

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	ARM1136JF-S
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	532MHz
Co-Processors/DSP	Multimedia; GPU, IPU, MPEG-4, VFP
RAM Controllers	DDR
Graphics Acceleration	Yes
Display & Interface Controllers	Keyboard, Keypad, LCD
Ethernet	-
SATA	-
USB	USB 2.0 (3)
Voltage - I/O	1.8V, 2.0V, 2.5V, 2.7V, 3.0V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	Random Number Generator, RTIC, Secure Fusebox, Secure JTAG, Secure Memory
Package / Case	457-LFBGA
Supplier Device Package	457-LFBGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx31cvkn5dr2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Ordering Information

Table 1 provides the ordering information for the MCIMX31.

Part Number	Silicon Revision ^{2, 3, 4,5}	Device Mask	Operating Temperature Range (°C)	Package ⁶
MCIMX31DVKN5D!	2.0.1	M91E	-20 to 70	14 × 14 mm
MCIMX31LDVKN5D!	2.0.1	M91E	-20 to 70	0.5 mm pitch,
MCIMX31CVKN5D!	2.0.1	M91E	-40 to 85	MAPBGA-457, Case 1581
MCIMX31LCVKN5D!	2.0.1	M91E	-40 to 85	
MCIMX31DVMN5D!	2.0.1	M91E	-20 to 70	19 x 19 mm,
MCIMX31LDVMN5D!	2.0.1	M91E	-20 to 70	Case 1931
MCIMX31CJKN5D	2.0.1	M91E	-40 to 85	14 x 14 mm,
MCIMX31LCJKN5D	2.0.1	M91E	-40 to 85	0.5 mm pitch, MAPBGA-457, Case 1581

Table 1. Ordering Information¹

¹ Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010: Indicated by the Icon (!)

² Information on reading the silicon revision register can be found in the IC Identification (IIM) chapter of the Reference Manual, see Section 6, "Product Documentation."

³ Errata and fix information of the various mask sets can be found in the standard MCIMX31 Chip Errata, see Section 6, "Product Documentation."

⁴ Changes in output buffer characteristics can be found in the I/O Setting Exceptions and Special Pad Descriptions table in the Reference Manual, see Section 6, "Product Documentation."

⁵ JTAG functionality is not tested nor guaranteed at -40°C.

⁶ Case 1581 and 1931 are RoHS compliant, lead-free, MSL = 3.

1.2.1 Feature Differences Between Mask Sets

There are no silicon differences between revisions 2.0 and 2.0.1. The main difference is an updated iROM code which supports USB-HS, SD/MMC boot modes and corrects some boot mode related erratas.

Functional Description and Application Information

2.2 Module Inventory

Table 3 shows an alphabetical listing of the modules in the multimedia applications processor. For extended descriptions of the modules, see the reference manual. A cross-reference is provided to the electrical specifications and timing information for each module with external signal connections.

Block Mnemonic	Block Name	Functional Grouping	Brief Description	Section/ Page
1-Wire®	1-Wire Interface	Connectivity Peripheral	The 1-Wire module provides bi-directional communication between the ARM11 core and external 1-Wire devices.	4.3.4/24
ATA	Advanced Technology (AT) Attachment	Connectivity Peripheral	The ATA block is an AT attachment host interface. It is designed to interface with IDE hard disc drives and ATAPI optical disc drives.	4.3.5/25
AUDMUX	Digital Audio Multiplexer	Multimedia Peripheral	The AUDMUX interconnections allow multiple, simultaneous audio/voice/data flows between the ports in point-to-point or point-to-multipoint configurations.	4.3.6/34
CAMP	Clock Amplifier Module	Clock	The CAMP converts a square wave/sinusoidal input into a rail-to-rail square wave. The output of CAMP feeds the predivider.	4.3.3/23
ССМ	Clock Control Module	Clock	The CCM provides clock, reset, and power management control for the MCIMX31.	_
CSPI	Configurable Serial Peripheral Interface (x 3)	Connectivity Peripheral	The CSPI is equipped with data FIFOs and is a master/slave configurable serial peripheral interface module, capable of interfacing to both SPI master and slave devices.	4.3.7/34
DPLL	Digital Phase Lock Loop	Clock	The DPLLs produce high-frequency on-chip clocks with low frequency and phase jitters. Note: External clock sources provide the reference frequencies.	4.3.8/35
ECT	Embedded Cross Trigger	Debug	The ECT is composed of three CTIs (Cross Trigger Interface) and one CTM (Cross Trigger Matrix—key in the multi-core and multi-peripheral debug strategy.	_
EMI	External Memory Interface	Memory Interface (EMI)	The EMI includes • Multi-Master Memory Interface (M3IF) • Enhanced SDRAM Controller (ESDCTL) • NAND Flash Controller (NFC) • Wireless External Interface Module (WEIM)	4.3.9.3/44, 4.3.9.1/36, 4.3.9.2/39
EPIT	Enhanced Periodic Interrupt Timer	Timer Peripheral	The EPIT is a 32-bit "set and forget" timer which starts counting after the EPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention.	_
ETM	Embedded Trace Macrocell	Debug/Trace	The ETM (from ARM, Ltd.) supports real-time instruction and data tracing by way of ETM auxiliary I/O port.	4.3.10/52
FIR	Fast InfraRed Interface	Connectivity Peripheral	This FIR is capable of establishing a 0.576 Mbit/s, 1.152 Mbit/s or 4 Mbit/s half duplex link via a LED and IR detector. It supports 0.576 Mbit/s, 1.152 Mbit/s medium infrared (MIR) physical layer protocol and 4Mbit/s fast infrared (FIR) physical layer protocol defined by IrDA, Rev. 1.4.	4.3.11/53

Table 3.	Digital	and	Analog	Modules
----------	---------	-----	--------	---------

4 Electrical Characteristics

This section provides the device-level and module-level electrical characteristics for the MCIMX31.

4.1 Chip-Level Conditions

This section provides the device-level electrical characteristics for the IC. See Table 4 for a quick reference to the individual tables and sections.

For these characteristics,	Topic appears
Table 5, "Absolute Maximum Ratings"	on page 10
Table 7, "Thermal Resistance Data—19 $ imes$ 19 mm Package"	on page 11
Table 8, "Operating Ranges"	on page 13
Table 9, "Specific Operating Ranges for Silicon Revision 2.0.1"	on page 14
Table 10, "Interface Frequency"	on page 14
Section 4.1.1, "Supply Current Specifications"	on page 16
Section 4.2, "Supply Power-Up/Power-Down Requirements and Restrictions"	on page 18

Table 4. MCIMX31 Chip-Level Conditions

CAUTION

Stresses beyond those listed under Table 5 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under Table 8, "Operating Ranges," on page 13 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Parameter	Symbol	Min	Мах	Units
Supply Voltage (Core)	QVCC _{max}	-0.5	1.65	V
Supply Voltage (I/O)	NVCC _{max}	-0.5	3.3	V
Input Voltage Range	V _{Imax}	-0.5	NVCC +0.3	V
Storage Temperature	T _{storage}	-40	125	°C
ESD Damage Immunity:				
Human Body Model (HBM)	V _{esd}	—	1500	V
Machine Model (MM)		—	200	v
Charge Device Model (CDM)		—	500	
Offset voltage allowed in run mode between core supplies.	V _{core_offset} 1	—	15	mV

¹ The offset is the difference between all core voltage pair combinations of QVCC, QVCC1, and QVCC4.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Low-level output current, fast slew rate	I _{OL_F}	V _{OL} =0.2*NVCC Std Drive High Drive Max Drive	4 6 8	_	_	mA
High-Level DC input voltage	V _{IH}	—	0.7*NVCC	_	NVCC	V
Low-Level DC input voltage	V _{IL}	—	0	_	0.3*QVCC	V
Input Hysteresis	V _{HYS}	Hysteresis enabled	0.25	_	—	V
Schmitt trigger VT+	V _T +	Hysteresis enabled	0.5*QVCC	_	—	V
Schmitt trigger VT-	V _T –	Hysteresis enabled	—	_	0.5*QVCC	V
Pull-up resistor (100 kΩ PU)	R _{PU}	—	—	100	—	kO
Pull-down resistor (100 kΩ PD)	R _{PD}	—	—	100	—	N32
Input current (no PU/PD)	I _{IN}	V _I = NVCC or GND	—	_	±1	μΑ
Input current (100 kΩ PU)	I _{IN}	V _I = 0 V _I = NVCC	—	_	25 0.1	μΑ μΑ
Input current (100 kΩ PD)	I _{IN}	$V_{I} = 0$ $V_{I} = NVCC$	_		0.25 28	μΑ μΑ
Tri-state leakage current	I _{OZ}	V _I = NVCC or GND I/O = High Z	_	—	±2	μA

Table 14. GPIO DC Electrical Parameters (continued)
---	------------

The MCIMX31 I/O parameters appear in Table 15 for DDR (Double Data Rate). See Table 8, "Operating Ranges," on page 13 for temperature and supply voltage ranges.

NOTE

NVCC for Table 15 refers to NVCC2, NVCC21, and NVCC22.

Table 15. DDR	(Double Data Rate)) I/O DC Electrical	Parameters
---------------	--------------------	---------------------	-------------------

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Units
High-level output voltage	V _{OH}	I _{OH} = -1 mA	NVCC -0.12		—	V
		I _{OH} = specified Drive	0.8*NVCC	_	—	V
Low-level output voltage	V _{OL}	I _{OL} = 1 mA	—	_	0.08	V
		I_{OL} = specified Drive	_	—	0.2*NVCC	V
High-level output current	I _{OH}	V _{OH} =0.8*NVCC Std Drive High Drive Max Drive DDR Drive ¹	-3.6 -7.2 -10.8 -14.4			mA
Low-level output current	I _{OL}	V _{OL} =0.2*NVCC Std Drive High Drive Max Drive DDR Drive ¹	3.6 7.2 10.8 14.4		_	mA

Figure 8. Write 1 Sequence Timing Diagram

Figure 9. Read Sequence Timing Diagram

Table	22	WR1/RD	Timina	Parameters
Iable	∠ ∠.		runny	r ai aiiietei s

ID	Parameter	Symbol	Min	Тур	Max	Units
OW7	Write 1 / Read Low Time	t _{LOW1}	1	5	15	μs
OW8	Transmission Time Slot	t _{SLOT}	60	117	120	μs
OW9	Release Time	t _{RELEASE}	15	-	45	μs

4.3.5 ATA Electrical Specifications (ATA Bus, Bus Buffers)

This section discusses ATA parameters. For a detailed description, refer to the ATA specification.

The user needs to use level shifters for 3.3 Volt or 5.0 Volt compatibility on the ATA interface.

The use of bus buffers introduces delay on the bus and introduces skew between signal lines. These factors make it difficult to operate the bus at the highest speed (UDMA-5) when bus buffers are used. If fast UDMA mode operation is needed, this may not be compatible with bus buffers.

Another area of attention is the slew rate limit imposed by the ATA specification on the ATA bus. According to this limit, any signal driven on the bus should have a slew rate between 0.4 and 1.2 V/ns with a 40 pF load. Not many vendors of bus buffers specify slew rate of the outgoing signals.

When bus buffers are used, the ata_data bus buffer is special. This is a bidirectional bus buffer, so a direction control signal is needed. This direction control signal is ata_buffer_en. When its high, the bus should drive from host to device. When its low, the bus should drive from device to host. Steering of the signal is such that contention on the host and device tri-state busses is always avoided.

ATA Parameter	Parameter from Figure 14, Figure 15, Figure 16	Description	Controlling Variable
tack	tack	tack (min) = (time_ack * T) - (tskew1 + tskew2)	time_ack
tenv	tenv	tenv (min) = (time_env * T) - (tskew1 + tskew2) tenv (max) = (time_env * T) + (tskew1 + tskew2)	time_env
tds	tds1	$tds - (tskew3) - ti_ds > 0$	tskew3, ti_ds, ti_dh
tdh	tdh1	$tdh - (tskew3) - ti_dh > 0$	snould be low enough
tcyc	tc1	(tcyc – tskew) > T	T big enough
trp	trp	trp (min) = time_rp * T – (tskew1 + tskew2 + tskew6)	time_rp
_	tx1 ¹	(time_rp * T) - (tco + tsu + 3T + 2 *tbuf + 2*tcable2) > trfs (drive)	time_rp
tmli	tmli1	tmli1 (min) = (time_mlix + 0.4) * T	time_mlix
tzah	tzah	tzah (min) = (time_zah + 0.4) * T	time_zah
tdzfs	tdzfs	tdzfs = (time_dzfs * T) – (tskew1 + tskew2)	time_dzfs
tcvh	tcvh	tcvh = (time_cvh *T) – (tskew1 + tskew2)	time_cvh
_	ton toff	ton = time_on * T - tskew1 toff = time_off * T - tskew1	_

Table 27. UDIVIA III BUIST TIITIING Parameter	Table 27.		In Bu	urst T	Fiming	Parameter
---	-----------	--	-------	--------	---------------	-----------

¹ There is a special timing requirement in the ATA host that requires the internal DIOW to go only high 3 clocks after the last active edge on the DSTROBE signal. The equation given on this line tries to capture this constraint.

2. Make ton and toff big enough to avoid bus contention

4.3.6 AUDMUX Electrical Specifications

The AUDMUX provides a programmable interconnect logic for voice, audio and data routing between internal serial interfaces (SSI) and external serial interfaces (audio and voice codecs). The AC timing of AUDMUX external pins is hence governed by the SSI module. Please refer to their respective electrical specifications.

4.3.7 CSPI Electrical Specifications

This section describes the electrical information of the CSPI.

4.3.7.1 CSPI Timing

Figure 20 and Figure 21 depict the master mode and slave mode timings of CSPI, and Table 29 lists the timing parameters.

Figure 21. CSPI Slave Mode Timing Diagram

ID	Parameter	Symbol	Min	Мах	Unit
SD13	Data setup time	tDS	2.0	_	ns
SD14	Data hold time	tDH	1.3	_	ns

¹ SD11 and SD12 are determined by SDRAM controller register settings.

NOTE

SDR SDRAM CLK parameters are being measured from the 50% point—that is, high is defined as 50% of signal value and low is defined as 50% of signal value.

The timing parameters are similar to the ones used in SDRAM data sheets—that is, Table 34 indicates SDRAM requirements. All output signals are driven by the ESDCTL at the negative edge of SDCLK and the parameters are measured at maximum memory frequency.

Figure 35. SDRAM Refresh Timing Diagram

ID	Parameter	Symbol	Min	Max	Unit
SD1	SDRAM clock high-level width	tCH	3.4	4.1	ns
SD2	SDRAM clock low-level width	tCL	3.4	4.1	ns

Table 35. SDRAM Refresh Timing Parameters

Figure 38. Mobile DDR SDRAM DQ versus DQS and SDCLK Read Cycle Timing Diagram

ID	Parameter	Symbol	Min	Max	Unit
SD21	DQS – DQ Skew (defines the Data valid window in read cycles related to DQS).	tDQSQ	_	0.85	ns
SD22	DQS DQ HOLD time from DQS	tQH	2.3		ns
SD23	DQS output access time from SDCLK posedge	tDQSCK	_	6.7	ns

Table 38. Mobile DDR SDRAM Read Cycle Timing Parameters

NOTE

SDRAM CLK and DQS related parameters are being measured from the 50% point—that is, high is defined as 50% of signal value and low is defined as 50% of signal value.

The timing parameters are similar to the ones used in SDRAM data sheets—that is, Table 38 indicates SDRAM requirements. All output signals are driven by the ESDCTL at the negative edge of SDCLK and the parameters are measured at maximum memory frequency.

4.3.10 ETM Electrical Specifications

ETM is an ARM protocol. The timing specifications in this section are given as a guide for a TPA that supports TRACECLK frequencies up to 133 MHz.

Figure 39 depicts the TRACECLK timings of ETM, and Table 39 lists the timing parameters.

Figure 39. ETM TRACECLK Timing Diagram

4.3.14 IPU—Sensor Interfaces

4.3.14.1 Supported Camera Sensors

Table 43 lists the known supported camera sensors at the time of publication.

Vendor	Model
Conexant	CX11646, CX20490 ² , CX20450 ²
Agilant	HDCP-2010, ADCS-1021 ² , ADCS-1021 ²
Toshiba	TC90A70
ICMedia	ICM202A, ICM102 ²
iMagic	IM8801
Transchip	TC5600, TC5600J, TC5640, TC5700, TC6000
Fujitsu	MB86S02A
Micron	MI-SOC-0133
Matsushita	MN39980
STMicro	W6411, W6500, W6501 ² , W6600 ² , W6552 ² , STV0974 ²
OmniVision	OV7620, OV6630
Sharp	LZ0P3714 (CCD)
Motorola	MC30300 (Python) ² , SCM20014 ² , SCM20114 ² , SCM22114 ² , SCM20027 ²
National Semiconductor	LM9618 ²

Table 43.	Supported	Camera	Sensors ¹
	oupportou	ouniora	00110010

¹ Freescale Semiconductor does not recommend one supplier over another and in no way suggests that these are the only camera suppliers.

² These sensors not validated at time of publication.

4.3.14.2 Functional Description

There are three timing modes supported by the IPU.

4.3.14.2.1 Pseudo BT.656 Video Mode

Smart camera sensors, which include imaging processing, usually support video mode transfer. They use an embedded timing syntax to replace the SENSB_VSYNC and SENSB_HSYNC signals. The timing syntax is defined by the BT.656 standard.

This operation mode follows the recommendations of ITU BT.656 specifications. The only control signal used is SENSB_PIX_CLK. Start-of-frame and active-line signals are embedded in the data stream. An active line starts with a SAV code and ends with a EAV code. In some cases, digital blanking is inserted in between EAV and SAV code. The CSI decodes and filters out the timing-coding from the data stream, thus recovering SENSB_VSYNC and SENSB_HSYNC signals for internal use.

Туре	Vendor	Model
TFT displays (memory-less)	Sharp (HR-TFT Super Mobile LCD family)	LQ035Q7 DB02, LM019LC1Sxx
	Samsung (QCIF and QVGA TFT modules for mobile phones)	LTS180S1-HF1, LTS180S3-HF1, LTS350Q1-PE1, LTS350Q1-PD1, LTS220Q1-HE1 ²
	Toshiba (LTM series)	LTM022P806 ² , LTM04C380K ² , LTM018A02A ² , LTM020P332 ² , LTM021P337 ² , LTM019P334 ² , LTM022A783 ² , LTM022A05ZZ ²
	NEC	NL6448BC20-08E, NL8060BC31-27
Display controllers	Epson	S1D15xxx series, S1D19xxx series, S1D13713, S1D13715
	Solomon Systech	SSD1301 (OLED), SSD1828 (LDCD)
	Hitachi	HD66766, HD66772
	ATI	W2300
Smart display modules	Epson	L1F10043 T ² , L1F10044 T ² , L1F10045 T ² , L2D22002 ² , L2D20014 ² , L2F50032 ² , L2D25001 T ²
	Hitachi	120 160 65K/4096 C-STN (#3284 LTD-1398-2) based on HD 66766 controller
	Densitron Europe LTD	All displays with MPU 80/68K series interface and serial peripheral interface
	Sharp	LM019LC1Sxx
	Sony	ACX506AKM
Digital video encoders	Analog Devices	ADV7174/7179
(TOT IV)	Crystal (Cirrus Logic)	CS49xx series
	Focus	FS453/4

Table 45.	Supported	Display	Com	onents ¹

¹ Freescale Semiconductor does not recommend one supplier over another and in no way suggests that these are the only display component suppliers.

² These display components not validated at time of publication.

4.3.15.2 Synchronous Interfaces

4.3.15.2.1 Interface to Active Matrix TFT LCD Panels, Functional Description

Figure 45 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure signals are shown with negative polarity. The sequence of events for active matrix interface timing is:

- DISPB_D3_CLK latches data into the panel on its negative edge (when positive polarity is selected). In active mode, DISPB_D3_CLK runs continuously.
- DISPB_D3_HSYNC causes the panel to start a new line.
- DISPB_D3_VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse.

• DISPB_D3_DRDY acts like an output enable signal to the CRT display. This output enables the data to be shifted onto the display. When disabled, the data is invalid and the trace is off.

Figure 45. Interface Timing Diagram for TFT (Active Matrix) Panels

4.3.15.2.2 Interface to Active Matrix TFT LCD Panels, Electrical Characteristics

Figure 46 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and the data. All figure parameters shown are programmable. The timing images correspond to inverse polarity of the DISPB_D3_CLK signal and active-low polarity of the DISPB_D3_HSYNC, DISPB_D3_VSYNC and DISPB_D3_DRDY signals.

Figure 47 depicts the vertical timing (timing of one frame). All figure parameters shown are programmable.

Single access mode (all control signals are not active for one display interface clock after each display access)

Figure 52. Asynchronous Parallel System 80 Interface (Type 2) Burst Mode Timing Diagram

	Write	
DISPB_D#_CS	→ 1 display IF clock cycle	1 display IF 🚽 🗲 🗡 clock cycle
DISPB_SD_D_C DISPB_SD_D ⁻ (Output)	CLK	D3 \ D2 \ D1 \ D0 Output data
DISPB_SD_D		
DISPB_SER_RS		
DISPB_D#_CS -	■ 1 display IF clock cycle	1 display IF
DISPB SD D C		
DISPB_SD_D (Output)		
DISPB_SD_D (Input)		X D4 X D3 X D2 X D1 X D0
DISPB_SER_RS	;\	— Input data ———►

Figure 62. 5-Wire Serial Interface (Type 1) Timing Diagram

Signal	Parameter	Symbol	Stand	Unit	
Signal	Falameter	Symbol	Min	Мах	Onic
	Cycle	tSCLKc	25	_	ns
	H pulse length	tSCLKwh	5	—	ns
MSHC_SCLK	L pulse length	tSCLKwl	5	—	ns
	Rise time	tSCLKr	—	10	ns
	Fall time	tSCLKf	—	10	ns
MSHC BS	Setup time	tBSsu	8	—	ns
MiSHC_B5	Hold time	tBSh	1	—	ns
	Setup time	tDsu	8	—	ns
MSHC_DATA	Hold time	tDh	1		ns
	Output delay time	tDd	_	15	ns

 Table 52. Parallel Interface Timing Parameters¹

¹ Timing is guaranteed for NVCC from 2.7 through 3.1 V and up to a maximum overdrive NVCC of 3.3 V. See NVCC restrictions described in Table 8, "Operating Ranges," on page 13.

4.3.17 Personal Computer Memory Card International Association (PCMCIA)

Figure 68 and Figure 69 depict the timings pertaining to the PCMCIA module, each of which is an example of one clock of strobe set-up time and one clock of strobe hold time. Table 53 lists the timing parameters.

4.3.20.3 Power Down Sequence

Power down sequence for SIM interface is as follows:

- 1. SIMPD port detects the removal of the SIM Card
- 2. RST goes Low
- 3. CLK goes Low
- 4. TX goes Low
- 5. VEN goes Low

Each of this steps is done in one CKIL period (usually 32 kHz). Power down can be started because of a SIM Card removal detection or launched by the processor. Figure 75 and Table 57 show the usual timing requirements for this sequence, with Fckil = CKIL frequency value.

Table 57	. Timing	Requirements	for Power	Down	Sequence
----------	----------	--------------	-----------	------	----------

Num	Description	Symbol	Min	Мах	Unit
1	SIM reset to SIM clock stop	S _{rst2clk}	0.9*1/FCKIL	0.8	μs
2	SIM reset to SIM TX data low	S _{rst2dat}	1.8*1/FCKIL	1.2	μs
3	SIM reset to SIM Voltage Enable Low	S _{rst2ven}	2.7*1/FCKIL	1.8	μs
4	SIM Presence Detect to SIM reset Low	S _{pd2rst}	0.9*1/FCKIL	25	ns

Electrical Characteristics

Table	58.	SJC	Timing	Parameters
-------	-----	-----	--------	------------

	Parameter	All Freq	Unit		
	Falameter	Min Max		onit	
SJ1	TCK cycle time	100 ¹	—	ns	
SJ2	TCK clock pulse width measured at V_M^2	40	—	ns	
SJ3	TCK rise and fall times		3	ns	
SJ4	Boundary scan input data set-up time	10	—	ns	
SJ5	Boundary scan input data hold time	50	_	ns	
SJ6	TCK low to output data valid		50	ns	
SJ7	TCK low to output high impedance		50	ns	
SJ8	TMS, TDI data set-up time	10	_	ns	
SJ9	TMS, TDI data hold time	50	_	ns	
SJ10	TCK low to TDO data valid	_	44	ns	

ID	Parameter	Min	Мах	Unit		
External	External Clock Operation					
SS22	(Tx/Rx) CK clock period	81.4	—	ns		
SS23	(Tx/Rx) CK clock high period	36.0	_	ns		
SS24	(Tx/Rx) CK clock rise time	—	6.0	ns		
SS25	(Tx/Rx) CK clock low period	36.0	_	ns		
SS26	(Tx/Rx) CK clock fall time	—	6.0	ns		
SS27	(Tx) CK high to FS (bl) high	-10.0	15.0	ns		
SS29	(Tx) CK high to FS (bl) low	10.0	_	ns		
SS31	(Tx) CK high to FS (wl) high	-10.0	15.0	ns		
SS33	(Tx) CK high to FS (wl) low	10.0	_	ns		
SS37	(Tx) CK high to STXD valid from high impedance	_	15.0	ns		
SS38	(Tx) CK high to STXD high/low	_	15.0	ns		
SS39	(Tx) CK high to STXD high impedance	—	15.0	ns		
Synchro	nous External Clock Operation					
SS44	SRXD setup before (Tx) CK falling	10.0	—	ns		
SS45	SRXD hold after (Tx) CK falling	2.0	—	ns		
SS46	SRXD rise/fall time	—	6.0	ns		

Table 61. SSI Transmitter with External Clock Timing Parameters

5.1.3.2 BGA Signal ID by Ball Grid Location–14 x 14 0.5 mm

Table 65 shows the device connection list for signals only, alpha-sorted by signal identification.

Signal ID	Ball Location
A0	AD6
A1	AF5
A10	AF18
A11	AC3
A12	AD3
A13	AD4
A14	AF17
A15	AF16
A16	AF15
A17	AF14
A18	AF13
A19	AF12
A2	AB5
A20	AF11
A21	AF10
A22	AF9
A23	AF8
A24	AF7
A25	AF6
A3	AE4
A4	AA3
A5	AF4
A6	AB3
A7	AE3
A8	AD5
A9	AF3
ATA_CS0	J6
ATA_CS1	F2
ATA_DIOR	E2
ATA_DIOW	H6
ATA_DMACK	F1
ATA_RESET	H3
BATT_LINE	F7
BCLK	AB26
BOOT_MODE0	F20
BOOT_MODE1	C21
BOOT_MODE2	D24
BOOT_MODE3	C22
BOOT_MODE4	D26
CAPTURE	A22
CAS	AD20
CE_CONTROL	A14
CKIH	F24

Tabla	65	11	v 11	PC A	Signal		Pall	Grid	Location
lable	65.	14	X 14	DGA	Signai	ע טו	Dali	Gria	Location

CKIL H21 CLKO C23 CLKSS G26 COMPARE G18 CONTRAST R24 CS0 AE23 CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_D8 L20 CSI_MCLK K24 CSI_PIXCLK J26 CSPI1_MISO P7 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI1_SS1 P1 CSPI2_MOSI	Signal ID	Ball Location
CLKO C23 CLKSS G26 COMPARE G18 CONTRAST R24 CS0 AE23 CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_D8 L20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_SNI	CKIL	H21
CLKSS G26 COMPARE G18 CONTRAST R24 CS0 AE23 CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D4 L21 CSI_D5 K25 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MOSI	CLKO	C23
COMPARE G18 CONTRAST R24 CS0 AE23 CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CS1_D10 M24 CS1_D11 L26 CS1_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_D8 L20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCL N3 CSPI1_SS1 P1 CSPI2_MISO A4 CSPI2_SS1 C6 CSPI2_SS1	CLKSS	G26
CONTRAST R24 CS0 AE23 CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS1 P1 CSPI2_MISO A4 CSPI2_MISO A4 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS1 </td <td>COMPARE</td> <td>G18</td>	COMPARE	G18
CS0 AE23 CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS1 C6	CONTRAST	R24
CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS1 P1 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_MOSI E3 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_	CS0	AE23
CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_D8 L20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MOSI E3 CSPI2_MOSI E3 CSPI2_SS0 B5 CS	CS1	AF23
CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CS2	AE21
CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_VSYNC J25 CSI_VSYNC J25 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CS3	AD22
CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_VSYNC J25 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS1 C6	CS4	AF24
CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS1 C6	CS5	AF22
CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS1 E3 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D10	M24
CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_VSYNC J25 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D11	L26
CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS1 P1 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D12	M21
CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K20 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SSI P1 CSPI1_SSI P1 CSPI1_SSI P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SSI C6 CSPI2_SSI C6 CSPI2_SSI C6 CSPI2_SS2 A5	CSI_D13	M25
CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D14	M20
CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D15	M26
CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D4	L21
CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_HSYNC K20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS1 E3 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D5	K25
CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_HSYNC K20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS1 E3 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D6	L24
CSI_D8 L20 CSI_D9 L25 CSI_HSYNC K20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS1 E3 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D7	K26
CSI_D9 L25 CSI_HSYNC K20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_ST P1 CSPI1_SS1 P1 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS1 E3 CSPI2_SS1 C7 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D8	L20
CSI_HSYNCK20CSI_MCLKK24CSI_PIXCLKJ26CSI_VSYNCJ25CSPI1_MISOP7CSPI1_MOSIP2CSPI1_SCLKN2CSPI1_STP1CSPI1_SS1P1CSPI2_MISOA4CSPI2_MOSIE3CSPI2_SCLKC7CSPI2_SS0B5CSPI2_SS2A5	CSI_D9	L25
CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SPI_RDY N3 CSPI1_SS1 P1 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SS0 B5 CSPI2_SS2 A5	CSI_HSYNC	K20
CSI_PIXCLKJ26CSI_VSYNCJ25CSPI1_MISOP7CSPI1_MOSIP2CSPI1_SCLKN2CSPI1_SPI_RDYN3CSPI1_SS1P1CSPI1_SS2P6CSPI2_MISOA4CSPI2_SCLKC7CSPI2_SCLKC7CSPI2_SS1B6CSPI2_SS1C6CSPI2_SS2A5	CSI_MCLK	K24
CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SPI_RDY N3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS0 B5 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_PIXCLK	J26
CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SPI_RDY N3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS0 B5 CSPI2_SS2 A5	CSI_VSYNC	J25
CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SPI_RDY N3 CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS0 B5 CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI1_MISO	P7
CSPI1_SCLK N2 CSPI1_SPI_RDY N3 CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SPI_RDY B6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI1_MOSI	P2
CSPI1_SPI_RDY N3 CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SPI_RDY B6 CSPI2_SS0 B5 CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI1_SCLK	N2
CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SPI_RDY B6 CSPI2_SS0 B5 CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI1_SPI_RDY	N3
CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SPI_RDY B6 CSPI2_SS0 B5 CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI1_SS0	P3
CSPI1_SS2P6CSPI2_MISOA4CSPI2_MOSIE3CSPI2_SCLKC7CSPI2_SPI_RDYB6CSPI2_SS0B5CSPI2_SS1C6CSPI2_SS2A5	CSPI1_SS1	P1
CSPI2_MISOA4CSPI2_MOSIE3CSPI2_SCLKC7CSPI2_SPI_RDYB6CSPI2_SS0B5CSPI2_SS1C6CSPI2_SS2A5	CSPI1_SS2	P6
CSPI2_MOSIE3CSPI2_SCLKC7CSPI2_SPI_RDYB6CSPI2_SS0B5CSPI2_SS1C6CSPI2_SS2A5	CSPI2_MISO	A4
CSPI2_SCLK C7 CSPI2_SPI_RDY B6 CSPI2_SS0 B5 CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI2_MOSI	E3
CSPI2_SPI_RDY B6 CSPI2_SS0 B5 CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI2_SCLK	C7
CSPI2_SS0 B5 CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI2_SPI_RDY	B6
CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI2_SS0	B5
CSPI2_SS2 A5	CSPI2_SS1	C6
	CSPI2_SS2	A5
CSPI3_MISO G3	CSPI3_MISO	G3
CSPI3_MOSI D2	CSPI3_MOSI	D2

Signal	Ball Location
NC	N7
NC	P7
NC	U21

Table 67.	19 x 1	9 BGA	No	Connects ¹
10010 011	10 / 1			001110010

These contacts are not used and must be floated by the user.

5.2.3.2 BGA Signal ID by Ball Grid Location—19 x 19 0.8 mm

1

Signal ID	Ball Location
A0	Y6
A1	AC5
A10	V15
A11	AB3
A12	AA3
A13	Y3
A14	Y15
A15	Y14
A16	V14
A17	Y13
A18	V13
A19	Y12
A2	AB5
A20	V12
A21	Y11
A22	V11
A23	Y10
A24	Y9
A25	Y8
A3	AA5
A4	Y5
A5	AC4
A6	AB4
A7	AA4
A8	Y4
A9	AC3
ATA_CS0	E1
ATA_CS1	G4
ATA_DIOR	E3
ATA_DIOW	H6
ATA_DMACK	E2
ATA_RESET	F3
BATT_LINE	F6
BCLK	W20

Table 68. 19 x 19 BGA Signal ID by Ball Grid Location

Cimel ID	Dell Legetien
Signal ID	Ball Location
CKIL	E21
CLKO	C20
CLKSS	H17
COMPARE	A20
CONTRAST	N21
CS0	U17
CS1	Y22
CS2	Y18
CS3	Y19
CS4	Y20
CS5	AA21
CSI_D10	K21
CSI_D11	K22
CSI_D12	K23
CSI_D13	L20
CSI_D14	L18
CSI_D15	L21
CSI_D4	J20
CSI_D5	J21
CSI_D6	L17
CSI_D7	J22
CSI_D8	J23
CSI_D9	K20
CSI_HSYNC	H22
CSI_MCLK	H20
CSI_PIXCLK	H23
CSI_VSYNC	H21
CSPI1_MISO	N2
CSPI1_MOSI	N1
CSPI1_SCLK	M4
CSPI1_SPI_RDY	M1
CSPI1_SS0	M2
CSPI1_SS1	N6
CSPI1_SS2	M3