

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

-XF

Product Status	Active
Core Processor	ARM1136JF-S
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	532MHz
Co-Processors/DSP	Multimedia; GPU, IPU, MPEG-4, VFP
RAM Controllers	DDR
Graphics Acceleration	Yes
Display & Interface Controllers	Keyboard, Keypad, LCD
Ethernet	-
SATA	-
USB	USB 2.0 (3)
Voltage - I/O	1.8V, 2.0V, 2.5V, 2.7V, 3.0V
Operating Temperature	-20°C ~ 70°C (TA)
Security Features	Random Number Generator, RTIC, Secure Fusebox, Secure JTAG, Secure Memory
Package / Case	473-LFBGA
Supplier Device Package	473-LFBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx31dvmn5d

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Functional Description and Application Information

2.2 Module Inventory

Table 3 shows an alphabetical listing of the modules in the multimedia applications processor. For extended descriptions of the modules, see the reference manual. A cross-reference is provided to the electrical specifications and timing information for each module with external signal connections.

Block Mnemonic	Block Name	Functional Grouping	Brief Description	Section/ Page
1-Wire®	1-Wire Interface	Connectivity Peripheral	The 1-Wire module provides bi-directional communication between the ARM11 core and external 1-Wire devices.	4.3.4/24
ATA	Advanced Technology (AT) Attachment	Connectivity Peripheral	The ATA block is an AT attachment host interface. It is designed to interface with IDE hard disc drives and ATAPI optical disc drives.	4.3.5/25
AUDMUX	Digital Audio Multiplexer	Multimedia Peripheral	The AUDMUX interconnections allow multiple, simultaneous audio/voice/data flows between the ports in point-to-point or point-to-multipoint configurations.	4.3.6/34
CAMP	Clock Amplifier Module	Clock	The CAMP converts a square wave/sinusoidal input into a rail-to-rail square wave. The output of CAMP feeds the predivider.	4.3.3/23
ССМ	Clock Control Module	Clock	The CCM provides clock, reset, and power management control for the MCIMX31.	—
CSPI	Configurable Serial Peripheral Interface (x 3)	Connectivity Peripheral	The CSPI is equipped with data FIFOs and is a master/slave configurable serial peripheral interface module, capable of interfacing to both SPI master and slave devices.	4.3.7/34
DPLL	Digital Phase Lock Loop	Clock	The DPLLs produce high-frequency on-chip clocks with low frequency and phase jitters. Note: External clock sources provide the reference frequencies.	4.3.8/35
ECT	Embedded Cross Trigger	Debug	The ECT is composed of three CTIs (Cross Trigger Interface) and one CTM (Cross Trigger Matrix—key in the multi-core and multi-peripheral debug strategy.	_
EMI	External Memory Interface	Memory Interface (EMI)	The EMI includes • Multi-Master Memory Interface (M3IF) • Enhanced SDRAM Controller (ESDCTL) • NAND Flash Controller (NFC) • Wireless External Interface Module (WEIM)	
EPIT	Enhanced Periodic Interrupt Timer	Timer Peripheral	The EPIT is a 32-bit "set and forget" timer which starts counting after the EPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention.	_
ETM	Embedded Trace Macrocell	Debug/Trace	The ETM (from ARM, Ltd.) supports real-time instruction and data tracing by way of ETM auxiliary I/O port.	4.3.10/52
FIR	Fast InfraRed Interface	Connectivity Peripheral	This FIR is capable of establishing a 0.576 Mbit/s, 1.152 Mbit/s or 4 Mbit/s half duplex link via a LED and IR detector. It supports 0.576 Mbit/s, 1.152 Mbit/s medium infrared (MIR) physical layer protocol and 4Mbit/s fast infrared (FIR) physical layer protocol defined by IrDA, Rev. 1.4.	4.3.11/53

Table 3	. Digital and	Analog	Modules
---------	---------------	--------	---------

Ref. Num	Description	Symbol	Minimum	Typical	Maximum	Units
1	eFuse Program Current. ¹ Current to program one eFuse bit: efuse_pgm = 3.0 V	I _{program}	_	35	60	mA
2	eFuse Read Current ² Current to read an 8-bit eFuse word vdd_fusebox = 1.875 V	I _{read}	_	5	8	mA

Table 11. Fusebox Supply Current Parameters

 ¹ The current I_{program} is during program time (t_{program}).
 ² The current I_{read} is present for approximately 50 ns of the read access to the 8-bit word, and only applies to Silicon Rev. 1.2 and previous.

4.2 Supply Power-Up/Power-Down Requirements and Restrictions

Any MCIMX31 board design must comply with the power-up and power-down sequence guidelines as described in this section to guarantee reliable operation of the device. Any deviation from these sequences may result in any or all of the following situations:

- Cause excessive current during power up phase
- Prevent the device from booting
- Cause irreversible damage to the MCIMX31 (worst-case scenario)

4.2.1 Powering Up

The Power On Reset (\overline{POR}) pin must be kept asserted (low) throughout the power up sequence. Power up logic must guarantee that all power sources reach their target values prior to the release (de-assertion) of \overline{POR} . Figure 2 and Figure 3 show the power-up sequence for silicon Revision 2.0.1.

NOTE

Stages need to be performed in the order shown; however, *within* each stage, supplies can be powered up in any order. For example, supplies IOQVDD, NVCC1, and NVCC3 through NVCC10 do not need to be powered up in the order shown.

CAUTION

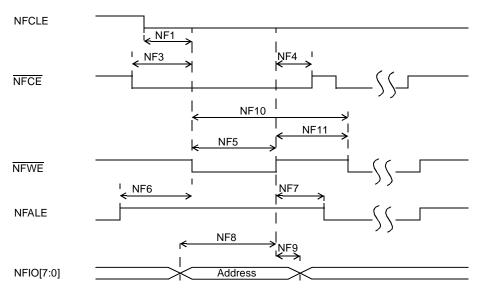
NVCC6 and NVCC9 must be at the same voltage potential. These supplies are connected together on-chip to optimize ESD damage immunity.

ID	Parameter	Symbol	Min	Мах	Units
CS1	SCLK Cycle Time	t _{clk}	60	—	ns
CS2	SCLK High or Low Time	t _{SW}	30	—	ns
CS3	SCLK Rise or Fall	t _{RISE/FALL}	_	7.6	ns
CS4	SSx pulse width	t _{CSLH}	25	—	ns
CS5	SSx Lead Time (CS setup time)	t _{SCS}	25	—	ns
CS6	SSx Lag Time (CS hold time)	t _{HCS}	25	—	ns
CS7	Data Out Setup Time	t _{Smosi}	5	—	ns
CS8	Data Out Hold Time	t _{Hmosi}	5	—	ns
CS9	Data In Setup Time	t _{Smiso}	6	—	ns
CS10	Data In Hold Time	t _{Hmiso}	5	_	ns
CS11	SPI_RDY Setup Time ¹	t _{SRDY}			ns

Table 29. CSPI Interface Timing Parameters

¹ SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.

4.3.8 DPLL Electrical Specifications


The three PLL's of the MCIMX31 (MCU, USB, and Serial PLL) are all based on same DPLL design. The characteristics provided herein apply to all of them, except where noted explicitly. The PLL characteristics are provided based on measurements done for both sources—external clock source (CKIH), and FPM (Frequency Pre-Multiplier) source.

4.3.8.1 Electrical Specifications

Table 30 lists the DPLL specification.

Table 30. DPLL Specifications

Parameter	Min	Тур	Max	Unit	Comments
CKIH frequency	15	26 ¹	75 ²	MHz	_
CKIL frequency (Frequency Pre-multiplier (FPM) enable mode)	—	32; 32.768, 38.4	—	kHz	FPM lock time $\approx 480~\mu s.$
Predivision factor (PD bits)	1	—	16	_	—
PLL reference frequency range after Predivider	15	_	35	MHz	$15 \le CKIH$ frequency/PD ≤ 35 MHz $15 \le FPM$ output/PD ≤ 35 MHz
PLL output frequency range: MPLL and SPLL UPLL	52 190	_	532 240	MHz	_
Maximum allowed reference clock phase noise.	—	—	±100	ps	_
Frequency lock time (FOL mode or non-integer MF)	—	_	398		Cycles of divided reference clock.

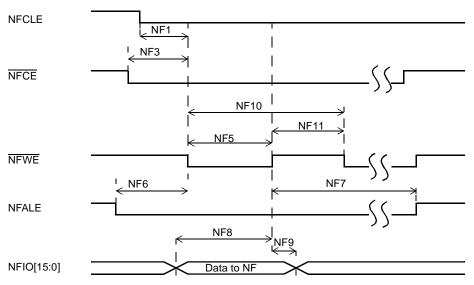


Figure 24. Write Data Latch Cycle Timing Dlagram

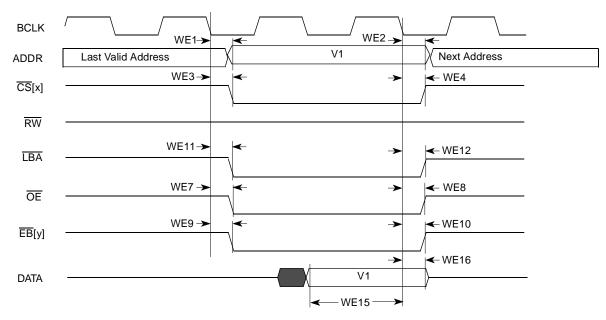
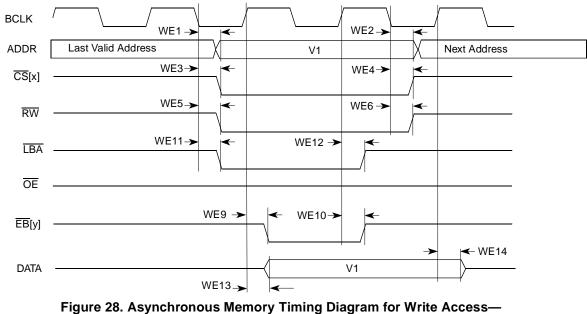



Figure 27. Asynchronous Memory Timing Diagram for Read Access—WSC=1

WSC=1, EBWA=1, EBWN=1, LBN=1

Electrical Characteristics

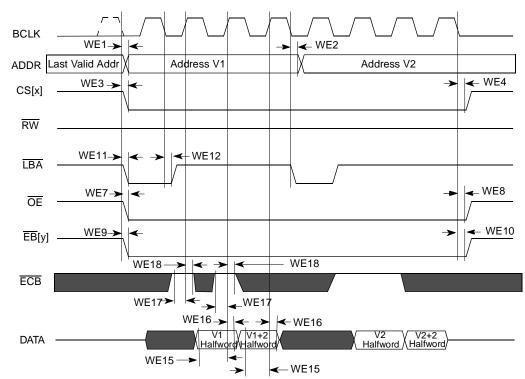
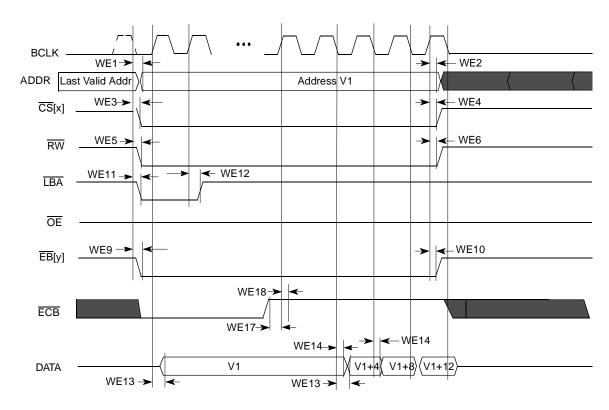



Figure 29. Synchronous Memory Timing Diagram for Two Non-Sequential Read Accesses— WSC=2, SYNC=1, DOL=0

4.3.14 IPU—Sensor Interfaces

4.3.14.1 Supported Camera Sensors

Table 43 lists the known supported camera sensors at the time of publication.

Vendor	Model	
Conexant	CX11646, CX20490 ² , CX20450 ²	
Agilant	HDCP-2010, ADCS-1021 ² , ADCS-1021 ²	
Toshiba	TC90A70	
ICMedia	ICM202A, ICM102 ²	
iMagic	IM8801	
Transchip	TC5600, TC5600J, TC5640, TC5700, TC6000	
Fujitsu	MB86S02A	
Micron	MI-SOC-0133	
Matsushita	MN39980	
STMicro	W6411, W6500, W6501 ² , W6600 ² , W6552 ² , STV0974 ²	
OmniVision	OV7620, OV6630	
Sharp	LZ0P3714 (CCD)	
Motorola	MC30300 (Python) ² , SCM20014 ² , SCM20114 ² , SCM22114 ² , SCM20027 ²	
National Semiconductor	LM9618 ²	

Table 43	Supported	Camera	Sensors ¹
Table 45.	Supported	Camera	36113013

¹ Freescale Semiconductor does not recommend one supplier over another and in no way suggests that these are the only camera suppliers.

² These sensors not validated at time of publication.

4.3.14.2 Functional Description

There are three timing modes supported by the IPU.

4.3.14.2.1 Pseudo BT.656 Video Mode

Smart camera sensors, which include imaging processing, usually support video mode transfer. They use an embedded timing syntax to replace the SENSB_VSYNC and SENSB_HSYNC signals. The timing syntax is defined by the BT.656 standard.

This operation mode follows the recommendations of ITU BT.656 specifications. The only control signal used is SENSB_PIX_CLK. Start-of-frame and active-line signals are embedded in the data stream. An active line starts with a SAV code and ends with a EAV code. In some cases, digital blanking is inserted in between EAV and SAV code. The CSI decodes and filters out the timing-coding from the data stream, thus recovering SENSB_VSYNC and SENSB_HSYNC signals for internal use.

• DISPB_D3_DRDY acts like an output enable signal to the CRT display. This output enables the data to be shifted onto the display. When disabled, the data is invalid and the trace is off.

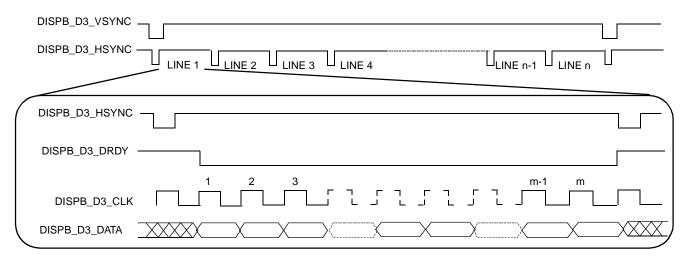


Figure 45. Interface Timing Diagram for TFT (Active Matrix) Panels

4.3.15.2.2 Interface to Active Matrix TFT LCD Panels, Electrical Characteristics

Figure 46 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and the data. All figure parameters shown are programmable. The timing images correspond to inverse polarity of the DISPB_D3_CLK signal and active-low polarity of the DISPB_D3_HSYNC, DISPB_D3_VSYNC and DISPB_D3_DRDY signals.

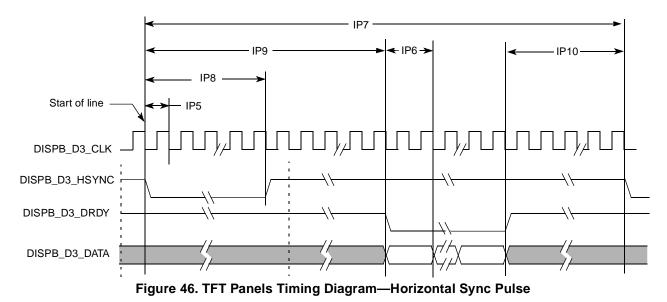
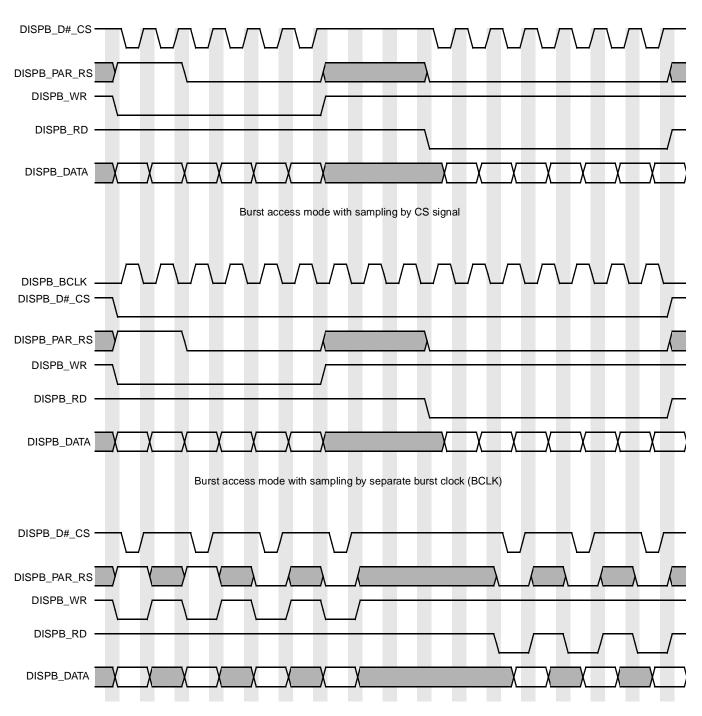


Figure 47 depicts the vertical timing (timing of one frame). All figure parameters shown are programmable.

ID	Parameter	Symbol	Value	Units
IP21	SPL rise time	Tsplr	(BGXP – 1) * Tdpcp	ns
IP22	CLS rise time	Tclsr	CLS_RISE_DELAY * Tdpcp	ns
IP23	CLS fall time	Tclsf	CLS_FALL_DELAY * Tdpcp	ns
IP24	CLS rise and PS fall time	Tpsf	PS_FALL_DELAY * Tdpcp	ns
IP25	PS rise time	Tpsr	PS_RISE_DELAY * Tdpcp	ns
IP26	REV toggle time	Trev	REV_TOGGLE_DELAY * Tdpcp	ns

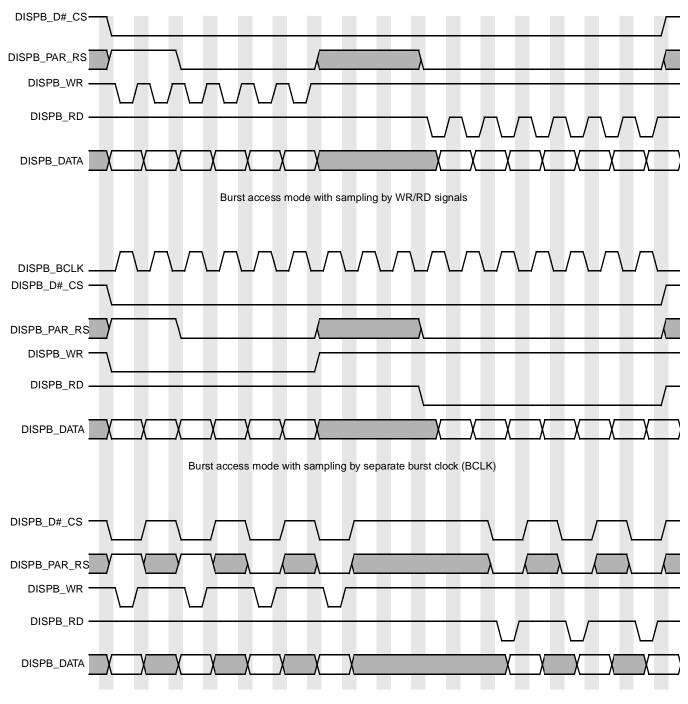
 Table 48. Sharp Synchronous Display Interface Timing Parameters—Pixel Level

4.3.15.4 Synchronous Interface to Dual-Port Smart Displays

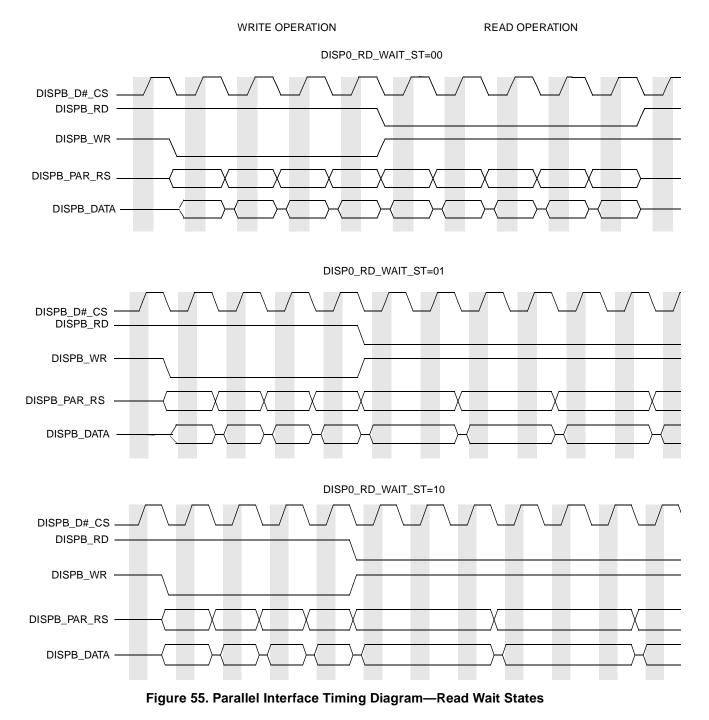

Functionality and electrical characteristics of the synchronous interface to dual-port smart displays are identical to parameters of the synchronous interface. See Section 4.3.15.2.2, "Interface to Active Matrix TFT LCD Panels, Electrical Characteristics."

4.3.15.4.1 Interface to a TV Encoder, Functional Description

The interface has an 8-bit data bus, transferring a single 8-bit value (Y/U/V) in each cycle. The bits D7–D0 of the value are mapped to bits LD17–LD10 of the data bus, respectively. Figure 50 depicts the interface timing,


- The frequency of the clock DISPB_D3_CLK is 27 MHz (within 10%).
- The DISPB_D3_HSYNC, DISPB_D3_VSYNC and DISPB_D3_DRDY signals are active low.
- The transition to the next row is marked by the negative edge of the DISPB_D3_HSYNC signal. It remains low for a single clock cycle.
- The transition to the next field/frame is marked by the negative edge of the DISPB_D3_VSYNC signal. It remains low for at least one clock cycle.
 - At a transition to an odd field (of the next frame), the negative edges of DISPB_D3_VSYNC and DISPB_D3_HSYNC coincide.
 - At a transition to an even field (of the same frame), they do not coincide.
- The active intervals—during which data is transferred—are marked by the DISPB_D3_HSYNC signal being high.

Single access mode (all control signals are not active for one display interface clock after each display access)



Single access mode (all control signals are not active for one display interface clock after each display access)

Figure 52. Asynchronous Parallel System 80 Interface (Type 2) Burst Mode Timing Diagram

4.3.15.5.2 Parallel Interfaces, Electrical Characteristics

Figure 56, Figure 58, Figure 57, and Figure 59 depict timing of asynchronous parallel interfaces based on the system 80 and system 68k interfaces. Table 49 lists the timing parameters at display access level. All timing images are based on active low control signals (signals polarity is controlled via the DI_DISP_SIG_POL Register).

Figure 63 depicts timing of the 5-wire serial interface (Type 2). For this interface, a separate RS line is added. When a burst is transmitted within single active chip select interval, the RS can be changed at boundaries of words.

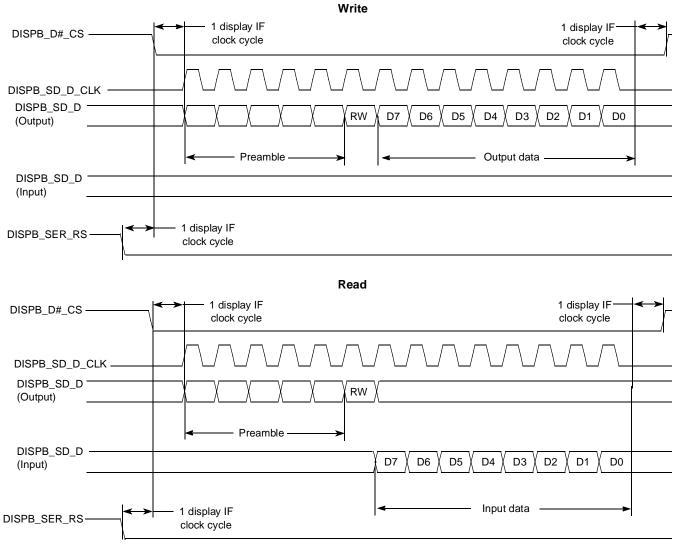


Figure 63. 5-Wire Serial Interface (Type 2) Timing Diagram

The DISP#_IF_CLK_PER_WR, DISP#_IF_CLK_PER_RD, HSP_CLK_PERIOD, DISP#_IF_CLK_DOWN_WR, DISP#_IF_CLK_UP_WR, DISP#_IF_CLK_DOWN_RD, DISP#_IF_CLK_UP_RD and DISP#_READ_EN parameters are programmed via the DI_DISP#_TIME_CONF_1, DI_DISP#_TIME_CONF_2 and DI_HSP_CLK_PER Registers.

4.3.16 Memory Stick Host Controller (MSHC)

Figure 65, Figure 66, and Figure 67 depict the MSHC timings, and Table 51 and Table 52 list the timing parameters.

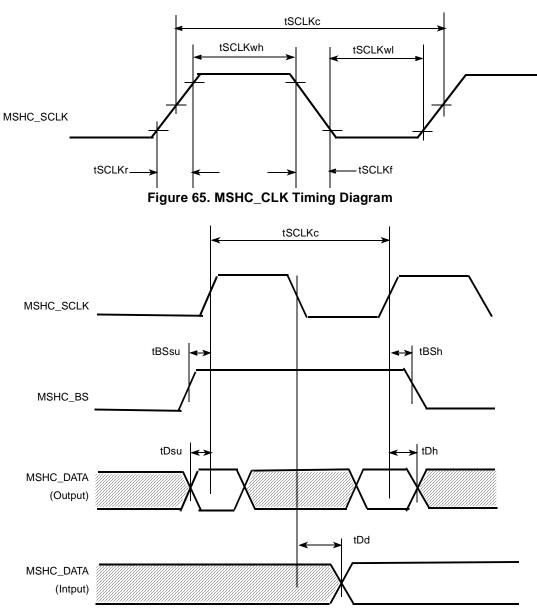


Figure 67. Transfer Operation Timing Diagram (Parallel)

NOTE

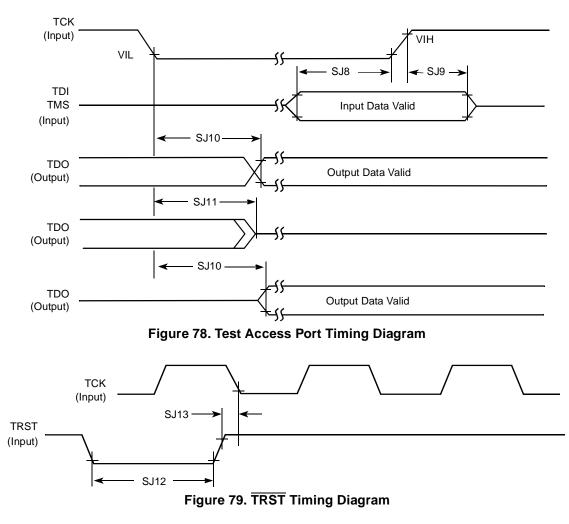
The Memory Stick Host Controller is designed to meet the timing requirements per Sony's *Memory Stick Pro Format Specifications* document. Tables in this section details the specifications requirements for parallel and serial modes, and not the MCIMX31 timing.

Signal	Parameter	Symbol	Stand	Standards		
	Farameter	Cymbol	Min.	Max.	Unit	
	Cycle	tSCLKc	50		ns	
	H pulse length	tSCLKwh	15		ns	
MSHC_SCLK	L pulse length	tSCLKwl	15		ns	
	Rise time	tSCLKr	—	10	ns	
	Fall time	tSCLKf	—	10	ns	
MSHC_BS	Setup time	tBSsu	5		ns	
	Hold time	tBSh	5		ns	
	Setup time	tDsu	5		ns	
MSHC_DATA	Hold time	tDh	5	_	ns	
	Output delay time	tDd	—	15	ns	

Table 51. Serial Interface Ti	ming Parameters ¹
-------------------------------	------------------------------

¹ Timing is guaranteed for NVCC from 2.7 through 3.1 V and up to a maximum overdrive NVCC of 3.3 V. See NVCC restrictions described in Table 8, "Operating Ranges," on page 13.

Signal	Parameter S	Symbol	Stand	Standards		
	Falameter	Symbol	Min	Мах	Unit	
	Cycle	tSCLKc	25		ns	
	H pulse length	tSCLKwh	5	_	ns	
MSHC_SCLK	L pulse length	tSCLKwl	5	_	ns	
	Rise time	tSCLKr	_	10	ns	
	Fall time	tSCLKf	_	10	ns	
	Setup time	tBSsu	8	_	ns	
MSHC_BS	Hold time	tBSh	1	_	ns	
MSHC_DATA	Setup time	tDsu	8		ns	
	Hold time	tDh	1	_	ns	
	Output delay time	tDd	—	15	ns	


 Table 52. Parallel Interface Timing Parameters¹

¹ Timing is guaranteed for NVCC from 2.7 through 3.1 V and up to a maximum overdrive NVCC of 3.3 V. See NVCC restrictions described in Table 8, "Operating Ranges," on page 13.

4.3.17 Personal Computer Memory Card International Association (PCMCIA)

Figure 68 and Figure 69 depict the timings pertaining to the PCMCIA module, each of which is an example of one clock of strobe set-up time and one clock of strobe hold time. Table 53 lists the timing parameters.

Electrical Characteristics

Table 58.	SJC	Timing	Parameters
-----------	-----	--------	------------

ID Pa	Parameter	All Frequencies		Unit
	Falameter	Min	Max	Onit
SJ1	TCK cycle time	100 ¹	_	ns
SJ2	TCK clock pulse width measured at V_M^2	40	_	ns
SJ3	TCK rise and fall times	_	3	ns
SJ4	Boundary scan input data set-up time	10	_	ns
SJ5	Boundary scan input data hold time	50	_	ns
SJ6	TCK low to output data valid		50	ns
SJ7	TCK low to output high impedance		50	ns
SJ8	TMS, TDI data set-up time	10	_	ns
SJ9	TMS, TDI data hold time	50	—	ns
SJ10	TCK low to TDO data valid	—	44	ns

5.1.3.2 BGA Signal ID by Ball Grid Location–14 x 14 0.5 mm

Table 65 shows the device connection list for signals only, alpha-sorted by signal identification.

Signal ID	Ball Location
A0	AD6
A1	AF5
A10	AF18
A11	AC3
A12	AD3
A13	AD4
A14	AF17
A15	AF16
A16	AF15
A17	AF14
A18	AF13
A19	AF12
A2	AB5
A20	AF11
A21	AF10
A22	AF9
A23	AF8
A24	AF7
A25	AF6
A3	AE4
A4	AA3
A5	AF4
A6	AB3
A7	AE3
A8	AD5
A9	AF3
ATA_CS0	J6
ATA_CS1	F2
ATA_DIOR	E2
ATA_DIOW	H6
ATA_DMACK	F1
ATA_RESET	H3
BATT_LINE	F7
BCLK	AB26
BOOT_MODE0	F20
BOOT_MODE1	C21
BOOT_MODE2	D24
BOOT_MODE3	C22
 BOOT_MODE4	D26
CAPTURE	A22
CAS	AD20
CE_CONTROL	A14
CKIH	F24
-	

Table 65.	14 x 14 BGA	Signal ID by	Ball Grid Location
		• . g	

Signal ID	Ball Location
CKIL	H21
CLKO	C23
CLKSS	G26
COMPARE	G18
CONTRAST	R24
CS0	AE23
CS1	AF23
CS2	AE21
CS3	AD22
CS4	AF24
CS5	AF22
CSI_D10	M24
CSI_D11	L26
CSI_D12	M21
CSI_D13	M25
 CSI_D14	M20
 CSI D15	M26
 CSI_D4	L21
CSI_D5	K25
 CSI_D6	L24
CSI_D7	K26
 CSI_D8	L20
CSI_D9	L25
CSI_HSYNC	K20
 CSI_MCLK	K24
CSI_PIXCLK	J26
	J25
CSPI1_MISO	P7
CSPI1_MOSI	P2
CSPI1_SCLK	N2
CSPI1_SPI_RDY	N3
CSPI1 SS0	P3
CSPI1_SS1	P1
CSPI1_SS2	P6
CSPI2 MISO	A4
CSPI2 MOSI	E3
CSPI2 SCLK	C7
CSPI2_SPI_RDY	B6
CSPI2_SS0	B5
CSPI2_SS1	C6
CSPI2_SS2	A5
CSPI3_MISO	G3
CSPI3_MISO CSPI3_MOSI	

Table 65. 14 x 14 BGA Signal		
Signal ID	Ball Location	
LD8	U21	
LD9	W26	
M_GRANT	Y21	
M_REQUEST	AC25	
MA10	AC1	
MCUPG	See VPG0	
NFALE	V1	
NFCE	T6	
NFCLE	U3	
NFRB	U1	
NFRE	V2	
NFWE	T7	
NFWP	U2	
OE	AB25	
PAR_RS	R21	
PC_BVD1	H2	
PC_BVD2	K6	
PC_CD1	L7	
PC_CD2	K1	
PC_POE	J7	
PC_PWRON	K3	
PC_READY	J2	
PC_RST	H1	
PC_RW	G2	
PC_VS1	J1	
PC_VS2	K7	
PC_WAIT	L6	
POR	H24	
POWER_FAIL	E26	
PWMO	G1	
RAS	AF19	
READ	P20	
RESET_IN	J21	
RI_DCE1	F11	
RI_DTE1	G12	
RTCK	C17	
RTS1	G11	
RTS2	B14	
RW	AB22	
RXD1	A10	
RXD2	A13	
SCK3	R2	
SCK4	C4	
SCK5	D3	
SDCKE0	AD21	
SDCKE1	AF21	

Signal ID	Ball Location
SCLK0	B22
SD_D_CLK	P24
SD_D_I	N20
SD_D_IO	P25
SD0	AD18
SD1	AE17
SD1_CLK	M7
SD1_CMD	L2
SD1_DATA0	M6
SD1_DATA1	L1
SD1_DATA2	L3
SD1_DATA3	K2
SD10	AE15
SD11	AE14
SD12	AD14
SD13	AA14
SD14	AE13
SD15	AD13
SD16	AA13
SD17	AD12
SD18	AA12
SD19	AE11
SD2	AA19
SD20	AE10
SD21	AA11
SD22	AE9
SD23	AA10
SD24	AE8
SD25	AD10
SD26	AE7
SD27	AA9
SD28	AA8
SD29	AD9
SD3	AA18
SD30	AE6
SD31	AA7
SD4	AD17
SD5	AA17
SD6	AE16
SD7	AA16
SD8	AD15
SD9	AA15
SDBA0	AD7
SDBA1	AE5
TRSTB	B20
TTM_PAD	U20

Table 65. 14 x 14 BGA Signal ID by Ball Grid Location (continued)