

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM1136JF-S
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	532MHz
Co-Processors/DSP	Multimedia; GPU, IPU, MPEG-4, VFP
RAM Controllers	DDR
Graphics Acceleration	Yes
Display & Interface Controllers	Keyboard, Keypad, LCD
Ethernet	-
SATA	-
USB	USB 2.0 (3)
Voltage - I/O	1.8V, 2.0V, 2.5V, 2.7V, 3.0V
Operating Temperature	-20°C ~ 70°C (TA)
Security Features	Random Number Generator, RTIC, Secure Fusebox, Secure JTAG, Secure Memory
Package / Case	473-LFBGA
Supplier Device Package	473-LFBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx31ldvmn5dr2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 Signal Descriptions

Signal descriptions are in the reference manual. Special signal considerations are listed following this paragraph. The BGA ball assignment is in Section 5, "Package Information and Pinout."

Special Signal Considerations:

• Tamper detect (GPIO1_6)

Tamper detect logic is used to issue a security violation. This logic is activated if the tamper detect input is asserted.

The tamper detect logic is disabled after reset. After enabling the logic, it is impossible to disable it until the next reset. The GPR[16] bit functions as the tamper detect enable bit.

GPIO1_6 functions similarly to other I/O with GPIO capabilities regardless of the status of the tamper detect enable bit. (For example, the GPIO1_6 can function as an input with GPIO capabilities, such as sampling through PSR or generating interrupts.)

• Power ready (GPIO1_5)

The power ready input, GPIO1_5, should be connected to an external power management IC power ready output signal. If not used, GPIO1_5 must either be (a) externally pulled-up to NVCC1 or (b) a no connect, internally pulled-up by enabling the on-chip pull-up resistor. GPIO1_5 is a dedicated input and cannot be used as a general-purpose input/output.

• SJC_MOD

SJC_MOD must be externally connected to GND for normal operation. Termination to GND through an external pull-down resistor (such as 1 k Ω) is allowed, but the value should be much smaller than the on-chip 100 k Ω pull-up.

• CE_CONTROL

CE_CONTROL is a reserved input and must be externally tied to GND through a 1 k Ω resistor.

• TTM_PAD

This is for Freescale factory use only. Control bits indicate that the pull-up/down is disabled. However, the TTM_PAD is actually connected to an on-chip pull-down device. Users must either float this signal or tie it to GND.

• M_REQUEST and M_GRANT

These two signals are not utilized internally. The user should make no connection to these signals.

• Clock Source Select (CLKSS)

The CLKSS is the input that selects the default reference clock source providing input to the DPLL. To select CKIH, tie CLKSS to NVCC1. To select CKIL, tie CLKSS to ground. After initialization, the reference clock source can be changed (initial setting is overwritten) by programming the PRCS bits in the CCMR.

Table 8 provides the operating ranges.

NOTE

The term NVCC in this section refers to the associated supply rail of an input or output. The association is shown in the Signal Multiplexing chapter of the reference manual.

CAUTION

NVCC6 and NVCC9 must be at the same voltage potential. These supplies are connected together on-chip to optimize ESD damage immunity.

Symbol	Parameter	Min	Мах	Units
QVCC,	Core Operating Voltage ^{1,2,3}			
QVCC1,	0 ≤ f _{ARM} ≤ 400 MHz, non-overdrive	1.22	1.47	
QVCC4	$0 \le f_{ARM} \le 532 \text{ MHz}$, non-overdrive	1.38	1.52	V
	$0 \le f_{ARM} \le 532 \text{ MHz}, \text{ overdrive}^4$	1.52	1.65	
	State Retention Voltage ⁵	0.95	—	
NVCC1,	I/O Supply Voltage, except DDR ⁶ non-overdrive	1.75	3.1	V
NVCC3-10	overdrive ⁷	>3.1	3.3	
NVCC2,	I/O Supply Voltage, DDR only	1.75	1.95	V
NVCC21,				
NVCC22				
FVCC, MVCC,	PLL (Phase-Locked Loop) and FPM (Frequency Pre-multiplier) Supply Voltage ⁸			V
SVCC, UVCC	non-overdrive	1.3	1.47	
	overdrive ⁴	>1.47	1.6	
IOQVDD	On-device Level Shifter Supply Voltage	1.6	1.9	V
	Fusebox read Supply Voltage ^{9, 10}	1.65	1.95	V
	Fusebox write (program) Supply Voltage ¹¹	3.0	3.3	V
T _A	Operating Ambient Temperature Range ¹²	-20	70	°C

Table 8. Operating Ranges

¹ Measured at package balls, including peripherals, ARM, and L2 cache supplies (QVCC, QVCC1, QVCC4, respectively).

² The core voltage must be higher than 1.38V to avoid corrupted data during transfers from the USB HS. Please refer to Errata file ENGcm02610 ID.

³ If the Core voltage is supplied by the MC13738, it will be 1.6 ± 0.05 V during the power-up sequence and this is allowed. After power-up the voltage should be reduced to avoid operation in overdrive mode.

⁴ Supply voltage is considered "overdrive" for voltages above 1.52 V. Operation time in overdrive—whether switching or not—must be limited to a cumulative duration of 1.25 years (10,950 hours) or less to sustain the maximum operating voltage without significant device degradation—for example, 25% (average 6 hours out of 24 yours per day) duty cycle for 5-year rated equipment. To tolerate the maximum operating overdrive voltage for 10 years, the device must have a duty cycle of 12.5% or less in overdrive (for example 3 out of 24 hours per day). Below 1.52 V, duty cycle restrictions may apply for equipment rated above 5 years.

⁵ The SR voltage is applied to QVCC, QVCC1, and QVCC4 after the device is placed in SR mode. The Real-Time Clock (RTC) is operational in State Retention (SR) mode.

⁶ Overshoot and undershoot conditions (transitions above NVCC and below GND) on I/O must be held below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device.

Table 13 shows the core current consumption for -20° C to 70° C for Silicon Revision 2.0.1 for the MCIMX31.

Mode	ode Conditions		QVCC (Peripheral)		QVCC1 (ARM)		QVCC4 (L2)		FVCC, +MVCC, +SVCC, +UVCC (PLL)	
		Тур	Max	Тур	Max	Тур	Max	Тур	Max	
Deep Sleep	 QVCC = 0.95 V ARM and L2 caches are power gated (QVCC1 2= QVCC4 = 0 V) All PLLs are off, VCC = 1.4 V ARM is in well bias FPM is off 32 kHz input is on CKIH input is off CAMP is off TCK input is off All modules are off No external resistive loads RNGA oscillator is off 	0.16	_	_		_		0.02		mA
State Retention	 QVCC and QVCC1 = 0.95 V L2 caches are power gated (QVCC4 = 0 V) All PLLs are off, VCC = 1.4 V ARM is in well bias FPM is off 32 kHz input is on CKIH input is off CAMP is off TCK input is off All modules are off No external resistive loads RNGA oscillator is off 	0.16	_	0.07				0.02		mA
Wait	 QVCC,QVCC1, and QVCC4 = 1.22 V ARM is in wait for interrupt mode MAX is active L2 cache is stopped but powered MCU PLL is on (532 MHz), VCC = 1.4 V USB PLL and SPLL are off, VCC = 1.4 V FPM is on CKIH input is on CAMP is on 32 kHz input is on All clocks are gated off All modules are off (by programming CGR[2:0] registers) RNGA oscillator is off No external resistive loads 	6.00		2.20		0.03		3.60	_	mA

|--|

¹ Typical column: TA = 25° C

² Maximum column: TA = 70° C

4.2.2 Powering Down

For silicon revisions beginning with Revision 2.0.1 there is no special requirements for the power down sequence.

4.3 Module-Level Electrical Specifications

This section contains the MCIMX31 electrical information including timing specifications, arranged in alphabetical order by module name.

4.3.1 I/O Pad (PADIO) Electrical Specifications

This section specifies the AC/DC characterization of functional I/O of the MCIMX31. There are two main types of I/O: regular and DDR. In this document, the "Regular" type is referred to as GPIO.

4.3.1.1 DC Electrical Characteristics

The MCIMX31 I/O parameters appear in Table 14 for GPIO. See Table 8 for temperature and supply voltage ranges.

NOTE

The term NVCC in this section refers to the associated supply rail of an input or output. The association is shown in the Signal Multiplexing chapter of the reference manual. NVCC for Table 14 refers to NVCC1 and NVCC3–10; QVCC refers to QVCC, QVCC1, and QVCC4.

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Units
High-level output voltage	V _{OH}	V _{OH} I _{OH} = -1 mA NV0			—	V
		I _{OH} = specified Drive	0.8*NVCC	_	_	V
Low-level output voltage	V _{OL}	I _{OL} = 1 mA	_	_	0.15	V
		I _{OL} = specified Drive	_	_	0.2*NVCC	V
High-level output current, slow slew rate	I _{OH_S}	V _{OH} =0.8*NVCC Std Drive High Drive Max Drive	-2 -4 -8	_	_	mA
High-level output current, fast slew rate	I _{OH_F}	V _{OH} =0.8*NVCC Std Drive High Drive Max Drive	-4 -6 -8		_	mA
Low-level output current, slow slew rate	I _{OL_S}	V _{OL} =0.2*NVCC Std Drive High Drive Max Drive	2 4 8	_	_	mA

Table 14. GPIO DC Electrical Parameters

Figure 8. Write 1 Sequence Timing Diagram

Figure 9. Read Sequence Timing Diagram

Table	22	WR1/RD	Timina	Parameters
Iable	∠ ∠.		runny	r ai aiiietei s

ID	Parameter	Symbol	Min	Тур	Max	Units
OW7	Write 1 / Read Low Time	t _{LOW1}	1	5	15	μs
OW8	Transmission Time Slot	t _{SLOT}	60	117	120	μs
OW9	Release Time	t _{RELEASE}	15	-	45	μs

4.3.5 ATA Electrical Specifications (ATA Bus, Bus Buffers)

This section discusses ATA parameters. For a detailed description, refer to the ATA specification.

The user needs to use level shifters for 3.3 Volt or 5.0 Volt compatibility on the ATA interface.

The use of bus buffers introduces delay on the bus and introduces skew between signal lines. These factors make it difficult to operate the bus at the highest speed (UDMA-5) when bus buffers are used. If fast UDMA mode operation is needed, this may not be compatible with bus buffers.

Another area of attention is the slew rate limit imposed by the ATA specification on the ATA bus. According to this limit, any signal driven on the bus should have a slew rate between 0.4 and 1.2 V/ns with a 40 pF load. Not many vendors of bus buffers specify slew rate of the outgoing signals.

When bus buffers are used, the ata_data bus buffer is special. This is a bidirectional bus buffer, so a direction control signal is needed. This direction control signal is ata_buffer_en. When its high, the bus should drive from host to device. When its low, the bus should drive from device to host. Steering of the signal is such that contention on the host and device tri-state busses is always avoided.

4.3.5.1 Timing Parameters

In the timing equations, some timing parameters are used. These parameters depend on the implementation of the ATA interface on silicon, the bus buffer used, the cable delay and cable skew. Table 23 shows ATA timing parameters.

Name	Description	Value/ Contributing Factor ¹
Т	Bus clock period (ipg_clk_ata)	peripheral clock frequency
ti_ds	Set-up time ata_data to ata_iordy edge (UDMA-in only) UDMA0 UDMA1 UDMA2, UDMA3 UDMA4 UDMA5	15 ns 10 ns 7 ns 5 ns 4 ns
ti_dh	Hold time ata_iordy edge to ata_data (UDMA-in only) UDMA0, UDMA1, UDMA2, UDMA3, UDMA4 UDMA5	5.0 ns 4.6 ns
tco	Propagation delay bus clock L-to-H to ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack, ata_data, ata_buffer_en	12.0 ns
tsu	Set-up time ata_data to bus clock L-to-H	8.5 ns
tsui	Set-up time ata_iordy to bus clock H-to-L	8.5 ns
thi	Hold time ata_iordy to bus clock H to L	2.5 ns
tskew1	Max difference in propagation delay bus clock L-to-H to any of following signals ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack, ata_data (write), ata_buffer_en	7 ns
tskew2	Max difference in buffer propagation delay for any of following signals ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack, ata_data (write), ata_buffer_en	transceiver
tskew3	Max difference in buffer propagation delay for any of following signals ata_iordy, ata_data (read)	transceiver
tbuf	Max buffer propagation delay	transceiver
tcable1	Cable propagation delay for ata_data	cable
tcable2	Cable propagation delay for control signals ata_dior, ata_diow, ata_iordy, ata_dmack	cable
tskew4	Max difference in cable propagation delay between ata_iordy and ata_data (read)	cable
tskew5	Max difference in cable propagation delay between (ata_dior, ata_diow, ata_dmack) and ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_data(write)	cable
tskew6	Max difference in cable propagation delay without accounting for ground bounce	cable

Table 23. ATA Timing Parameters

¹ Values provided where applicable.

4.3.5.2 PIO Mode Timing

Figure 10 shows timing for PIO read, and Table 24 lists the timing parameters for PIO read.

Figure 10. PIO Read Timing Diagram

ATA Parameter	Parameter from Figure 10	Value	Controlling Variable
t1	t1	t1 (min) = time_1 * T – (tskew1 + tskew2 + tskew5)	time_1
t2	t2r	t2 min) = time_2r * T – (tskew1 + tskew2 + tskew5)	time_2r
t9	t9	t9 (min) = time_9 * T – (tskew1 + tskew2 + tskew6)	time_3
t5	t5	t5 (min) = tco + tsu + tbuf + tbuf + tcable1 + tcable2	If not met, increase time_2
t6	t6	0	_
tA	tA	$tA (min) = (1.5 + time_ax) * T - (tco + tsui + tcable2 + tcable2 + 2*tbuf)$	time_ax
trd	trd1	trd1 (max) = (-trd) + (tskew3 + tskew4) trd1 (min) = (time_pio_rdx - 0.5)*T - (tsu + thi) (time_pio_rdx - 0.5) * T > tsu + thi + tskew3 + tskew4	time_pio_rdx
tO	_	t0 (min) = (time_1 + time_2 + time_9) * T	time_1, time_2r, time_9

Table 24. PIO Read Timing Parameters

Figure 11 shows timing for PIO write, and Table 25 lists the timing parameters for PIO write.

ID	Parameter	Symbol	Min	Мах	Units
CS1	SCLK Cycle Time	t _{clk}	60	—	ns
CS2	SCLK High or Low Time	t _{SW}	30	—	ns
CS3	SCLK Rise or Fall	t _{RISE/FALL}	_	7.6	ns
CS4	SSx pulse width	t _{CSLH}	25	—	ns
CS5	SSx Lead Time (CS setup time)	t _{SCS}	25	—	ns
CS6	SSx Lag Time (CS hold time)	t _{HCS}	25	—	ns
CS7	Data Out Setup Time	t _{Smosi}	5	—	ns
CS8	Data Out Hold Time	t _{Hmosi}	5	—	ns
CS9	Data In Setup Time	t _{Smiso}	6	—	ns
CS10	Data In Hold Time	t _{Hmiso}	5	_	ns
CS11	SPI_RDY Setup Time ¹	t _{SRDY}		—	ns

Table 29. CSPI Interface Timing Parameters

¹ SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.

4.3.8 DPLL Electrical Specifications

The three PLL's of the MCIMX31 (MCU, USB, and Serial PLL) are all based on same DPLL design. The characteristics provided herein apply to all of them, except where noted explicitly. The PLL characteristics are provided based on measurements done for both sources—external clock source (CKIH), and FPM (Frequency Pre-Multiplier) source.

4.3.8.1 Electrical Specifications

Table 30 lists the DPLL specification.

Table 30. DPLL Specifications

Parameter	Min	Тур	Мах	Unit	Comments
CKIH frequency	15	26 ¹	75 ²	MHz	—
CKIL frequency (Frequency Pre-multiplier (FPM) enable mode)	_	32; 32.768, 38.4	—	kHz	FPM lock time $\approx 480~\mu s.$
Predivision factor (PD bits)	1	—	16		—
PLL reference frequency range after Predivider	15	_	35	MHz	$15 \le CKIH$ frequency/PD ≤ 35 MHz $15 \le FPM$ output/PD ≤ 35 MHz
PLL output frequency range: MPLL and SPLL UPLL	52 190	_	532 240	MHz	_
Maximum allowed reference clock phase noise.	—	—	±100	ps	_
Frequency lock time (FOL mode or non-integer MF)	—	—	398	—	Cycles of divided reference clock.

Parameter	Min	Тур	Max	Unit	Comments
Phase lock time	_	_	100	μs	In addition to the frequency
Maximum allowed PLL supply voltage ripple	—	_	25	mV	F _{modulation} < 50 kHz
Maximum allowed PLL supply voltage ripple	_	_	20	mV	50 kHz < F _{modulation} < 300 kHz
Maximum allowed PLL supply voltage ripple	_	_	25	mV	F _{modulation} > 300 kHz
PLL output clock phase jitter	_	_	5.2	ns	Measured on CLKO pin
PLL output clock period jitter	_	_	420	ps	Measured on CLKO pin

Table 30. DPLL Specifications (continued)

¹ The user or board designer must take into account that the use of a frequency other than 26 MHz would require adjustment to the DPTC–DVFS table, which is incorporated into operating system code.

² The PLL reference frequency must be ≤ 35 MHz. Therefore, for frequencies between 35 MHz and 70 MHz, program the predivider to divide by 2 or more. If the CKIH frequency is above 70 MHz, program the predivider to 3 or more. For PD bit description, see the reference manual.

4.3.9 EMI Electrical Specifications

This section provides electrical parametrics and timings for EMI module.

4.3.9.1 NAND Flash Controller Interface (NFC)

The NFC supports normal timing mode, using two flash clock cycles for one access of $\overline{\text{RE}}$ and $\overline{\text{WE}}$. AC timings are provided as multiplications of the clock cycle and fixed delay. Figure 22, Figure 23, Figure 24, and Figure 25 depict the relative timing requirements among different signals of the NFC at module level, for normal mode, and Table 31 lists the timing parameters.

Figure 22. Command Latch Cycle Timing Dlagram

Figure 25. Read Data Latch Cycle Timing Dlagram

ID	Parameter	Symbol	Tir T = NFC C	ning Clock Cycle ²	Example Tir NFC Clock ≈ T = 30	Unit	
			Min	Max	Min	Max	
NF1	NFCLE Setup Time	tCLS	T–1.0 ns	_	29		ns
NF2	NFCLE Hold Time	tCLH	T–2.0 ns	_	28	_	ns
NF3	NFCE Setup Time	tCS	T–1.0 ns	_	29	_	ns
NF4	NFCE Hold Time	tCH	T–2.0 ns	_	28		ns
NF5	NF_WP Pulse Width	tWP	T–1.5 ns		28.5		ns
NF6	NFALE Setup Time	tALS	Т	—	30	_	ns
NF7	NFALE Hold Time	tALH	T–3.0 ns	_	27	_	ns
NF8	Data Setup Time	tDS	Т	_	30	_	ns
NF9	Data Hold Time	tDH	T–5.0 ns	_	25	_	ns
NF10	Write Cycle Time	tWC		2T	60		ns
NF11	NFWE Hold Time	tWH	T-2	2.5 ns	27.5		ns
NF12	Ready to NFRE Low	tRR	6T	—	180	_	ns
NF13	NFRE Pulse Width	tRP	1.5T	_	45	_	ns
NF14	READ Cycle Time	tRC	2T	_	60	_	ns
NF15	NFRE High Hold Time	tREH	0.5T–2.5 ns		12.5	_	ns
NF16	Data Setup on READ	tDSR	N/A		10	—	ns
NF17	Data Hold on READ	tDHR	N/A		0	—	ns

Table 31. NFC Timing Parameters	able 31. NFC	; Timing	Parameters
---------------------------------	--------------	----------	------------

¹ The flash clock maximum frequency is 50 MHz.

² Subject to DPLL jitter specification on Table 30, "DPLL Specifications," on page 35.

NOTE

High is defined as 80% of signal value and low is defined as 20% of signal value.

Timing for HCLK is 133 MHz and internal NFC clock (flash clock) is approximately 33 MHz (30 ns). All timings are listed according to this NFC clock frequency (multiples of NFC clock phases), except NF16 and NF17, which are not NFC clock related.

4.3.9.2 Wireless External Interface Module (WEIM)

All WEIM output control signals may be asserted and deasserted by internal clock related to BCLK rising edge or falling edge according to corresponding assertion/negation control fields. Address always begins related to BCLK falling edge but may be ended both on rising and falling edge in muxed mode according to control register configuration. Output data begins related to BCLK rising edge except in muxed mode where both rising and falling edge may be used according to control register configuration. Input data, ECB and DTACK all captured according to BCLK rising edge time. Figure 26 depicts the timing of the WEIM module, and Table 32 lists the timing parameters.

Electrical Characteristics

-	-	-	-

Table 33. DDR/SDR	SDRAM Read	Cycle	Timing	Parameters
-------------------	------------	-------	--------	------------

ID	Parameter	Symbol	Min	Max	Unit
SD1	SDRAM clock high-level width	tCH	3.4	4.1	ns
SD2	SDRAM clock low-level width	tCL	3.4	4.1	ns
SD3	SDRAM clock cycle time	tCK	7.5	_	ns
SD4	CS, RAS, CAS, WE, DQM, CKE setup time	tCMS	2.0	—	ns
SD5	CS, RAS, CAS, WE, DQM, CKE hold time	tCMH	1.8	_	ns
SD6	Address setup time	tAS	2.0	_	ns
SD7	Address hold time	tAH	1.8	_	ns
SD8	SDRAM access time	tAC	_	6.47	ns

• DISPB_D3_DRDY acts like an output enable signal to the CRT display. This output enables the data to be shifted onto the display. When disabled, the data is invalid and the trace is off.

Figure 45. Interface Timing Diagram for TFT (Active Matrix) Panels

4.3.15.2.2 Interface to Active Matrix TFT LCD Panels, Electrical Characteristics

Figure 46 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and the data. All figure parameters shown are programmable. The timing images correspond to inverse polarity of the DISPB_D3_CLK signal and active-low polarity of the DISPB_D3_HSYNC, DISPB_D3_VSYNC and DISPB_D3_DRDY signals.

Figure 47 depicts the vertical timing (timing of one frame). All figure parameters shown are programmable.

Figure 71. SDHC Timing Diagram

Table 55. SDHC Interface Timing Parameters

ID	Parameter	Symbol	Min	Max	Unit
Card Input Clock					
SD1	Clock Frequency (Low Speed)	f _{PP} ¹	0	400	kHz
	Clock Frequency (SD/SDIO Full Speed)	f _{PP} ²	0	25	MHz
	Clock Frequency (MMC Full Speed)	f _{PP} ³	0	20	MHz
	Clock Frequency (Identification Mode)	f _{OD} ⁴	100	400	kHz
SD2	Clock Low Time	t _{WL}	10	—	ns
SD3	Clock High Time	t _{WH}	10	—	ns
SD4	Clock Rise Time	t _{TLH}	—	10	ns
SD5	Clock Fall Time	t _{THL}	—	10	ns
SDHC O	utput/Card Inputs CMD, DAT (Reference to CLK)				
SD6	SDHC output delay	t _{ODL}	-6.5	3	ns
SDHC In	out/Card Outputs CMD, DAT (Reference to CLK)				
SD7	SDHC input setup	t _{IS}	_	18.5	ns
SD8	SDHC input hold	t _{IH}	—	-11.5	ns

 1 In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 V–3.3 V.

² In normal data transfer mode for SD/SDIO card, clock frequency can be any value between 0 MHz–25 MHz.

³ In normal data transfer mode for MMC card, clock frequency can be any value between 0 MHz–20 MHz.

⁴ In card identification mode, card clock must be 100 kHz–400 kHz, voltage ranges from 2.7 V–3.3 V.

4.3.20 SIM Electrical Specifications

Each SIM card interface consist of a total of 12 pins (for 2 separate ports of 6 pins each. Mostly one port with 5 pins is used).

The interface is meant to be used with synchronous SIM cards. This means that the SIM module provides a clock for the SIM card to use. The frequency of this clock is normally 372 times the data rate on the TX/RX pins, however SIM module can work with CLK equal to 16 times the data rate on TX/RX pins.

There is no timing relationship between the clock and the data. The clock that the SIM module provides to the aim card will be used by the SIM card to recover the clock from the data much like a standard UART. All six (or 5 in case bi-directional TXRX is used) of the pins for each half of the SIM module are asynchronous to each other.

There are no required timing relationships between the signals in normal mode, but there are some in two specific cases: reset and power down sequences.

4.3.20.1 General Timing Requirements

Figure 72 shows the timing of the SIM module, and Figure 56 lists the timing parameters.

Figure 72. SIM Clock Timing Diagram

Table 56. SIM Timing Specification—High Drive Strength

Num	Description	Symbol	Min	Мах	Unit
1	SIM Clock Frequency (CLK) ¹	S _{freq}	0.01	5 (Some new cards may reach 10)	MHz
2	SIM CLK Rise Time ²	S _{rise}	—	20	ns
3	SIM CLK Fall Time ³	S _{fall}	—	20	ns
4	SIM Input Transition Time (RX, SIMPD)	S _{trans}	—	25	ns

¹ 50% duty cycle clock

² With C = 50pF

³ With C = 50pF

4.3.20.2 Reset Sequence

4.3.20.2.1 Cards with Internal Reset

The sequence of reset for this kind of SIM Cards is as follows (see Figure 73):

- After powerup, the clock signal is enabled on SGCLK (time T0)
- After 200 clock cycles, RX must be high.
- The card must send a response on RX acknowledging the reset between 400 and 40000 clock cycles after T0.

4.3.21 SJC Electrical Specifications

This section details the electrical characteristics for the SJC module. Figure 76 depicts the SJC test clock input timing. Figure 77 depicts the SJC boundary scan timing, Figure 78 depicts the SJC test access port, Figure 79 depicts the SJC TRST timing, and Table 58 lists the SJC timing parameters.

Figure 77. Boundary Scan (JTAG) Timing Diagram

4.3.22.2 SSI Receiver Timing with Internal Clock

Figure 81 depicts the SSI receiver timing with internal clock, and Table 60 lists the timing parameters.

Figure 81. SSI Receiver with Internal Clock Timing Diagram

4.3.22.3 SSI Transmitter Timing with External Clock

Figure 82 depicts the SSI transmitter timing with external clock, and Table 61 lists the timing parameters.

Figure 82. SSI Transmitter with External Clock Timing Diagram

5.1.3.2 BGA Signal ID by Ball Grid Location–14 x 14 0.5 mm

Table 65 shows the device connection list for signals only, alpha-sorted by signal identification.

Signal ID	Ball Location
A0	AD6
A1	AF5
A10	AF18
A11	AC3
A12	AD3
A13	AD4
A14	AF17
A15	AF16
A16	AF15
A17	AF14
A18	AF13
A19	AF12
A2	AB5
A20	AF11
A21	AF10
A22	AF9
A23	AF8
A24	AF7
A25	AF6
A3	AE4
A4	AA3
A5	AF4
A6	AB3
A7	AE3
A8	AD5
A9	AF3
ATA_CS0	J6
ATA_CS1	F2
ATA_DIOR	E2
ATA_DIOW	H6
ATA_DMACK	F1
ATA_RESET	H3
BATT_LINE	F7
BCLK	AB26
BOOT_MODE0	F20
BOOT_MODE1	C21
BOOT_MODE2	D24
BOOT_MODE3	C22
BOOT_MODE4	D26
CAPTURE	A22
CAS	AD20
CE_CONTROL	A14
CKIH	F24

Tabla	65	11	v 11	PC A	Signal		Pall	Grid	Location
lable	65.	14	X 14	DGA	Signai	ע טו	Dali	Gria	Location

CKIL H21 CLKO C23 CLKSS G26 COMPARE G18 CONTRAST R24 CS0 AE23 CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI2_MOSI	Signal ID	Ball Location
CLKO C23 CLKSS G26 COMPARE G18 CONTRAST R24 CS0 AE23 CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_D8 L20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_SNO	CKIL	H21
CLKSS G26 COMPARE G18 CONTRAST R24 CS0 AE23 CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D4 L21 CSI_D5 K25 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MOSI	CLKO	C23
COMPARE G18 CONTRAST R24 CS0 AE23 CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CS1_D10 M24 CS1_D11 L26 CS1_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_D8 L20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCL N3 CSPI1_SS1 P1 CSPI2_MISO A4 CSPI2_SS1 C6 CSPI2_SS1	CLKSS	G26
CONTRAST R24 CS0 AE23 CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS1 P1 CSPI2_MISO A4 CSPI2_MISO A4 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS1 </td <td>COMPARE</td> <td>G18</td>	COMPARE	G18
CS0 AE23 CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS1 C6	CONTRAST	R24
CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS1 P1 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_MOSI E3 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_	CS0	AE23
CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_D8 L20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MOSI E3 CSPI2_MOSI E3 CSPI2_SS0 B5 CS	CS1	AF23
CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CS2	AE21
CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_VSYNC J25 CSI_VSYNC J25 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CS3	AD22
CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_VSYNC J25 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS1 C6	CS4	AF24
CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS1 C6	CS5	AF22
CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS1 E3 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D10	M24
CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_VSYNC J25 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D11	L26
CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS1 P1 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D12	M21
CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K20 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SSI P1 CSPI1_SSI P1 CSPI1_SSI P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SSI C6 CSPI2_SSI C6 CSPI2_SSI C6 CSPI2_SS2 A5	CSI_D13	M25
CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D14	M20
CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D15	M26
CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D4	L21
CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_HSYNC K20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS1 E3 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D5	K25
CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_HSYNC K20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS1 E3 CSPI2_SS1 C6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D6	L24
CSI_D8 L20 CSI_D9 L25 CSI_HSYNC K20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_STL_RDY N3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS1 E3 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D7	K26
CSI_D9 L25 CSI_HSYNC K20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_ST P1 CSPI1_SS1 P1 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS1 E3 CSPI2_SS1 C7 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_D8	L20
CSI_HSYNCK20CSI_MCLKK24CSI_PIXCLKJ26CSI_VSYNCJ25CSPI1_MISOP7CSPI1_MOSIP2CSPI1_SCLKN2CSPI1_STP1CSPI1_SS1P1CSPI2_MISOA4CSPI2_MOSIE3CSPI2_SCLKC7CSPI2_SS0B5CSPI2_SS2A5	CSI_D9	L25
CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SPI_RDY N3 CSPI1_SS1 P1 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SS0 B5 CSPI2_SS2 A5	CSI_HSYNC	K20
CSI_PIXCLKJ26CSI_VSYNCJ25CSPI1_MISOP7CSPI1_MOSIP2CSPI1_SCLKN2CSPI1_SPI_RDYN3CSPI1_SS1P1CSPI1_SS2P6CSPI2_MISOA4CSPI2_SCLKC7CSPI2_SCLKC7CSPI2_SS1B6CSPI2_SS1C6CSPI2_SS2A5	CSI_MCLK	K24
CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SPI_RDY N3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS0 B5 CSPI2_SS1 C6 CSPI2_SS2 A5	CSI_PIXCLK	J26
CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SPI_RDY N3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS0 B5 CSPI2_SS2 A5	CSI_VSYNC	J25
CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SPI_RDY N3 CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SS0 B5 CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI1_MISO	P7
CSPI1_SCLK N2 CSPI1_SPI_RDY N3 CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SPI_RDY B6 CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI1_MOSI	P2
CSPI1_SPI_RDY N3 CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SPI_RDY B6 CSPI2_SS0 B5 CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI1_SCLK	N2
CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SPI_RDY B6 CSPI2_SS0 B5 CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI1_SPI_RDY	N3
CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SPI_RDY B6 CSPI2_SS0 B5 CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI1_SS0	P3
CSPI1_SS2P6CSPI2_MISOA4CSPI2_MOSIE3CSPI2_SCLKC7CSPI2_SPI_RDYB6CSPI2_SS0B5CSPI2_SS1C6CSPI2_SS2A5	CSPI1_SS1	P1
CSPI2_MISOA4CSPI2_MOSIE3CSPI2_SCLKC7CSPI2_SPI_RDYB6CSPI2_SS0B5CSPI2_SS1C6CSPI2_SS2A5	CSPI1_SS2	P6
CSPI2_MOSIE3CSPI2_SCLKC7CSPI2_SPI_RDYB6CSPI2_SS0B5CSPI2_SS1C6CSPI2_SS2A5	CSPI2_MISO	A4
CSPI2_SCLK C7 CSPI2_SPI_RDY B6 CSPI2_SS0 B5 CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI2_MOSI	E3
CSPI2_SPI_RDY B6 CSPI2_SS0 B5 CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI2_SCLK	C7
CSPI2_SS0 B5 CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI2_SPI_RDY	B6
CSPI2_SS1 C6 CSPI2_SS2 A5	CSPI2_SS0	B5
CSPI2_SS2 A5	CSPI2_SS1	C6
	CSPI2_SS2	A5
CSPI3_MISO G3	CSPI3_MISO	G3
CSPI3_MOSI D2	CSPI3_MOSI	D2

Package Information and Pinout

Signal ID	Ball Location
BOOT_MODE0	F17
BOOT_MODE1	C21
BOOT_MODE2	D20
BOOT_MODE3	F18
BOOT_MODE4	E20
CAPTURE	D18
CAS	AA20
CE_CONTROL	D12
СКІН	F23
CSPI3_SCLK	H7
CSPI3_SPI_RDY	F4
CTS1	A9
CTS2	C12
D0	U6
D1	W4
D10	V1
D11	U4
D12	U3
D13	R6
D14	U2
D15	U1
D2	W3
D3	V4
D3_CLS	P20
D3_REV	P21
D3_SPL	N17
D4	Τ7
D5	W2
D6	V3
D7	W1
D8	Т6
D9	V2
DCD_DCE1	C10
DCD_DTE1	D11
DE	D16
DQM0	AB19
DQM1	Y16
DQM2	AA18
DQM3	AB18
DRDY0	M17
DSR_DCE1	B10
DSR_DTE1	A11
DTR_DCE1	F10
DTR_DCE2	C11
DTR_DTE1	A10
DVFS0	E22

Table 68	19 x 19 BGA	Signal ID by	v Ball Grid I	ocation	(continued)
	13 × 13 DOA	Signal ID D	y Dali Oriu i		commueu)

Signal ID	Ball Location
CSPI2_MISO	B4
CSPI2_MOSI	D5
CSPI2_SCLK	B5
CSPI2_SPI_RDY	D6
CSPI2_SS0	C5
CSPI2_SS1	A4
CSPI2_SS2	F7
CSPI3_MISO	D2
CSPI3_MOSI	E4
GPIO1_3	G20
GPIO1_4	D21
GPIO1_5 (PWR RDY)	D19
GPIO1_6	G18
GPIO3_0	G23
GPIO3_1	K17
HSYNC	L23
I2C_CLK	J18
I2C_DAT	K18
IOIS16	J7
KEY_COL0	A15
KEY_COL1	B15
KEY_COL2	D14
KEY_COL3	C15
KEY_COL4	F13
KEY_COL5	A16
KEY_COL6	B16
KEY_COL7	A17
KEY_ROW0	A13
KEY_ROW1	B13
KEY_ROW2	C13
KEY_ROW3	A14
KEY_ROW4	F12
KEY_ROW5	D13
KEY_ROW6	B14
KEY_ROW7	C14
L2PG	See VPG1
LBA	V17
LCS0	M22
LCS1	N23
LD0	R23
LD1	R22
LD10	U22
LD11	R18
LD12	U20
LD13	V23
LD14	V22