

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	I²C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	47
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 11x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4n16ba-au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3-1. Signal Description List (Continued)

Signal Name	Function	Туре	Active Level	Voltage Reference	Comments
	Fast Flash Programmi	ing Interfa	ce - FFPI		
PGMEN0–PGMEN2	Programming Enabling	Input		VDDIO	
PGMM0–PGMM3	Programming Mode	Input		VDDIO	
PGMD0–PGMD15	Programming Data	I/O		VDDIO	
PGMRDY	Programming Ready	Output	High	VDDIO	
PGMNVALID	Data Direction	Output	Low	VDDIO	
PGMNOE	Programming Read	Input	Low	VDDIO	
PGMCK	Programming Clock	Input		VDDIO	
PGMNCMD	Programming Command	Input	Low	VDDIO	

Note: 1. "ADVREFP" is named "ADVREF" in Section 17. "Supply Controller (SUPC)" and in Section 34. "Analog-to-Digital Converter (ADC)".

- In any LDM instruction, reglist must not contain PC if it contains LR
- *reglist* must not contain *Rn* if the writeback suffix is specified.

When PC is in *reglist* in an LDM instruction:

- Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfwordaligned address
- If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags

These instructions do not change the flags.

```
Examples
LDM R8,{R0,R2,R9} ; LDMIA is a synonym for LDM
STMDB R1!,{R3-R6,R11,R12}
```

Incorrect Examples

11.6.5.10 SHADD16 and SHADD8

Signed Halving Add 16 and Signed Halving Add 8

Syntax

op{cond}{Rd,} Rn, Rm

where:

ор	is any of:
	SHADD16 Signed Halving Add 16.
	SHADD8 Signed Halving Add 8.
cond	is an optional condition code, see "Conditional Execution"
Rd	is the destination register.
Rn	is the first operand register.
Rm	is the second operand register.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination register:

The SHADD16 instruction:

- 1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
- 2. Shuffles the result by one bit to the right, halving the data.
- 3. Writes the halfword results in the destination register.

The SHADDB8 instruction:

- 1. Adds each byte of the first operand to the corresponding byte of the second operand.
- 2. Shuffles the result by one bit to the right, halving the data.
- 3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SHADD16 R1, R0 ; Adds halfwords in R0 to corresponding halfword of R1
; and writes halved result to corresponding halfword in
; R1
SHADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and
; writes halved result to corresponding byte in R4.

Atmel

11.6.5.20 UHSUB16 and UHSUB8

Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8

Syntax

op{cond}{Rd,} Rn, Rm

where:

ор	is any of: UHSUB16 Performs two unsigned 16-bit integer additions, halves the results, and writes the results to the destination register.
	writes the results to the destination register.
cond	is an optional condition code, see "Conditional Execution" .
Rd	is the destination register.
Rn	is the first register holding the operand.
Rm	is the second register holding the operand.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination register:

The UHSUB16 instruction:

- 1. Subtracts each halfword of the second operand from the corresponding halfword of the first operand.
- 2. Shuffles each halfword result to the right by one bit, halving the data.
- 3. Writes each unsigned halfword result to the corresponding halfwords in the destination register.

The UHSUB8 instruction:

- 1. Subtracts each byte of second operand from the corresponding byte of the first operand.
- 2. Shuffles each byte result by one bit to the right, halving the data.
- 3. Writes the unsigned byte results to the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

UHSUB16	R1,	R0		;	Subtracts halfwords in R0 from corresponding halfword of
				;	$\ensuremath{\mathtt{R1}}$ and writes halved result to corresponding halfword in $\ensuremath{\mathtt{R1}}$
UHSUB8	R4,	R0,	R5	;	Subtracts bytes of R5 from corresponding byte in R0 and
				;	writes halved result to corresponding byte in R4.

Atmel

11.9 System Control Block (SCB)

The System Control Block (SCB) provides system implementation information, and system control. This includes configuration, control, and reporting of the system exceptions.

Ensure that the software uses aligned accesses of the correct size to access the system control block registers:

- Except for the SCB_CFSR and SCB_SHPR1-SCB_SHPR3 registers, it must use aligned word accesses
- For the SCB_CFSR and SCB_SHPR1-SCB_SHPR3 registers, it can use byte or aligned halfword or word accesses.

The processor does not support unaligned accesses to system control block registers.

In a fault handler, to determine the true faulting address:

- 1. Read and save the MMFAR or SCB_BFAR value.
- 2. Read the MMARVALID bit in the MMFSR subregister, or the BFARVALID bit in the BFSR subregister. The SCB_MMFAR or SCB_BFAR address is valid only if this bit is 1.

The software must follow this sequence because another higher priority exception might change the SCB_MMFAR or SCB_BFAR value. For example, if a higher priority handler preempts the current fault handler, the other fault might change the SCB_MMFAR or SCB_BFAR value.

1.9.1.10 System Handler Priority Register 2										
Name:	SCB_SHPR2									
Access:	Read-write									
Reset:	0x00000000									
31	30	29	28	27	26	25	24			
			PRI	_11						
23	22	21	20	19	18	17	16			
			-	-						
15	14	13	12	11	10	9	8			
			-	-						
7	6	5	4	3	2	1	0			
			-	-						

• PRI_11: Priority

Priority of system handler 11, SVCall.

13.4 Functional Description

13.4.1 Reset Controller Overview

The Reset Controller is made up of an NRST Manager and a Reset State Manager. It runs at Slow Clock and generates the following reset signals:

- proc_nreset: Processor reset line. It also resets the Watchdog Timer
- periph_nreset: Affects the whole set of embedded peripherals
- nrst_out: Drives the NRST pin

These reset signals are asserted by the Reset Controller, either on external events or on software action. The Reset State Manager controls the generation of reset signals and provides a signal to the NRST Manager when an assertion of the NRST pin is required.

The NRST Manager shapes the NRST assertion during a programmable time, thus controlling external device resets.

The Reset Controller Mode Register (RSTC_MR), allowing the configuration of the Reset Controller, is powered with VDDIO, so that its configuration is saved as long as VDDIO is on.

13.4.2 NRST Manager

After power-up, NRST is an output during the ERSTL time period defined in the RSTC_MR. When ERSTL has elapsed, the pin behaves as an input and all the system is held in reset if NRST is tied to GND by an external signal.

The NRST Manager samples the NRST input pin and drives this pin low when required by the Reset State Manager. Figure 13-2 shows the block diagram of the NRST Manager.

Figure 13-2. NRST Manager

13.4.2.1 NRST Signal or Interrupt

The NRST Manager samples the NRST pin at Slow Clock speed. When the line is detected low, a User Reset is reported to the Reset State Manager.

However, the NRST Manager can be programmed to not trigger a reset when an assertion of NRST occurs. Writing the bit URSTEN at 0 in RSTC_MR disables the User Reset trigger.

The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in RSTC_SR. As soon as the pin NRST is asserted, the bit URSTS in RSTC_SR is set. This bit clears only when RSTC_SR is read.

The Reset Controller can also be programmed to generate an interrupt instead of generating a reset. To do so, the bit URSTIEN in RSTC_MR must be written at 1.

15.5.7 RTC Accurate Clock Calibration

The crystal oscillator that drives the RTC may not be as accurate as expected mainly due to temperature variation. The RTC is equipped with circuitry able to correct slow clock crystal drift.

To compensate for possible temperature variations over time, this accurate clock calibration circuitry can be programmed on-the-fly and also programmed during application manufacturing, in order to correct the crystal frequency accuracy at room temperature (20-25°C). The typical clock drift range at room temperature is ±20 ppm.

In a temperature range of -40°C to +85°C, the 32.768 kHz crystal oscillator clock inaccuracy can be up to -200 ppm.

The RTC clock calibration circuitry allows positive or negative correction in a range of 1.5 ppm to 1950 ppm. After correction, the remaining crystal drift is as follows:

- Below 1 ppm, for an initial crystal drift between 1.5 ppm up to 90 ppm
- Below 2 ppm, for an initial crystal drift between 90 ppm up to 130 ppm
- Below 5 ppm, for an initial crystal drift between 130 ppm up to 200 ppm

The calibration circuitry acts by slightly modifying the 1 Hz clock period from time to time. When the period is modified, depending on the sign of the correction, the 1 Hz clock period increases or reduces by around 4 ms. The period interval between 2 correction events is programmable in order to cover the possible crystal oscillator clock variations.

The inaccuracy of a crystal oscillator at typical room temperature (±20 ppm at 20-25 degrees Celsius) can be compensated if a reference clock/signal is used to measure such inaccuracy. This kind of calibration operation can be set up during the final product manufacturing by means of measurement equipment embedding such a reference clock. The correction of value must be programmed into the RTC Mode Register (RTC_MR), and this value is kept as long as the circuitry is powered (backup area). Removing the backup power supply cancels this calibration. This room temperature calibration can be further processed by means of the networking capability of the target application.

In any event, this adjustment does not take into account the temperature variation.

The frequency drift (up to -200 ppm) due to temperature variation can be compensated using a reference time if the application can access such a reference. If a reference time cannot be used, a temperature sensor can be placed close to the crystal oscillator in order to get the operating temperature of the crystal oscillator. Once obtained, the temperature may be converted using a lookup table (describing the accuracy/temperature curve of the crystal oscillator used) and RTC_MR configured accordingly. The calibration can be performed on-the-fly. This adjustment method is not based on a measurement of the crystal frequency/drift and therefore can be improved by means of the networking capability of the target application.

If no crystal frequency adjustment has been done during manufacturing, it is still possible to do it. In the case where a reference time of the day can be obtained through LAN/WAN network, it is possible to calculate the drift of the application crystal oscillator by comparing the values read on RTC Time Register (RTC_TIMR) and programming the HIGHPPM and CORRECTION bitfields on RTC_MR according to the difference measured between the reference time and those of RTC_TIMR.

23.5.9 Transfer Control Register

Name:	PERIPH_PTCR						
Access:	Write-only						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
_	-	-	_	_	-	-	-
15	14	13	12	11	10	9	8
_	-	-	—	-	—	TXTDIS	TXTEN
7	6	5	4	3	2	1	0
_	_	_	_	_	_	RXTDIS	RXTEN

• RXTEN: Receiver Transfer Enable

0 = No effect.

1 = Enables PDC receiver channel requests if RXTDIS is not set.

When a half duplex peripheral is connected to the PDC, enabling the receiver channel requests automatically disables the transmitter channel requests. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.

• RXTDIS: Receiver Transfer Disable

0 = No effect.

1 = Disables the PDC receiver channel requests.

When a half duplex peripheral is connected to the PDC, disabling the receiver channel requests also disables the transmitter channel requests.

• TXTEN: Transmitter Transfer Enable

0 = No effect.

1 = Enables the PDC transmitter channel requests.

When a half duplex peripheral is connected to the PDC, it enables the transmitter channel requests only if RXTEN is not set. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.

• TXTDIS: Transmitter Transfer Disable

0 = No effect.

1 = Disables the PDC transmitter channel requests.

When a half duplex peripheral is connected to the PDC, disabling the transmitter channel requests disables the receiver channel requests.

27.7.21 PIO Pull Up Disable Register

Name:	PIO_PUDR									
Address:	0x400E0E60 (PIOA), 0x400E1060 (PIOB), 0x400E1260 (PIOC)									
Access:	Write-only									
31	30	29	28	27	26	25	24			
P31	P30	P29	P28	P27	P26	P25	P24			
23	22	21	20	19	18	17	16			
P23	P22	P21	P20	P19	P18	P17	P16			
15	14	13	12	11	10	9	8			
P15	P14	P13	P12	P11	P10	P9	P8			
7	6	5	4	3	2	1	0			
P7	P6	P5	P4	P3	P2	P1	P0			

This register can only be written if the WPEN bit is cleared in "PIO Write Protect Mode Register" .

• P0-P31: Pull Up Disable.

0: No effect.

1: Disables the pull up resistor on the I/O line.

27.7.33 PIO Output Write Enable Register

Name: PIO_OWER

Address: 0x400E0EA0 (PIOA), 0x400E10A0 (PIOB), 0x400E12A0 (PIOC)

Access: Write-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	11	12	10	- 11	10	0	0
15	14	15	12	11	10	9	0
P15	P14	P13	P12	P11	P10	P9	P8
_		_					
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register can only be written if the WPEN bit is cleared in "PIO Write Protect Mode Register" .

• P0-P31: Output Write Enable

0: No effect.

1: Enables writing PIO_ODSR for the I/O line.

28.8.7 SPI Interrupt Disable Register

Name:	SPI_IDR						
Address:	0x40008018						
Access:	Write-only						
31	30	29	28	27	26	25	24
-	-	-	-	_	-	_	-
23	22	21	20	19	18	17	16
_	-	-	-	_	_	-	-
15	14	13	12	11	10	9	8
_	_	-	-	_	UNDES	TXEMPTY	NSSR
7	6	5	4	3	2	1	0
TXBUFE	RXBUFF	ENDTX	ENDRX	OVRES	MODF	TDRE	RDRF

0 = No effect.

1 = Disables the corresponding interrupt.

- RDRF: Receive Data Register Full Interrupt Disable
- TDRE: SPI Transmit Data Register Empty Interrupt Disable
- MODF: Mode Fault Error Interrupt Disable
- OVRES: Overrun Error Interrupt Disable
- ENDRX: End of Receive Buffer Interrupt Disable
- ENDTX: End of Transmit Buffer Interrupt Disable
- RXBUFF: Receive Buffer Full Interrupt Disable
- TXBUFE: Transmit Buffer Empty Interrupt Disable
- NSSR: NSS Rising Interrupt Disable
- TXEMPTY: Transmission Registers Empty Disable
- UNDES: Underrun Error Interrupt Disable

28.8.11 SPI Write Protection Status Register

Name:	SPI_WPSR									
Address:	0x400080E8									
Access:	Read-only									
31	30	29	28	27	26	25	24			
_	_	_	_	_	_	_	_			
23	22	21	20	19	18	17	16			
_	-	_	_	_	_	_	_			
15	14	13	12	11	10	9	8			
	WPVSRC									
7	6	5	4	3	2	1	0			
_	_	_	_	_	_	_	WPVS			

• WPVS: Write Protection Violation Status

0 = No Write Protect Violation has occurred since the last read of the SPI_WPSR register.

1 = A Write Protect Violation has occurred since the last read of the SPI_WPSR register. If this violation is an unauthorized attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source

This Field indicates the APB Offset of the register concerned by the violation (SPI_MR or SPI_CSRx)

Figure 29-17. TWI Write Operation with Multiple Data Bytes with or without Internal Address

Figure 29-20. TWI Read Operation with Multiple Data Bytes with or without Internal Address

Baud Rate Calculation Example

Table 31-5 shows calculations of CD to obtain a baud rate at 38400 bauds for different source clock frequencies. This table also shows the actual resulting baud rate and the error.

Source Clock	Expected Baud Rate	Calculation Result	CD	Actual Baud Rate	Error
MHz	Bit/s			Bit/s	
3 686 400	38 400	6.00	6	38 400.00	0.00%
4 915 200	38 400	8.00	8	38 400.00	0.00%
5 000 000	38 400	8.14	8	39 062.50	1.70%
7 372 800	38 400	12.00	12	38 400.00	0.00%
8 000 000	38 400	13.02	13	38 461.54	0.16%
12 000 000	38 400	19.53	20	37 500.00	2.40%
12 288 000	38 400	20.00	20	38 400.00	0.00%
14 318 180	38 400	23.30	23	38 908.10	1.31%
14 745 600	38 400	24.00	24	38 400.00	0.00%
18 432 000	38 400	30.00	30	38 400.00	0.00%
24 000 000	38 400	39.06	39	38 461.54	0.16%
24 576 000	38 400	40.00	40	38 400.00	0.00%
25 000 000	38 400	40.69	40	38 109.76	0.76%
32 000 000	38 400	52.08	52	38 461.54	0.16%
32 768 000	38 400	53.33	53	38 641.51	0.63%
33 000 000	38 400	53.71	54	38 194.44	0.54%
40 000 000	38 400	65.10	65	38 461.54	0.16%
50 000 000	38 400	81.38	81	38 580.25	0.47%

Table 31-5.Baud Rate Example (OVER = 0)

The baud rate is calculated with the following formula:

 $BaudRate = MCK/CD \times 16$

The baud rate error is calculated with the following formula. It is not recommended to work with an error higher than 5%.

 $Error = 1 - \left(\frac{ExpectedBaudRate}{ActualBaudRate}\right)$

32.3 Block Diagram

Table 32-1. Timer Counter Clock Assignment

Name	Definition
TIMER_CLOCK1	MCK/2
TIMER_CLOCK2	MCK/8
TIMER_CLOCK3	MCK/32
TIMER_CLOCK4	MCK/128
TIMER_CLOCK5	SLCK

Note: 1. When SLCK is selected for Peripheral Clock (CSS = 0 in PMC Master Clock Register), SLCK input is equivalent to Peripheral Clock.

Figure 32-1. Timer Counter Block Diagram

Note: The QDEC connections are detailed in Figure 32-16.

33.7.3 PWM Disable Register

Name:	PWM_DIS						
Address:	0x40020008						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	-	-	—	—	-	-	-
23	22	21	20	19	18	17	16
_	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
_	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
_	_	-	_	CHID3	CHID2	CHID1	CHID0

• CHIDx: Channel ID

0 = No effect.

1 = Disable PWM output for channel x.

36.3 Power Consumption

- Power consumption of the device according to the different Low Power Mode Capabilities (Backup, Wait, Sleep) and Active mode.
- Power consumption on power supply in different modes: Backup, Wait, Sleep and Active.
- Power consumption by peripheral: calculated as the difference in current measurement after having enabled then disabled the corresponding clock.

36.3.1 Backup Mode Current Consumption

The Backup mode configuration and measurements are defined as follow.

Figure 36-4. Measurement Setup

- 36.3.1.1 Configuration A: Embedded Slow Clock RC Oscillator Enabled
 - Supply Monitor on VDDIO is disabled
 - RTT used
 - One WKUPx enabled
 - Current measurement on AMP1 (see Figure 36-4, BOD disabled)
- 36.3.1.2 Configuration B: 32 kHz Crystal Oscillator Enabled
 - Supply Monitor on VDDIO is disabled
 - RTT used
 - One WKUPx enabled
 - Current measurement on AMP1 (see Figure 36-4, BOD disabled)

Conditions	Total Consumption (AMP1) Configuration A	Total Consumption (AMP1) Configuration B	Unit
VDDIO = 3.3V @ 25°C	1.4	1.3	
VDDIO = 3.0V @ 25°C	1.3	1.1	
VDDIO = 2.5V @ 25°C	1.1	1.0	μΑ
VDDIO = 1.8V @ 25°C	0.9	0.7	
VDDIO = 3.3V @ 85°C	4.54	4.57	
VDDIO = 3.0V @ 85°C	4.24	4.17	
VDDIO = 2.5V @ 85°C	3.75	3.68	μΑ
VDDIO = 1.8V @ 85°C	3.17	3.1	

Table 36-9. Power Consumption for Backup Mode Configuration A and B

Table 37-8. 100-ball VFBGA Package Reference - Soldering Information (Substrate Level)

Ball Land	Diameter 0.27 mm
Soldering Mask Opening	275 μm

Table 37-9. Device and 100-ball VFBGA Package Maximum Weight

SAM4N		75		mg
Table 37-10.	100-ball VFBGA Package	e Characteristics		
Moisture Ser	nsitivity Level		3	

Table 37-11. 100-ball VFBGA Package Reference

JEDEC Drawing Reference	MO-275-BBE-1
JESD97 Classification	e8

This package respects the recommendations of the NEMI User Group.