

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	67MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	CapSense, DMA, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x20b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3865lti-062

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1. Architectural Overview	
2. Pinouts	5
3. Pin Descriptions	10
4. CPU	
4.1 8051 CPU	
4.2 Addressing Modes	
4.3 Instruction Set	
4.4 DMA and PHUB	
4.5 Interrupt Controller	
5. Memory	
5.1 Static RAM	
5.2 Flash Program Memory	18
5.3 Flash Security	
5.4 EEPROM	
5.5 External Memory Interface	18
5.6 Memory Map	19
6. System Integration	21
6.1 Clocking System	
6.2 Power System	24
6.3 Reset	27
6.4 I/O System and Routing	28
7. Digital Subsystem	34
7.1 Example Peripherals	35
7.2 Universal Digital Block	37
7.3 UDB Array Description	41
7.4 DSI Routing Interface Description	41
7.5 CAN	43
7.6 USB	
7.7 Timers, Counters, and PWMs	
7.8 l ² C	
7.9 Digital Filter Block	
8. Analog Subsystem	
8.1 Analog Routing	
8.2 Delta-sigma ADC	
8.3 Comparators	
8.4 Opamps	
8.5 Programmable SC/CT Blocks	
8.6 LCD Direct Drive	53

8.7 CapSense	54
8.8 Temp Sensor	54
8.9 DAC	54
8.10 Up/Down Mixer	55
8.11 Sample and Hold	55
9. Programming, Debug Interfaces, Resources	56
9.1 JTAG Interface	
9.2 Serial Wire Debug Interface	
9.3 Debug Features	57
9.4 Trace Features	
9.5 Single Wire Viewer Interface	57
9.6 Programming Features	57
9.7 Device Security	57
10. Development Support	58
10.1 Documentation	58
10.2 Online	58
10.3 Tools	58
11. Electrical Specifications	59
11.1 Absolute Maximum Ratings	
11.2 Device Level Specifications	60
11.3 Power Regulators	
11.4 Inputs and Outputs	
11.5 Analog Peripherals	
11.6 Digital Peripherals	
11.7 Memory	
11.8 PSoC System Resources	
11.9 Clocking	
12. Ordering Information	
12.1 Part Numbering Conventions	
13. Packaging	
14. Acronyms	
15. Reference Documents	
16. Document Conventions	112
16.1 Units of Measure	112
17. Revision History	114
18. Sales, Solutions, and Legal Information	117

PSoC[®] 3: CY8C38 Family Datasheet

Table 4-2. Logical Instructions (continued)

Mnemonic		Description	Bytes	Cycles
ANL	Direct, #data	AND immediate data to direct byte	3	3
ORL	A,Rn	OR register to accumulator	1	1
ORL	A,Direct	OR direct byte to accumulator	2	2
ORL	A,@Ri	OR indirect RAM to accumulator	1	2
ORL	A,#data	OR immediate data to accumulator	2	2
ORL	Direct, A	OR accumulator to direct byte	2	3
ORL	Direct, #data	OR immediate data to direct byte	3	3
XRL	A,Rn	XOR register to accumulator	1	1
XRL	A,Direct	XOR direct byte to accumulator	2	2
XRL	A,@Ri	XOR indirect RAM to accumulator	1	2
XRL	A,#data	XOR immediate data to accumulator	2	2
XRL	Direct, A	XOR accumulator to direct byte	2	3
XRL	Direct, #data	XOR immediate data to direct byte	3	3
CLR	А	Clear accumulator	1	1
CPL	А	Complement accumulator	1	1
RL	А	Rotate accumulator left	1	1
RLC	Α	Rotate accumulator left through carry	1	1
RR	А	Rotate accumulator right	1	1
RRC	А	Rotate accumulator right though carry	1	1
SWAF	PA	Swap nibbles within accumulator	1	1

4.3.1.3 Data Transfer Instructions

The data transfer instructions are of three types: the core RAM, xdata RAM, and the lookup tables. The core RAM transfer includes transfer between any two core RAM locations or SFRs. These instructions can use direct, indirect, register, and immediate addressing. The xdata RAM transfer includes only the transfer between the accumulator and the xdata RAM location. It can use only indirect addressing. The lookup tables involve nothing but the read of program memory using the Indexed

addressing mode. Table 4-3 lists the various data transfer instructions available.

4.3.1.4 Boolean Instructions

The 8051 core has a separate bit-addressable memory location. It has 128 bits of bit addressable RAM and a set of SFRs that are bit addressable. The instruction set includes the whole menu of bit operations such as move, set, clear, toggle, OR, and AND instructions and the conditional jump instructions. Table 4-4 lists the available Boolean instructions.

	Mnemonic	Description	Bytes	Cycles
MOV	A,Rn	Move register to accumulator	1	1
MOV	A,Direct	Move direct byte to accumulator	2	2
MOV	A,@Ri	Move indirect RAM to accumulator	1	2
MOV	A,#data	Move immediate data to accumulator	2	2
MOV	Rn,A	Move accumulator to register	1	1
MOV	Rn,Direct	Move direct byte to register	2	3
MOV	Rn, #data	Move immediate data to register	2	2
MOV	Direct, A	Move accumulator to direct byte	2	2
MOV	Direct, Rn	Move register to direct byte	2	2

Table 4-3. Data Transfer Instructions

4.3.1.5 Program Branching Instructions

The 8051 supports a set of conditional and unconditional jump instructions that help to modify the program execution flow. Table 4-5 shows the list of jump instructions.

Table 4-5. Jump Instructions

Mnemonic	Description	Bytes	Cycles
ACALL addr11	Absolute subroutine call	2	4
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	4
RETI	Return from interrupt	1	4
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
SJMP rel	Short jump (relative address)	2	3
JMP @A + DPTR	Jump indirect relative to DPTR	1	5
JZ rel	Jump if accumulator is zero	2	4
JNZ rel	Jump if accumulator is nonzero	2	4
CJNE A, Direct, rel	Compare direct byte to accumulator and jump if not equal	3	5
CJNE A, #data, rel	Compare immediate data to accumulator and jump if not equal	3	4
CJNE Rn, #data, rel	Compare immediate data to register and jump if not equal	3	4
CJNE @Ri, #data, rel	Compare immediate data to indirect RAM and jump if not equal	3	5
DJNZ Rn,rel	Decrement register and jump if not zero	2	4
DJNZ Direct, rel	Decrement direct byte and jump if not zero	3	5
NOP	No operation	1	1

4.4 DMA and PHUB

The PHUB and the DMA controller are responsible for data transfer between the CPU and peripherals, and also data transfers between peripherals. The PHUB and DMA also control device configuration during boot. The PHUB consists of:

- A central hub that includes the DMA controller, arbiter, and router
- Multiple spokes that radiate outward from the hub to most peripherals

There are two PHUB masters: the CPU and the DMA controller. Both masters may initiate transactions on the bus. The DMA channels can handle peripheral communication without CPU intervention. The arbiter in the central hub determines which DMA channel is the highest priority if there are multiple requests.

4.4.1 PHUB Features

- CPU and DMA controller are both bus masters to the PHUB
- Eight multi-layer AHB bus parallel access paths (spokes) for peripheral access
- Simultaneous CPU and DMA access to peripherals located on different spokes
- Simultaneous DMA source and destination burst transactions on different spokes
- Supports 8-, 16-, 24-, and 32-bit addressing and data

Table 4-6. PHUB Spokes and Peripherals

PHUB Spokes	Peripherals
0	SRAM
1	IOs, PICU, EMIF
2	PHUB local configuration, Power manager, Clocks, IC, SWV, EEPROM, Flash programming interface
3	Analog interface and trim, Decimator
4	USB, CAN, I ² C, Timers, Counters, and PWMs
5	DFB
6	UDBs group 1
7	UDBs group 2

6.2 Power System

The power system consists of separate analog, digital, and I/O supply pins, labeled Vdda, Vddd, and Vddiox, respectively. It also includes two internal 1.8-V regulators that provide the digital (Vccd) and analog (Vcca) supplies for the internal core logic. The output pins of the regulators (Vccd and Vcca) and the Vddio pins must have capacitors connected as shown in Figure 6-4. The two Vccd pins must be shorted together, with as short a trace as possible, and connected to a 1-µF ±10-percent X5R capacitor. The power system also contains a sleep regulator, an I²C regulator, and a hibernate regulator.

Figure 6-4. PSoC Power System

Note The two Vccd pins must be connected together with as short a trace as possible. A trace under the device is recommended, as shown in Figure 2-6 on page 10.

ALVI, DLVI, AHVI – Analog/digital low voltage interrupt, analog high voltage interrupt

Interrupt circuits are available to detect when Vdda and Vddd go outside a voltage range. For AHVI, Vdda is compared to a fixed trip level. For ALVI and DLVI, Vdda and Vddd are compared to trip levels that are programmable, as listed in Table 6-5. ALVI and DLVI can also be configured to generate a device reset instead of an interrupt.

Table 6-5. Analog/Digital Low Voltage Interrupt, Analog High Voltage Interrupt

Interrupt	Supply	Normal Voltage Range	Available Trip Settings	Accuracy
DLVI	V _{DDD}	1.71 V–5.5 V	1.70 V–5.45 V in 250 mV increments	±2%
ALVI	V _{DDA}	1.71 V–5.5 V	1.70 V–5.45 V in 250 mV increments	±2%
AHVI	V _{DDA}	1.71 V–5.5 V	5.75 V	±2%

The monitors are disabled until after IPOR. During sleep mode these circuits are periodically activated (buzzed). If an interrupt occurs during buzzing then the system first enters its wakeup sequence. The interrupt is then recognized and may be serviced.

- 6.3.1.2 Other Reset Sources
- XRES External reset

PSoC 3 has either a single GPIO pin that is configured as an external reset or a dedicated XRES pin. Either the dedicated XRES pin or the GPIO pin, if configured, holds the part in reset while held active (low). The response to an XRES is the same as to an IPOR reset.

The external reset is active low. It includes an internal pull-up resistor. XRES is active during sleep and hibernate modes.

SRES – Software reset

A reset can be commanded under program control by setting a bit in the software reset register. This is done either directly by the program or indirectly by DMA access. The response to a SRES is the same as after an IPOR reset.

Another register bit exists to disable this function.

DRES – Digital logic reset

A logic signal can be routed from the UDBs or other digital peripheral source through the DSI to the Configurable XRES pin, P1[2], to generate a hardware-controlled reset. The pin must be placed in XRES mode. The response to a DRES is the same as after an IPOR reset.

WRES – Watchdog timer reset

The watchdog reset detects when the software program is no longer being executed correctly. To indicate to the watchdog timer that it is running correctly, the program must periodically reset the timer. If the timer is not reset before a user-specified amount of time, then a reset is generated.

Note IPOR disables the watchdog function. The program must enable the watchdog function at an appropriate point in the code by setting a register bit. When this bit is set, it cannot be cleared again except by an IPOR power on reset event.

Note

14. GPIOs with opamp outputs are not recommended for use with CapSense.

6.4 I/O System and Routing

PSoC I/Os are extremely flexible. Every GPIO has analog and digital I/O capability. All I/Os have a large number of drive modes, which are set at POR. PSoC also provides up to four individual I/O voltage domains through the Vddio pins.

There are two types of I/O pins on every device; those with USB provide a third type. Both GPIO and SIO provide similar digital functionality. The primary differences are their analog capability and drive strength. Devices that include USB also provide two USBIO pins that support specific USB functionality as well as limited GPIO capability.

All I/O pins are available for use as digital inputs and outputs for both the CPU and digital peripherals. In addition, all I/O pins can generate an interrupt. The flexible and advanced capabilities of the PSoC I/O, combined with any signal to any pin routability, greatly simplify circuit design and board layout. All GPIO pins can be used for analog input, CapSense^[14], and LCD segment drive, while SIO pins are used for voltages in excess of V_{DDA} and for programmable output voltages.

- Features supported by both GPIO and SIO:
 - □ User programmable port reset state
 - □ Separate I/O supplies and voltages for up to four groups of I/O
 - Digital peripherals use DSI to connect the pins
 - □ Input or output or both for CPU and DMA
 - Eight drive modes
 - Every pin can be an interrupt source configured as rising edge, falling edge or both edges. If required, level sensitive interrupts are supported through the DSI
 - Dedicated port interrupt vector for each port
 - Slew rate controlled digital output drive mode
 - Access port control and configuration registers on either port basis or pin basis
 - Separate port read (PS) and write (DR) data registers to avoid read modify write errors
 - Special functionality on a pin by pin basis
- Additional features only provided on the GPIO pins:
 - LCD segment drive on LCD equipped devices
 - □ CapSense^[14]
 - □ Analog input and output capability
 - □ Continuous 100 µA clamp current capability
 - □ Standard drive strength down to 1.7 V
- Additional features only provided on SIO pins:
 - □ Higher drive strength than GPIO
 - \square Hot swap capability (5 V tolerance at any operating V_{DD})
 - Programmable and regulated high input and output drive levels down to 1.2 V
 - No analog input, CapSense, or LCD capability
 - Over voltage tolerance up to 5.5 V
 - SIO can act as a general purpose analog comparator
- USBIO features:
 - □ Full speed USB 2.0 compliant I/O
 - Highest drive strength for general purpose use
 - □ Input, output, or both for CPU and DMA
- Input, output, or both for digital peripherals
- Digital output (CMOS) drive mode
- Each pin can be an interrupt source configured as rising edge, falling edge, or both edges

6.4.15 Over Voltage Tolerance

All I/O pins provide an over voltage tolerance feature at any operating $\mathsf{V}_{\text{DD}}.$

- There are no current limitations for the SIO pins as they present a high impedance load to the external circuit where Vddio ≤ V_{IN} ≤ 5.5 V.
- The GPIO pins must be limited to 100 µA using a current limiting resistor. GPIO pins clamp the pin voltage to approximately one diode above the Vddio supply where Vddio ≤ V_{IN} ≤ V_{DDA}.
- In case of a GPIO pin configured for analog input/output, the analog voltage on the pin must not exceed the Vddio supply voltage to which the GPIO belongs.

A common application for this feature is connection to a bus such as I²C where different devices are running from different supply voltages. In the I²C case, the PSoC chip is configured into the Open Drain, Drives Low mode for the SIO pin. This allows an external pull-up to pull the I²C bus voltage above the PSoC pin supply. For example, the PSoC chip could operate at 1.8 V, and an external device could run from 5 V. Note that the SIO pin's V_{IH} and V_{IL} levels are determined by the associated Vddio supply pin. The I/O pin must be configured into a high impedance drive mode, open drain low drive mode, or pull-down drive mode, for over voltage tolerance to work properly. Absolute maximum ratings for the device must be observed for all I/O pins.

6.4.16 Reset Configuration

While reset is active all I/Os are reset to and held in the High Impedance Analog state. After reset is released, the state can be reprogrammed on a port-by-port basis to pull-down or pull-up. To ensure correct reset operation, the port reset configuration data is stored in special nonvolatile registers. The stored reset data is automatically transferred to the port reset configuration registers at reset release.

6.4.17 Low-Power Functionality

In all low-power modes the I/O pins retain their state until the part is awakened and changed or reset. To awaken the part, use a pin interrupt, because the port interrupt logic continues to function in all low-power modes.

6.4.18 Special Pin Functionality

Some pins on the device include additional special functionality in addition to their GPIO or SIO functionality. The specific special function pins are listed in Pinouts on page 5. The special features are:

- Digital
 - □ 4- to 33-MHz crystal oscillator
 - 32.768-kHz crystal oscillator
 - Wake from sleep on I²C address match. Any pin can be used for I²C if wake from sleep is not required.
 - □ JTAG interface pins
 - BWD interface pins
 - □ SWV interface pins
 - External reset
- Analog
 - Opamp inputs and outputs
 - High current IDAC outputs
 - External reference inputs

6.4.19 JTAG Boundary Scan

The device supports standard JTAG boundary scan chains on all I/O pins for board level test.

7. Digital Subsystem

The digital programmable system creates application specific combinations of both standard and advanced digital peripherals and custom logic functions. These peripherals and logic are then interconnected to each other and to any pin on the device, providing a high level of design flexibility and IP security.

The features of the digital programmable system are outlined here to provide an overview of capabilities and architecture. You do not need to interact directly with the programmable digital system at the hardware and register level. PSoC Creator provides a high level schematic capture graphical interface to automatically place and route resources similar to PLDs.

The main components of the digital programmable system are:

- UDB These form the core functionality of the digital programmable system. UDBs are a collection of uncommitted logic (PLD) and structural logic (Datapath) optimized to create all common embedded peripherals and customized functionality that are application or design specific.
- Universal digital block array UDB blocks are arrayed within a matrix of programmable interconnect. The UDB array structure is homogeneous and allows for flexible mapping of digital functions onto the array. The array supports extensive and flexible routing interconnects between UDBs and the Digital System Interconnect.
- Digital system interconnect (DSI) Digital signals from UDBs, fixed function peripherals, I/O pins, interrupts, DMA, and other system core signals are attached to the digital system interconnect to implement full featured device connectivity. The DSI allows any digital function to any pin or other feature routability when used with the universal digital block array.

Figure 7-1. CY8C38 Digital Programmable Architecture

7.1 Example Peripherals

The flexibility of the CY8C38 family's UDBs and analog blocks allow the user to create a wide range of components (peripherals). The most common peripherals were built and characterized by Cypress and are shown in the PSoC Creator component catalog, however, users may also create their own custom components using PSoC Creator. Using PSoC Creator, users may also create their own components for reuse within their organization, for example sensor interfaces, proprietary algorithms, and display interfaces.

The number of components available through PSoC Creator is too numerous to list in the datasheet, and the list is always growing. An example of a component available for use in CY8C38 family, but, not explicitly called out in this datasheet is the UART component.

7.1.1 Example Digital Components

The following is a sample of the digital components available in PSoC Creator for the CY8C38 family. The exact amount of hardware resources (UDBs, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- Communications
 - □ I²C
 - u UART
 - □ SPI
- Functions
 - D EMIF
 - D PWMs
 - □ Timers
 - □ Counters
- Logic
 - □ NOT
 - o OR
 - D XOR
- AND

7.1.2 Example Analog Components

The following is a sample of the analog components available in PSoC Creator for the CY8C38 family. The exact amount of hardware resources (SC/CT blocks, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- Amplifiers
 - ם TIA
 - ם PGA
 - opamp
- ADC
 - Delta-sigma
- DACs
- Current

- □ Voltage □ PWM
- Comparators
- Mixers
- 7.1.3 Example System Function Components

The following is a sample of the system function components available in PSoC Creator for the CY8C38 family. The exact amount of hardware resources (UDBs, DFB taps, SC/CT blocks, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- CapSense
- LCD drive
- LCD control
- Filters

7.1.4 Designing with PSoC Creator

7.1.4.1 More Than a Typical IDE

A successful design tool allows for the rapid development and deployment of both simple and complex designs. It reduces or eliminates any learning curve. It makes the integration of a new design into the production stream straightforward.

PSoC Creator is that design tool.

PSoC Creator is a full featured Integrated Development Environment (IDE) for hardware and software design. It is optimized specifically for PSoC devices and combines a modern, powerful software development platform with a sophisticated graphical design tool. This unique combination of tools makes PSoC Creator the most flexible embedded design platform available.

Graphical design entry simplifies the task of configuring a particular part. You can select the required functionality from an extensive catalog of components and place it in your design. All components are parameterized and have an editor dialog that allows you to tailor functionality to your needs.

PSoC Creator automatically configures clocks and routes the I/O to the selected pins and then generates APIs to give the application complete control over the hardware. Changing the PSoC device configuration is as simple as adding a new component, setting its parameters, and rebuilding the project.

At any stage of development you are free to change the hardware configuration and even the target processor. To retarget your application (hardware and software) to new devices, even from 8- to 32-bit families, just select the new device and rebuild.

You also have the ability to change the C compiler and evaluate an alternative. Components are designed for portability and are validated against all devices, from all families, and against all supported tool chains. Switching compilers is as easy as editing the from the project options and rebuilding the application with no errors from the generated APIs or boot code.

Independent of the ALU operation, these functions are available:

- Shift left
- Shift right
- Nibble swap
- Bitwise OR mask

7.2.2.3 Conditionals

Each datapath has two compares, with bit masking options. Compare operands include the two accumulators and the two data registers in a variety of configurations. Other conditions include zero detect, all ones detect, and overflow. These conditions are the primary datapath outputs, a selection of which can be driven out to the UDB routing matrix. Conditional computation can use the built in chaining to neighboring UDBs to operate on wider data widths without the need to use routing resources.

7.2.2.4 Variable MSB

The most significant bit of an arithmetic and shift function can be programmatically specified. This supports variable width CRC and PRS functions, and in conjunction with ALU output masking, can implement arbitrary width timers, counters and shift blocks.

7.2.2.5 Built in CRC/PRS

The datapath has built-in support for single cycle CRC computation and PRS generation of arbitrary width and arbitrary polynomial. CRC/PRS functions longer than 8 bits may be implemented in conjunction with PLD logic, or built in chaining may be use to extend the function into neighboring UDBs.

7.2.2.6 Input/Output FIFOs

Each datapath contains two four-byte deep FIFOs, which can be independently configured as an input buffer (system bus writes to the FIFO, datapath internal reads the FIFO), or an output buffer (datapath internal writes to the FIFO, the system bus reads from the FIFO). The FIFOs generate status that are selectable as datapath outputs and can therefore be driven to the routing, to interact with sequencers, interrupts, or DMA.

7.2.2.7 Chaining

The datapath can be configured to chain conditions and signals such as carries and shift data with neighboring datapaths to create higher precision arithmetic, shift, CRC/PRS functions.

7.2.2.8 Time Multiplexing

In applications that are over sampled, or do not need high clock rates, the single ALU block in the datapath can be efficiently shared with two sets of registers and condition generators. Carry and shift out data from the ALU are registered and can be selected as inputs in subsequent cycles. This provides support for 16-bit functions in one (8-bit) datapath.

7.2.2.9 Datapath I/O

There are six inputs and six outputs that connect the datapath to the routing matrix. Inputs from the routing provide the configuration for the datapath operation to perform in each cycle, and the serial data inputs. Inputs can be routed from other UDB blocks, other device peripherals, device I/O pins, and so on. The outputs to the routing can be selected from the generated conditions, and the serial data outputs. Outputs can be routed to other UDB blocks, device peripherals, interrupt and DMA controller, I/O pins, and so on.

7.2.3 Status and Control Module

The primary purpose of this circuitry is to coordinate CPU firmware interaction with internal UDB operation.

Figure 7-10. Status and Control Registers

The bits of the control register, which may be written to by the system bus, are used to drive into the routing matrix, and thus provide firmware with the opportunity to control the state of UDB processing. The status register is read-only and it allows internal UDB state to be read out onto the system bus directly from internal routing. This allows firmware to monitor the state of UDB processing. Each bit of these registers has programmable connections to the routing matrix and routing connections are made depending on the requirements of the application.

7.2.3.1 Usage Examples

As an example of control input, a bit in the control register can be allocated as a function enable bit. There are multiple ways to enable a function. In one method the control bit output would be routed to the clock control block in one or more UDBs and serve as a clock enable for the selected UDB blocks. A status example is a case where a PLD or datapath block generated a condition, such as a "compare true" condition that is captured and latched by the status register and then read (and cleared) by CPU firmware.

Figure 7-19. CAN Controller Block Diagram

7.6 USB

PSoC includes a dedicated Full-Speed (12 Mbps) USB 2.0 transceiver supporting all four USB transfer types: control, interrupt, bulk, and isochronous. PSoC Creator provides full configuration support. USB interfaces to hosts through two dedicated USBIO pins, which are detailed in the "I/O System and Routing" section on page 28.

USB includes the following features:

- Eight unidirectional data endpoints
- One bidirectional control endpoint 0 (EP0)
- Shared 512-byte buffer for the eight data endpoints
- Dedicated 8-byte buffer for EP0
- Three memory modes
 - Manual memory management with no DMA access
- Manual memory management with manual DMA access
 Automatic memory management with automatic DMA
- access
- Internal 3.3-V regulator for transceiver

- Internal 48-MHz main oscillator mode that auto locks to USB bus clock, requiring no external crystal for USB (USB equipped parts only)
- Interrupts on bus and each endpoint event, with device wakeup
- USB reset, suspend, and resume operations
- Bus-powered and self-powered modes

Figure 7-20. USB

Analog local buses (abus) are routing resources located within the analog subsystem and are used to route signals between different analog blocks. There are eight abus routes in CY8C38, four in the left half (abusl [0:3]) and four in the right half (abusr [0:3]) as shown in Figure 8-2. Using the abus saves the analog globals and analog mux buses from being used for interconnecting the analog blocks.

Multiplexers and switches exist on the various buses to direct signals into and out of the analog blocks. A multiplexer can have only one connection on at a time, whereas a switch can have multiple connections on simultaneously. In Figure 8-2, multiplexers are indicated by grayed ovals and switches are indicated by transparent ovals.

8.2 Delta-sigma ADC

The CY8C38 device contains one delta-sigma ADC. This ADC offers differential input, high resolution and excellent linearity, making it a good ADC choice for both audio signal processing and measurement applications. The converter's nominal operation is 16 bits at 48 ksps. The ADC can be configured to output 20-bit resolution at data rates of up to 187 sps. At a fixed clock rate, resolution can be traded for faster data rates as shown in Table 8-1 and Figure 8-3.

Table 8-1.	Delta-sigma AD	C Performance
------------	----------------	---------------

Bits	Maximum Sample Rate (sps)	SINAD (dB)
20	187	-
16	48 k	84
12	192 k	66
8	384 k	43

Figure 8-3. Delta-sigma ADC Sample Rates, Range = ±1.024 V

8.2.1 Functional Description

The ADC connects and configures three basic components, input buffer, delta-sigma modulator, and decimator. The basic block diagram is shown in Figure 8-4. The signal from the input muxes is delivered to the delta-sigma modulator either directly or through the input buffer. The delta-sigma modulator performs the actual analog to digital conversion. The modulator over-samples the input and generates a serial data stream output. This high speed data stream is not useful for most applications without some type of post processing, and so is passed to the decimator through the Analog Interface block. The decimator converts the high speed serial data stream into parallel ADC results. The modulator/decimator frequency response is $[(\sin x)/x]^4$; a typical frequency response is shown in Figure 8-5.

Figure 8-4. Delta-sigma ADC Block Diagram

Figure 8-5. Delta-sigma ADC Frequency Response, Normalized to Output, Sample Rate = 48 kHz

Resolution and sample rate are controlled by the Decimator. Data is pipelined in the decimator; the output is a function of the last four samples. When the input multiplexer is switched, the output data is not valid until after the fourth sample after the switch.

8.2.2 Operational Modes

The ADC can be configured by the user to operate in one of four modes: Single Sample, Multi Sample, Continous, or Multi Sample (Turbo). All four modes are started by either a write to the start bit in a control register or an assertion of the Start of Conversion (SoC) signal. When the conversion is complete, a status bit is set and the output signal End of Conversion (EoC)

asserts high and remains high until the value is read by either the DMA controller or the CPU.

8.2.2.1 Single Sample

In Single Sample mode, the ADC performs one sample conversion on a trigger. In this mode, the ADC stays in standby state waiting for the SoC signal to be asserted. When SoC is signaled the ADC performs four successive conversions. The first three conversions prime the decimator. The ADC result is valid and available after the fourth conversion, at which time the EoC signal is generated. To detect the end of conversion, the system may poll a control register for status or configure the external EoC signal to generate an interrupt or invoke a DMA request. When the transfer is done the ADC reenters the standby state where it stays until another SoC event.

8.2.2.2 Continuous

Continuous sample mode is used to take multiple successive samples of a single input signal. Multiplexing multiple inputs should not be done with this mode. There is a latency of three conversion times before the first conversion result is available. This is the time required to prime the decimator. After the first result, successive conversions are available at the selected sample rate.

8.2.2.3 Multi Sample

Multi sample mode is similar to continuous mode except that the ADC is reset between samples. This mode is useful when the input is switched between multiple signals. The decimator is re-primed between each sample so that previous samples do not affect the current conversion. Upon completion of a sample, the next sample is automatically initiated. The results can be transferred using either firmware polling, interrupt, or DMA.

8.2.2.4 Multi Sample (Turbo)

The multi sample (turbo) mode operates identical to the Multi-sample mode for resolutions of 8 to 16 bits. For resolutions of 17 to 20 bits, the performance is about four times faster than the multi sample mode, because the ADC is only reset once at the end of conversion.

More information on output formats is provided in the Technical Reference Manual.

8.2.3 Start of Conversion Input

The SoC signal is used to start an ADC conversion. A digital clock or UDB output can be used to drive this input. It can be used when the sampling period must be longer than the ADC conversion time or when the ADC must be synchronized to other hardware. This signal is optional and does not need to be connected if ADC is running in a continuous mode.

8.2.4 End of Conversion Output

The EoC signal goes high at the end of each ADC conversion. This signal may be used to trigger either an interrupt or DMA request.

8.3 Comparators

The CY8C38 family of devices contains four comparators in a device. Comparators have these features:

- Input offset factory trimmed to less than 5 mV
- Rail-to-rail common mode input range (V_{SSA} to V_{DDA})
- Speed and power can be traded off by using one of three modes: fast, slow, or ultra low-power
- Comparator outputs can be routed to lookup tables to perform simple logic functions and then can also be routed to digital blocks
- The positive input of the comparators may be optionally passed through a low pass filter. Two filters are provided
- Comparator inputs can be connections to GPIO, DAC outputs and SC block outputs

8.3.1 Input and Output Interface

The positive and negative inputs to the comparators come from the analog global buses, the analog mux line, the analog local bus and precision reference through multiplexers. The output from each comparator could be routed to any of the two input LUTs. The output of that LUT is routed to the UDB DSI.

8.11.1 Down Mixer

The SC/CT block can be used as a mixer to down convert an input signal. This circuit is a high bandwidth passive sample network that can sample input signals up to 14 MHz. This sampled value is then held using the opamp with a maximum clock rate of 4 MHz. The output frequency is at the difference between the input frequency and the highest integer multiple of the Local Oscillator that is less than the input.

8.11.2 First Order Modulator - SC Mode

A first order modulator is constructed by placing the SC/CT block in an integrator mode and using a comparator to provide a 1-bit feedback to the input. Depending on this bit, a reference voltage is either subtracted or added to the input signal. The block output is the output of the comparator and not the integrator in the modulator case. The signal is downshifted and buffered and then processed by a decimator to make a delta-sigma converter or a counter to make an incremental converter. The accuracy of the sampled data from the first-order modulator is determined from several factors.

The main application for this modulator is for a low-frequency ADC with high accuracy. Applications include strain gauges, thermocouples, precision voltage, and current measurement.

9. Programming, Debug Interfaces, Resources

PSoC devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware. Three interfaces are available: JTAG, SWD, and SWV. JTAG and SWD support all programming and debug features of the device. JTAG also supports standard JTAG scan chains for board level test and chaining multiple JTAG devices to a single JTAG connection.

Complete Debug on Chip (DoC) functionality enables full device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator IDE software provides fully integrated programming and debug support for PSoC devices. The low cost MiniProg3 programmer and debugger is designed to provide full programming and debug support of PSoC devices in conjunction with the PSoC Creator IDE. PSoC JTAG, SWD, and SWV interfaces are fully compatible with industry standard third party tools.

All DOC circuits are disabled by default and can only be enabled in firmware. If not enabled, the only way to reenable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables DOC. Disabling DOC features, robust flash protection, and hiding custom analog and digital functionality inside the PSoC device provide a level of security not possible with multichip application solutions. Additionally, all device interfaces can be permanently disabled (Device Security) for applications concerned about phishing attacks due to a maliciously reprogrammed device. Permanently disabling interfaces is not recommended in most applications because you cannot access the device later. Because all programming, debug, and test interfaces are disabled when device security is enabled, PSoCs with Device Security enabled may not be returned for failure analysis.

Table 9-1. Debug Configurations

Debug and Trace Configuration	GPIO Pins Used
All debug and trace disabled	0
JTAG	4 or 5
SWD	2
SWV	1
SWD + SWV	3

9.1 JTAG Interface

The IEEE 1149.1 compliant JTAG interface exists on four or five pins (the nTRST pin is optional). The JTAG clock frequency can be up to 8 MHz, or 1/3 of the CPU clock frequency for 8 and 16-bit transfers, or 1/5 of the CPU clock frequency for 32-bit transfers, whichever is least. By default, the JTAG pins are enabled on new devices but the JTAG interface can be disabled, allowing these pins to be used as General Purpose I/O (GPIO) instead. The JTAG interface is used for programming the flash memory, debugging, I/O scan chains, and JTAG device chaining.

9.2 Serial Wire Debug Interface

The SWD interface is the preferred alternative to the JTAG interface. It requires only two pins instead of the four or five needed by JTAG. SWD provides all of the programming and debugging features of JTAG at the same speed. SWD does not provide access to scan chains or device chaining. The SWD clock frequency can be up to 1/3 of the CPU clock frequency.

SWD uses two pins, either two of the JTAG pins (TMS and TCK) or the USBIO D+ and D– pins. The USBIO pins are useful for in system programming of USB solutions that would otherwise require a separate programming connector. One pin is used for the data clock and the other is used for data input and output. SWD can be enabled on only one of the pin pairs at a time. This only happens if, within 8 µs (key window) after reset, that pin pair (JTAG or USB) receives a predetermined sequence of 1s and 0s. SWD is used for debugging or for programming the flash memory.

The SWD interface can be enabled from the JTAG interface or disabled, allowing its pins to be used as GPIO. Unlike JTAG, the SWD interface can always be reacquired on any device during the key window. It can then be used to reenable the JTAG interface, if desired. When using SWD or JTAG pins as standard GPIO, make sure that the GPIO functionality and PCB circuits do not interfere with SWD or JTAG use.

Table 11-6. Inductive Boost Regulator DC Specifications (continued)

Unless otherwise specified, operating conditions are: V_{BAT} = 2.4 V, V_{OUT} = 2.7 V, I_{OUT} = 40 mA, F_{SW} = 400 kHz, L_{BOOST} = 22 µH, C_{BOOST} = 22 µF || 0.1 µF

Parameter	Description	Conditions	Min	Тур	Мах	Units
V _{OUT}	Boost voltage range ^{[27,}	28]				
	1.8 V		1.71	1.80	1.89	V
	1.9 V		1.81	1.90	2.00	V
	2.0 V		1.90	2.00	2.10	V
	2.4 V		2.28	2.40	2.52	V
	2.7 V		2.57	2.70	2.84	V
	3.0 V		2.85	3.00	3.15	V
	3.3 V		3.14	3.30	3.47	V
	3.6 V		3.42	3.60	3.78	V
	5.0 V	External diode required	4.75	5.00	5.25	V
Reg _{LOAD}	Load regulation		-	-	3.8	%
Reg _{LINE}	Line regulation		-	-	4.1	%
ηουτ	Efficiency	L _{BOOST} = 10 μH	70	85	-	%
		L _{BOOST} = 22 μH	82	90	-	%

Table 11-7. Inductive Boost Regulator AC Specifications

Unless otherwise specified, operating conditions are: V_{BAT} = 2.4 V, V_{OUT} = 2.7 V, I_{OUT} = 40 mA, F_{SW} = 400 kHz, L_{BOOST} = 22 µH, C_{BOOST} = 22 µF || 0.1 µF.

Parameter	Description	Conditions	Min	Тур	Мах	Units
V _{RIPPLE}	Ripple voltage (peak-to-peak)	V _{OUT} = 1.8 V, F _{SW} = 400 kHz, I _{OUT} = 10 mA	-	-	100	mV
F _{SW}	Switching frequency		Ι	0.1,0.4, or 2	-	MHz

Table 11-8. Recommended External Components for Boost Circuit

Parameter	Description	Conditions	Min	Тур	Max	Units
L _{BOOST}	Boost inductor		4.7	10	47	μH
C _{BOOST}	Filter capacitor ^[27]		10	22	47	μF
I _F	External Schottky diode average forward current	External Schottky diode is required for V_{OUT} > 3.6 V	1	_	_	A
V _R			20	_	_	V

Notes

27. Based on device characterization (Not production tested).

28. At boost frequency of 2 MHz, Vboost is limited to 2 x Vbat. At 400 kHz, Vboost is limited to 4 x Vbat.

11.4.2 SIO

Table 11-11. SIO DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Vinmax	Maximum input voltage	All allowed values of Vddio and Vddd, see <i>Section 11.2.1</i>	-	_	5.5	V
Vinref	Input voltage reference (Differential input mode)		0.5	-	$0.52 \times V_{DDIO}$	V
	Output voltage reference (Regulat	ed output mode)				
Voutref		V _{DDIO} > 3.7	1	_	V _{DDIO} – 1	V
		V _{DDIO} < 3.7	1	_	V _{DDIO} – 0.5	V
	Input voltage high threshold					
V _{IH}	GPIO mode	CMOS input	$0.7 \times V_{DDIO}$	-	-	V
	Differential input mode ^[30]	Hysteresis disabled	SIO_ref + 0.2	_	_	V
	Input voltage low threshold	1	L I		1	
V _{IL}	GPIO mode	CMOS input	_	_	$0.3 \times V_{DDIO}$	V
	Differential input mode ^[30]	Hysteresis disabled	_	_	SIO_ref - 0.2	V
	Output voltage high	1	LL			
V	Unregulated mode	I _{OH} = 4 mA, V _{DDIO} = 3.3 V	V _{DDIO} – 0.4	_	-	V
V _{OH}	Regulated mode ^[30]	I _{OH} = 1 mA	SIO_ref-0.65	_	SIO_ref + 0.2	V
	Regulated mode ^[30]	I _{OH} = 0.1 mA	SIO_ref – 0.3	_	SIO_ref + 0.2	V
	Output voltage low					
V _{OL}		V _{DDIO} = 3.30 V, I _{OL} = 25 mA	_	_	0.8	V
		V _{DDIO} = 1.80 V, I _{OL} = 4 mA	_	_	0.4	V
Rpullup	Pull-up resistor		3.5	5.6	8.5	kΩ
Rpulldown	Pull-down resistor		3.5	5.6	8.5	kΩ
IIL	Input leakage current (Absolute value) ^[31]					
	V _{IH} <u>≤</u> Vddsio	25 °C, Vddsio = 3.0 V , V_{IH} = 3.0 V	_	_	14	nA
	V _{IH} > Vddsio	25 °C, Vddsio = 0 V, V _{IH} = 3.0 V	_	_	10	μA
C _{IN}	Input Capacitance ^[31]		-	_	7	pF
V _H	Input voltage hysteresis (Schmitt-Trigger) ^[31]	Single ended mode (GPIO mode)	-	40	_	mV
		Differential mode	_	35	-	mV
Idiode	Current through protection diode to $\rm V_{SSIO}$		-	_	100	μA

Table 11-12. SIO AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
TriseF	Rise time in fast strong mode (90/10%) ^[31]	Cload = 25 pF, V _{DDIO} = 3.3 V	-	-	12	ns
TfallF	Fall time in fast strong mode (90/10%) ^[31]	Cload = 25 pF, V _{DDIO} = 3.3 V	-	-	12	ns
TriseS	Rise time in slow strong mode (90/10%) ^[31]	Cload = 25 pF, V _{DDIO} = 3.0 V	-	-	75	ns
TfallS	Fall time in slow strong mode (90/10%) ^[31]	Cload = 25 pF, V _{DDIO} = 3.0 V	-	-	60	ns

Notes 30. See Figure 6-9 on page 30 and Figure 6-12 on page 33 for more information on SIO reference. 31. Based on device characterization (Not production tested).

Figure 11-6. Opamp Operating Current vs Vdda, Power Mode = Minimum

Figure 11-8. . Opamp Operating Current vs Vdda, Power Mode = Medium

Figure 11-7. Opamp Operating Current vs Vdda, Power Mode = Low

Figure 11-9. Opamp Operating Current vs Vdda, Power Mode = High

Figure 11-39. VDAC Full Scale Error vs Temperature, 1 V Mode

Figure 11-41. VDAC Operating Current vs Temperature, 1V Mode, Slow Mode

Table 11-32. VDAC AC Specifications

Mode 1.0 0.8 0.6 Full Scale Error, % 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -40 -20 0 40 60 80 20 Temperature, °C

Figure 11-40. VDAC Full Scale Error vs Temperature, 4 V

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{DAC}	Update rate	1 V scale	-	-	1000	ksps
		4 V scale	-	-	250	ksps
TsettleP	Settling time to 0.1%, step 25% to 75%	1 V scale, Cload = 15 pF	-	0.45	1	μs
		4 V scale, Cload = 15 pF	-	0.8	3.2	μs
TsettleN	Settling time to 0.1%, step 75% to 25%	1 V scale, Cload = 15 pF	-	0.45	1	μs
		4 V scale, Cload = 15 pF	-	0.7	3	μs

11.5.12 LCD Direct Drive

Table 11-40. LCD Direct Drive DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
I _{CC}	LCD system operating current	Device sleep mode with wakeup at 400-Hz rate to refresh LCDs, bus clock = 3 Mhz, Vddio = Vdda = 3 V, 4 commons, 16 segments, 1/4 duty cycle, 50 Hz frame rate, no glass connected	-	38	-	μΑ
I _{CC_SEG}	Current per segment driver	Strong drive mode	-	260	-	μA
V _{BIAS}	LCD bias range (V _{BIAS} refers to the main output voltage(V0) of LCD DAC)	$V_{DDA} \ge 3 \text{ V} \text{ and } V_{DDA} \ge V_{BIAS}$	2	-	5	V
	LCD bias step size	$V_{DDA} \ge 3 \text{ V} \text{ and } V_{DDA} \ge V_{BIAS}$	-	9.1 × V _{DDA}	-	mV
	LCD capacitance per segment/common driver	Drivers may be combined	-	500	5000	pF
	Long term segment offset		I	_	20	mV
I _{OUT}	Output drive current per segment driver)	Vddio = 5.5V, strong drive mode	355	-	710	μA

Table 11-41. LCD Direct Drive AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
f _{LCD}	LCD frame rate		10	50	150	Hz

11.6.8 Universal Digital Blocks (UDBs)

PSoC Creator provides a library of prebuilt and tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, timer, counter, PWM, AND, OR, and so on) that are mapped to the UDB array. See the component datasheets in PSoC Creator for full AC/DC specifications, APIs, and example code.

Table 11-54. UDB AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Datapath Per	formance					
F _{MAX_TIMER}	Maximum frequency of 16-bit timer in a UDB pair		-	-	67	MHz
F _{MAX_ADDER}	Maximum frequency of 16-bit adder in a UDB pair		-	-	67	MHz
F _{MAX_CRC}	Maximum frequency of 16-bit CRC/PRS in a UDB pair		-	-	67	MHz
PLD Perform	ance					
F _{MAX_PLD}	Maximum frequency of a two-pass PLD function in a UDB pair		-	-	67	MHz
Clock to Outp	but Performance					
^t сlк_оит	Propagation delay for clock in to data out, see Figure 11-47.	25 °C, Vddd \ge 2.7 V	-	20	25	ns
t _{CLK_OUT}	Propagation delay for clock in to data out, see Figure 11-47.	Worst-case placement, routing, and pin selection	-	_	55	ns

Figure 11-47. Clock to Output Performance

Table 11-63. Asynchronous Read Cycle Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Т	EMIF clock period ^[43]	Vdda ≥ 3.3 V	30.3	-	-	nS
Tcel	EM_CEn low time		2T – 5	-	2T+ 5	nS
Taddrv	EM_CEn low to EM_Addr valid		-	-	5	nS
Taddrh	Address hold time after EM_Wen high		Т	-	-	nS
Toel	EM_OEn low time		2T – 5	-	2T + 5	nS
Tdoesu	Data to EM_OEn high setup time		T + 15	-	-	nS
Tdoeh	Data hold time after EM_OEn high		3	-	-	nS

Figure 11-49. Asynchronous Write Cycle Timing

Parameter	Description	Conditions	Min	Тур	Max	Units
Т	EMIF clock period ^[43]	$Vdda \geq 3.3 \ V$	30.3	-	-	nS
Tcel	EM_CEn low time		T – 5	-	T + 5	nS
Taddrv	EM_CEn low to EM_Addr valid		-	-	5	nS
Taddrh	Address hold time after EM_WEn high		Т	-	-	nS
Twel	EM_WEn low time		T – 5	-	T + 5	nS
Tdcev	EM_CEn low to data valid		-	-	7	nS
Tdweh	Data hold time after EM_WEn high		Т	-	-	nS

Figure 11-50. Synchronous Read Cycle Timing

Table 11-65. Synchronous Read Cycle Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Т	EMIF clock period ^[44]	$Vdda \geq 3.3 \ V$	30.3	-	-	nS
Tcp/2	EM_Clock pulse high		T/2	-	-	nS
Tceld	EM_CEn low to EM_Clock high		5	-	-	nS
Tcehd	EM_Clock high to EM_CEn high		T/2 – 5	-	-	nS
Taddrv	EM_Addr valid to EM_Clock high		5	-	-	nS
Taddriv	EM_Clock high to EM_Addr invalid		T/2 – 5	-	-	nS
Toeld	EM_OEn low to EM_Clock high		5	-	-	nS
Toehd	EM_Clock high to EM_OEn high		Т	-	-	nS
Tds	Data valid before EM_OEn high		T + 15	-	-	nS
Tadscld	EM_ADSCn low to EM_Clock high		5	-	-	nS
Tadschd	EM_Clock high to EM_ADSCn high		T/2 – 5	-	-	nS