I/O	-	PC15 ⁽⁶⁾	OSC32_OUT	-	
-	-	10	-	V _{SS_5}	S	-	V _{SS_5}	-	-	
-	-	11	-	V _{DD_5}	S	-	V _{DD_5}	-	-	
5	5	12	2	OSC_IN	Ι	-	OSC_IN	-	PD0 ⁽⁷⁾	
6	6	13	3	OSC_OUT	0	-	OSC_OUT	-	PD1 ⁽⁷⁾	
7	7	14	4	NRST	I/O	-	NRST	-	-	
-	8	15	-	PC0	I/O	-	PC0	ADC_IN10	-	
-	9	16	-	PC1	I/O	-	PC1	ADC_IN11	-	
-	10	17	-	PC2	I/O	-	PC2	ADC_IN12	-	
-	11	18	-	PC3	I/O	-	PC3	ADC_IN13	-	
8	12	19	5	V _{SSA}	S	-	V _{SSA}	-	-	
-	-	20	-	V _{REF-}	S	-	V _{REF-}	-	-	
-	-	21	-	V _{REF+}	S	-	V _{REF+}	-	-	
9	13	22	6	V _{DDA}	S	-	V _{DDA}	-	-	
10	14	23	7	PA0-WKUP	I/O	-	PA0	WKUP/USART2_CTS ⁽⁸⁾ / ADC_IN0/ TIM2_CH1_ETR ⁽⁸⁾	-	
11	15	24	8	PA1	I/O	-	PA1	USART2_RTS ⁽⁸⁾ / ADC_IN1/TIM2_CH2 ⁽⁸⁾	-	

Table 4. Medium-density STM32F101xx pin definitions

	Pin	IS						Alternate functions ⁽³⁾⁽⁴⁾	
LQFP48/ UFQFPN48	LQFP64	LQFP100	VFQFPN36	Pin name	Type ⁽¹⁾	I / O level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
12	16	25	9	PA2	I/O	-	PA2	USART2_TX ⁽⁸⁾ / ADC_IN2/TIM2_CH3 ⁽⁸⁾	-
13	17	26	10	PA3	I/O	-	PA3	USART2_RX ⁽⁸⁾ / ADC_IN3/TIM2_CH4 ⁽⁸⁾	-
-	18	27	-	V _{SS_4}	S	-	V _{SS_4}	-	-
-	19	28	-	V _{DD_4}	S	-	V _{DD_4}	-	-
14	20	29	11	PA4	I/O	-	PA4	SPI1_NSS ⁽⁸⁾ /ADC_IN4 USART2_CK ⁽⁸⁾ /	-
15	21	30	12	PA5	I/O	-	PA5	SPI1_SCK ⁽⁸⁾ /ADC_IN5	-
16	22	31	13	PA6	I/O	-	PA6	SPI1_MISO ⁽⁸⁾ /ADC_IN6 TIM3_CH1 ⁽⁸⁾	-
17	23	32	14	PA7	I/O	-	PA7	SPI1_MOSI ⁽⁸⁾ /ADC_IN7 TIM3_CH2 ⁽⁸⁾	-
-	24	33	-	PC4	I/O	-	PC4	ADC_IN14	-
-	25	34	-	PC5	I/O	-	PC5	ADC_IN15	-
18	26	35	15	PB0	I/O	-	PB0	ADC_IN8/TIM3_CH3 ⁽⁸⁾	-
19	27	36	16	PB1	I/O	-	PB1	ADC_IN9/TIM3_CH4 ⁽⁸⁾	-
20	28	37	17	PB2	I/O	FT	PB2/BOOT1	-	-
-	-	38	-	PE7	I/O	FT	PE7	-	-
-	-	39	-	PE8	I/O	FT	PE8	-	-
-	-	40	-	PE9	I/O	FT	PE9	-	-
-	-	41	-	PE10	I/O	FT	PE10	-	-
-	-	42	-	PE11	I/O	FT	PE11	-	-
-	-	43	-	PE12	I/O	FT	PE12	-	-
-	-	44	-	PE13	I/O	FT	PE13	-	-
-	-	45	-	PE14	I/O	FT	PE14	-	-
-	-	46	-	PE15	I/O	FT	PE15	-	-
21	29	47	-	PB10	I/O	FT	PB10	I2C2_SCL/ USART3_TX ⁽⁸⁾	TIM2_CH3
22	30	48	-	PB11	I/O	FT	PB11	I2C2_SDA/ USART3_RX ⁽⁸⁾	TIM2_CH4

Table 4. Medium-densit	y STM32F101xx pin	n definitions ((continued)	1

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
		PLS[2:0]=000 (rising edge)	2.1	2.18	2.26		
		PLS[2:0]=000 (falling edge)	2	2.08	2.16		
		PLS[2:0]=001 (rising edge)	2.19	2.28	2.37		
		PLS[2:0]=001 (falling edge)	2.09	2.18	2.27		
		PLS[2:0]=010 (rising edge)	2.28	2.38	2.48		
		PLS[2:0]=010 (falling edge)	2.18	2.28	2.38		
		PLS[2:0]=011 (rising edge)	2.38	2.48	2.58		
V	Programmable voltage detector level selection	PLS[2:0]=011 (falling edge)	2.28	2.38	2.48	V	
V _{PVD}		PLS[2:0]=100 (rising edge)	2.47	2.58	2.69		
		PLS[2:0]=100 (falling edge)	2.37	2.48	2.59		
		PLS[2:0]=101 (rising edge)	2.57	2.68	2.79		
		PLS[2:0]=101 (falling edge)	2.47	2.58	2.69	-	
		PLS[2:0]=110 (rising edge)	2.66	2.78	2.9		
		PLS[2:0]=110 (falling edge)	2.56	2.68	2.8		
		PLS[2:0]=111 (rising edge)	2.76	2.88	3		
		PLS[2:0]=111 (falling edge)	2.66	2.78	2.9		
V _{PVDhyst} ⁽²⁾	PVD hysteresis	-	-	100	-	mV	
V	Power on/power down	Falling edge	1.8 ⁽¹⁾	1.88	1.96	V	
V _{POR/PDR}	reset threshold	Rising edge	1.84	1.92	2.0	v	
V _{PDRhyst} ⁽²⁾	PDR hysteresis	-	-	40	-	mV	
t _{RSTTEMPO} ⁽²⁾	Reset temporization	-	1.5	2.5	4.5	ms	

1. The product behavior is guaranteed by design down to the minimum $V_{\text{POR/PDR}}$ value.

2. Guaranteed by design, not tested in production.

5.3.4 Embedded reference voltage

The parameters given in *Table 11* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*.

Symbol	Parameter	Parameter Conditions		Тур	Max	Unit
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +85 °C	1.16	1.20	1.24	V
T _{S_vrefint} ⁽¹⁾	ADC sampling time when reading the internal reference voltage	-	-	5.1	17.1 ⁽²⁾	μs
V _{RERINT} ⁽²⁾	Internal reference voltage spread over the temperature range	V _{DD} = 3 V ±10 mV	-	-	10	mV
T _{Coeff} ⁽²⁾	Temperature coefficient	-	-	-	100	ppm/ °C

Table 11. I	Embedded	internal	reference	voltage
-------------	----------	----------	-----------	---------

1. Shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design, not tested in production.

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 12: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.

Maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except if it is explicitly mentioned
- The Flash access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 36 MHz)
- Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled $f_{PCLK1} = f_{HCLK/2}$, $f_{PCLK2} = f_{HCLK}$

The parameters given in *Table 12* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*.

Symbol	Parameter	Conditions	£	Max ⁽¹⁾	11
	Parameter	Conditions	fhclk	T _A = 85 °C	Unit
			36 MHz	28.6	
		External clock ⁽²⁾ , all	24 MHz	19.9	
		peripherals enabled	16 MHz	14.7	
	Supply current		8 MHz	8.6	m۸
	in Run mode		36 MHz	19.8	mA
		External clock ⁽²⁾ , all	24 MHz	13.9	
		peripherals Disabled	16 MHz	10.7	
			8 MHz	6.8	

Table 12. Maximum current consumption in Run mode, code with data processingrunning from Flash

1. Based on characterization, not tested in production.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Table 13. Maximum current consumption in Run mode, code with data processing
running from RAM

Symbol	Parameter Conditions		Parameter Conditions fu	f	Max ⁽¹⁾	Unit
	Falameter	Conditions	fhclk	T _A = 85 °C	Unit	
			36 MHz	24		
I _{DD}		External clock ⁽²⁾ , all	24 MHz	17.5		
		peripherals enabled	16 MHz	12.5		
	Supply current in		8 MHz	7.5	m (
	Run mode		36 MHz	16	mA	
		External clock ⁽²⁾ all	24 MHz	11.5		
		peripherals disabled	16 MHz	8.5		
			8 MHz	5.5		

1. Based on characterization, tested in production at V_{DD} max, f_{HCLK} max.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Figure 15. Typical current consumption on V_{BAT} with RTC on versus temperature at different

Figure 16. Typical current consumption in Stop mode with regulator in Run mode versus

Symbol	Parameter		Value		Unit		
Symbol	Falameter	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit µs		
t _{LOCK}	PLL lock time	-	-	200	μs		
Jitter	Cycle-to-cycle jitter	-	-	300	ps		

Table 26. PLL characteristics (continued)

1. Based on device characterization, not tested in production.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT}.

5.3.9 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 85 °C unless otherwise specified.

Symbol	Parameter Conditions I		Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	$T_A = -40$ to +85 °C	40	52.5	70	μs
t _{ERASE}	Page (1 KB) erase time	T _A = -40 to +85 °C	20	-	40	ms
t _{ME}	Mass erase time	T _A = -40 to +85 °C	20	-	40	ms
I _{DD}		Read mode f _{HCLK} = 36 MHz with 1 wait state, V _{DD} = 3.3 V		-	20	mA
	Supply current	Write / Erase modes f _{HCLK} = 36 MHz, V _{DD} = 3.3 V	-	-	5	mA
		Power-down mode / Halt, V _{DD} = 3.0 to 3.6 V	-	-	50	μΑ
V _{prog}	Programming voltage	-	2	-	3.6	V

Table 27	Flash	memory	characteristics
----------	-------	--------	-----------------

1. Guaranteed by design, not tested in production.

5.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (Electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

5.3.17 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 41* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 8*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Power supply	-	- 2.4		3.6	V
V_{REF^+}	Positive reference voltage	- 2.4		-	V _{DDA}	V
I _{VREF}	Current on the $V_{\mbox{\scriptsize REF}}$ input pin	-	-	160 ⁽¹⁾	220 ⁽¹⁾	μA
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz
f _S ⁽²⁾	Sampling rate	-	0.05	-	1	MHz
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 14 MHz	-	-	823	kHz
'TRIG` ′		-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> and <i>Table 42</i> for details	-	-	50	κΩ
$R_{ADC}^{(2)}$	Sampling switch resistance	-	-	-	1	кΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	-	8	pF
t _{CAL} ⁽²⁾	Calibration time	f _{ADC} = 14 MHz	5.9		μs	
^L CAL`		-	8	3		1/f _{ADC}
t _{lat} (2)	Injection trigger conversion	f _{ADC} = 14 MHz	-	-	0.214	μs
'lat` '	latency	-	-	-	3 ⁽⁴⁾	1/f _{ADC}
• (2)	Regular trigger conversion	f _{ADC} = 14 MHz	-	-	0.143	μs
t _{latr} ⁽²⁾	latency	-	-	-	2 ⁽⁴⁾	1/f _{ADC}
(2)	Compling time		0.107	-	17.1	μs
t _S ⁽²⁾	Sampling time	f _{ADC} = 14 MHz	1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	0	0	1	μs
		f _{ADC} = 14 MHz	1	-	18	μs
t _{CONV} ⁽²⁾	Total conversion time (including sampling time)	-	14 to 252 (t _S for sampling +12.5 for successive approximation)		1/f _{ADC}	

1. Based on characterization results, not tested in production.

2. Guaranteed by design, not tested in production.

 V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 3: Pinouts and pin description for further details.

4. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in Table 41.

Device Marking for UFQFPN48

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Device Marking for VFQFPN36

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
ССС	-	-	0.080	-	-	0.0031

Table 49. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flatpackage mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min Typ		Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ССС	-	-	0.080	-	-	0.0031

Table 50. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact the nearest ST sales office.

Date	Revision	Changes
Date		 V_{ESD(CDM)} value added to <i>Table 30</i>: <i>ESD absolute maximum ratings</i>. Note added below <i>Table 10</i>: <i>Embedded reset and power control block characteristics</i>. Note added below <i>Table 34</i>: <i>Output voltage characteristics</i> and V_{OH} parameter description modified. <i>Table 41</i>: <i>ADC characteristics</i> and <i>Table 43</i>: <i>ADC accuracy - limited test conditions</i> modified. <i>Figure 33</i>: <i>ADC accuracy characteristics</i> modified. Packages are ECOPACK® compliant. Tables modified in <i>Section 5.3.5</i>: <i>Supply current characteristics</i>. ADC and ANTI_TAMPER signal names modified (see <i>Table 4</i>: <i>Medium-density STM32F101xx pin definitions</i>). <i>Table 4</i>: <i>Medium-density STM32F101xx pin definitions</i>. <i>Table 21</i>: <i>Typical current consumption in Standby mode</i>. V_{hys} modified in <i>Table 33</i>: <i>I/O static characteristics</i>. Updated: <i>Table 28</i>: <i>EMS characteristics</i> and <i>Table 29</i>: <i>EMI characteristics</i>. <i>t</i>_{VDD} modified in <i>Table 9</i>: <i>Operating conditions at power-up / power-down</i>. Typical values modified, note 2 modified and note 3 removed in <i>Table 25</i>: <i>Low-power mode wakeup timings</i>. Maximum current consumption <i>Table 15</i>: <i>Typical and maximum current consumptions in Stop and Standby modes</i>. <i>On-chip peripheral current consumption on page 43</i> added. Package mechanical data inch values are calculated from mm and rounded to <i>4 decimal digits</i> (see <i>Section 6</i>: <i>Package characteristics</i>). V_{prog} added to <i>Table 27</i>: <i>Flash memory characteristics</i>. <i>T_{s_vrefint}</i> added to <i>Table 27</i>: <i>Flash</i>
		Note 7 modified.
		Option byte addresses corrected in <i>Figure 8: Memory map</i> . ACC _{HSI} modified in <i>Table 23: HSI oscillator characteristics</i> . t _{JITTER} removed from <i>Table 26: PLL characteristics</i> . <i>Appendix A: Important notes on page 71</i> added.
		Added: Figure 13, Figure 14, Figure 16 and Figure 18.

Table 53. Document revision history (continued)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID13586 Rev 17