E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	87
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f072vbt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Silicon Carbide Power Schottky Diode

Features

- Industry's leading low leakage currents
- 175 °C maximum operating temperature
- · Temperature independent switching behavior
- Superior surge current capability
- Positive temperature coefficient of V_F
- Extremely fast switching speeds
- Superior figure of merit Q_C/I_F

Advantages

- Low standby power losses
- Improved circuit efficiency (Lower overall cost)
- Low switching losses
- · Ease of paralleling devices without thermal runaway
- Smaller heat sink requirements
- · Low reverse recovery current
- Low device capacitance
- Low reverse leakage current at operating temperature

GB01SLT12-214

V _{RRM}	=	1200 V
I _{F (Tc = 25°C)}	=	2.5 A
I _{F (Tc ≤ 150°C)}	=	1 A
Qc	=	7 nC

Package

RoHS Compliant

SMB / DO - 214AA

Applications

- Power Factor Correction (PFC)
- Switched-Mode Power Supply (SMPS)
- Solar Inverters
- Wind Turbine Inverters
- Motor Drives
- Induction Heating
- Uninterruptible Power Supply (UPS)
- High Voltage Multipliers

Maximum Ratings at T_j = 175 °C, unless otherwise specified

Parameter	Symbol	Conditions	Values	Unit	
Repetitive peak reverse voltage	V _{RRM}		1200	V	
Continuous forward current	I _F	T _C = 25 °C	2.5	Α	
Continuous forward current	I _F	T _C ≤ 150 °C	1	А	
RMS forward current	F(RMS)	T _C ≤ 150 °C	2	Α	
Surge non-repetitive forward current, Half Sine	e I _{F,SM}	$T_{\rm C}$ = 25 °C, $t_{\rm P}$ = 10 ms	10	^	
Wave		$T_{\rm C}$ = 150 °C, $t_{\rm P}$ = 10 ms	8	A	
Non-repetitive peak forward current	I _{F,max}	T _C = 25 °C, t _P = 10 μs	65	А	
1 ² t	(; ² ,,	T _C = 25 °C, t _P = 10 ms	0.5	۸ ² -	
I t value	ji at	T _C = 150 °C, t _P = 10 ms	0.3	As	
Power dissipation	P _{tot}	T _C = 25 °C	42	W	
Operating and storage temperature	T _i , T _{stg}		-55 to 175	°C	

Electrical Characteristics at T_j = 175 °C, unless otherwise specified

Course had	Conditions m			Values		11
Symbol			min.	typ.	max.	Unit
V _F	I _F = 1 A, T _j = 25 °C I _F = 1 A, T _i = 175 °C		1.6 2.4	1.8 3.7	V	
I _R	V _R = 1200 V, T _j = V _R = 1200 V, T _j =	= 25 °C : 175 °C		5 10	10 100	μA
Qc	$ _{F} \leq _{F,MAX}$	V _R = 400 V V _R = 960 V		7 13		nC
t _s	$T_j = 175 °C$	V _R = 400 V V _R = 960 V		< 17		ns
С	V _R = 1 V, f = 1 MHz, V _R = 400 V, f = 1 MHz V _R = 1000 V, f = 1 MH	, T _j = 25 °C z, T _j = 25 °C Iz, T _i = 25 °C		69 10 8		pF
	Symbol V _F I _R Q _C t _s C	$\begin{tabular}{ c c c c c } \hline Symbol & Condition \\ \hline V_F & I_F = 1 \ A, \ T_J = 2 \\ \hline I_F = 1 \ A, \ T_J = 1 \\ \hline I_R & V_R = 1200 \ V, \ T_J = 1 \\ \hline V_R = 1200 \ V, \ T_J = 1200 \ V, \ T_J = 1200 \ V, \ T_J = 175 \ ^{\circ}C \\ \hline \hline t_s & T_J = 175 \ ^{\circ}C \\ \hline V_R = 1000 \ V, \ f = 1 \ MHz \\ \hline V_R = 1000 \ V, \ f = 1 \ MHz \\ \hline V_R = 1000 \ V, \ f = 1 \ MHz \\ \hline \end{array}$	$\begin{tabular}{ c c c c c } \hline Symbol & Conditions & - \\ \hline V_F & I_F = 1 \ A, \ T_j = 25 \ ^{\circ}C & \\ \hline I_F = 1 \ A, \ T_j = 175 \ ^{\circ}C & \\ \hline I_F = 1 \ A, \ T_j = 175 \ ^{\circ}C & \\ \hline I_R & V_R = 1200 \ V, \ T_j = 25 \ ^{\circ}C & \\ \hline V_R = 1200 \ V, \ T_j = 175 \ ^{\circ}C & \\ \hline V_R = 1200 \ V, \ T_j = 175 \ ^{\circ}C & \\ \hline V_R = 400 \ V, \ T_j = 175 \ ^{\circ}C & \\ \hline V_R = 400 \ V, \ V_R = 960 \ V & \\ \hline V_R = 400 \ V, \ F = 1 \ MHz, \ T_j = 25 \ ^{\circ}C & \\ \hline V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^{\circ}C & \\ \hline V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^{\circ}C & \\ \hline \hline V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^{\circ}C & \\ \hline \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline Symbol & Conditions & \hline min. \\ \hline V_F & $I_F = 1 \ A, \ T_j = 25 \ ^\circ C$ \\ \hline $I_F = 1 \ A, \ T_j = 175 \ ^\circ C$ \\ \hline I_R & $V_R = 1200 \ V, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1200 \ V, \ T_j = 175 \ ^\circ C$ \\ \hline $V_R = 1200 \ V, \ T_j = 175 \ ^\circ C$ \\ \hline $V_R = 1200 \ V, \ T_j = 175 \ ^\circ C$ \\ \hline $V_R = 400 \ V, \ V_R = 960 \ V$ \\ \hline $V_R = 400 \ V, \ P_R = 960 \ V$ \\ \hline $V_R = 400 \ V, \ F = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 400 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MLz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MLz, \ T_j = 25 \ ^\circ C$ \\ \hline $V_R = 1000 \ V, \ f = 1 \ MLz, \ T_j = 100 \ V, \ T_j = 100 \ V, \ T_j = 1000 \ V, $	$\begin{tabular}{ c c c c c } \hline V alues & V alues \\ \hline M in.$ typ. \\ \hline M is $I_F = 1 \ A, \ T_j = 25 \ ^{\circ}C$ & 1.6 \\ \hline $I_F = 1 \ A, \ T_j = 175 \ ^{\circ}C$ & 2.4 \\ \hline $V_R = 1200 \ V, \ T_j = 25 \ ^{\circ}C$ & 5 \\ \hline $V_R = 1200 \ V, \ T_j = 175 \ ^{\circ}C$ & 10 \\ \hline $V_R = 1200 \ V, \ T_j = 175 \ ^{\circ}C$ & 10 \\ \hline $V_R = 1000 \ V, \ T_j = 175 \ ^{\circ}C$ & 10 \\ \hline $V_R = 960 \ V$ & 13 \\ \hline $V_R = 960 \ V$ & $V_R = 960 \ V$ \\ \hline $V_R = 960 \ V$ & $V_R = 960 \ V$ \\ \hline $V_R = 960 \ V$ & $V_R = 960 \ V$ & $V_R = 960 \ V$ \\ \hline $V_R = 960 \ V$ & $V_R = 960 \ V$ & $V_R = 960 \ V$ & $V_R = 960 \ V$ \\ \hline $V_R = 960 \ V$ & V	$\begin{tabular}{ c c c c c c } \hline Symbol & Conditions & Values \\ \hline \hline Min. & typ. & max. \\ \hline Min. & typ. & max. \\ \hline Min. & typ. & max. \\ \hline \ 1_F = 1 A, T_j = 25 \ ^{\circ}C & 2.4 & 3.7 \\ \hline \ 1_R & V_R = 1200 \ V, T_j = 25 \ ^{\circ}C & 5 & 10 \\ \hline V_R = 1200 \ V, T_j = 175 \ ^{\circ}C & 10 & 100 \\ \hline \ Q_C & I_F \le I_{F,MAX} & V_R = 400 \ V & 7 \\ \hline \ Q_R & I_F \le I_{F,MAX} & V_R = 400 \ V & 7 \\ \hline \ Min. & t_S & T_j = 175 \ ^{\circ}C & V_R = 400 \ V & 13 \\ \hline \ V_R = 100 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^{\circ}C & 69 \\ \hline \ C & V_R = 400 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^{\circ}C & 10 \\ \hline \ V_R = 1000 \ V, \ f = 1 \ MHz, \ T_j = 25 \ ^{\circ}C & 8 \\ \hline \end{tabular}$

Thermal Characteristics

Thermal resistance, junction - case	R _{thJC}	3.6	°C/W

GeneSic s e m i c o n d u c t o

GB01SLT12-214

Figure 3: Power Derating Curve

Figure 2: Typical Reverse Characteristics

GB01SLT12-214

Genes E MICONDUC

Package Dimensions:

SMB / DO - 214AA

PACKAGE OUTLINE

Dimensions	Inches		Millin	neters
Dimensions	Min	Max	Min	Max
А	0.077	0.086	1.950	2.200
В	0.160	0.180	4.060	4.570
С	0.130	0.155	3.300	3.940
D	0.084	0.096	2.130	2.440
E	0.030	0.060	0.760	1.520
F	-	0.008	-	0.203
G	0.205	0.220	5.210	5.590
Н	0.006	0.012	0.152	0.305
l. I	0.089	-	2.260	-
J	0.085	-	2.160	-
K	-	0.107	-	2.740
L	0.085	-	2.160	-

NOTE

1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.

2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

GB01SLT12-214

Revision History					
Date	Revision	Comments	Supersedes		
2014/08/26	1	Updated Electrical Characteristics			
2013/09/09	0	Initial release			

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

SPICE Model Parameters

This is a secure document. Please copy this code from the SPICE model PDF file on our website (http://www.genesicsemi.com/images/products_sic/rectifiers/GB01SLT12-214_SPICE.pdf) into LTSPICE (version 4) software for simulation of the GB01SLT12-214.

```
*
     MODEL OF GeneSiC Semiconductor Inc.
*
*
     $Revision: 1.0
                                 Ś
*
     $Date: 09-SEP-2013
                                 Ś
*
*
     GeneSiC Semiconductor Inc.
*
     43670 Trade Center Place Ste. 155
*
     Dulles, VA 20166
*
*
     COPYRIGHT (C) 2013 GeneSiC Semiconductor Inc.
*
     ALL RIGHTS RESERVED
*
* These models are provided "AS IS, WHERE IS, AND WITH NO WARRANTY
* OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE."
* Models accurate up to 2 times rated drain current.
*
*
 Start of GB01SLT12-214 SPICE Model
.SUBCKT GB01SLT12 ANODE KATHODE
R1 ANODE INT R=((TEMP-24)*0.0069); Temperature Dependant Resistor
D1 INT KATHODE GB01SLT12 25C; Call the 25C Diode Model
D2 ANODE KATHODE GB01SLT12 PIN; Call the PiN Diode Model
.MODEL GB01SLT12 25C D
+ IS
          7.27E-19
                                       0.592251
                           RS
+ N
          1
                           IKF
                                      407.773
+ EG
          1.2
                           XTI
                                       3
                                      0.367
+ CJO
          7.90E-11
                          VJ
+ M
          1.63
                           FC
                                      0.5
+ TT
          1.00E-10
                           ΒV
                                      1200
         1.00E-03
+ IBV
                           VPK
                                      1200
+ IAVE
                                      SiC Schottky
          1
                           TYPE
+ MFG
       GeneSiC Semiconductor
.MODEL GB01SLT12 PIN D
+ IS
         1.08E-17
                                       1.8
                           RS
+ N
          2.2313
                           IKF
                                       999
+ EG
          3.23
                          XTI
                                      -65
          0.5
                           TT
+ FC
                                      0
                                      1.00E-03
+ BV
          1200
                           IBV
+ VPK
          1200
                           IAVE
                                      1
+ TYPE
          SiC_PiN
.ENDS
* End of GB01SLT12-214 SPICE Model
```