
Microchip Technology - ATSAM4N16BA-MU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 100MHz

Connectivity I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 47

Program Memory Size 1MB (1M x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 80K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 11x10b; D/A 1x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-VFQFN Exposed Pad

Supplier Device Package 64-QFN (9x9)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4n16ba-mu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4n16ba-mu-4409927
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

11.4.1.17 Exceptions and Interrupts

The Cortex-M4 processor supports interrupts and system exceptions. The processor and the Nested Vectored
Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software
control. The processor uses the Handler mode to handle all exceptions except for reset. See “Exception Entry”
and “Exception Return” for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller (NVIC)” for more
information.

11.4.1.18 Data Types

The processor supports the following data types:

 32-bit words

 16-bit halfwords

 8-bit bytes

 The processor manages all data memory accesses as little-endian. Instruction memory and Private
Peripheral Bus (PPB) accesses are always little-endian. See “Memory Regions, Types and Attributes” for
more information.

11.4.1.19 Cortex Microcontroller Software Interface Standard (CMSIS)

For a Cortex-M4 microcontroller system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:

 A common way to:

̶ Access peripheral registers

̶ Define exception vectors

 The names of:

̶ The registers of the core peripherals

̶ The core exception vectors

 A device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M4 processor.

The CMSIS simplifies the software development by enabling the reuse of template code and the combination of
CMSIS-compliant software components from various middleware vendors. Software vendors can expand the
CMSIS to include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS
functions that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ from the architectural
short names that might be used in other documents.

The following sections give more information about the CMSIS:

 Section 11.5.3 “Power Management Programming Hints”

 Section 11.6.2 “CMSIS Functions”

 Section 11.8.2.1 “NVIC Programming Hints”.
55SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.4.6 LDM and STM

Load and Store Multiple registers.

Syntax
op{addr_mode}{cond} Rn{!}, reglist

where:

op is one of:

LDM Load Multiple registers.

STM Store Multiple registers.

addr_mode is any one of the following:

IA Increment address After each access. This is the default.

DB Decrement address Before each access.

cond is an optional condition code, see “Conditional Execution” .

Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If ! is present, the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It
can contain register ranges. It must be comma separated if it contains more
than one register or register range, see “Examples” .

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending
stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending
stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks

Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens in
order of increasing register numbers, with the lowest numbered register using the lowest memory address and the
highest number register using the highest memory address. If the writeback suffix is specified, the value of Rn + 4
* (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals
ranging from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses happen in order of
decreasing register numbers, with the highest numbered register using the highest memory address and the
lowest number register using the lowest memory address. If the writeback suffix is specified, the value of Rn - 4 *
(n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” for details.

Restrictions

In these instructions:

 Rn must not be PC

 reglist must not contain SP

 In any STM instruction, reglist must not contain PC
97SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.4.9 CLREX

Clear Exclusive.

Syntax
CLREX{cond}

where:

cond is an optional condition code, see “Conditional Execution” .

Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination register and fail to
perform the store. It is useful in exception handler code to force the failure of the store exclusive if the exception
occurs between a load exclusive instruction and the matching store exclusive instruction in a synchronization
operation.

See “Synchronization Primitives” for more information.

Condition Flags

These instructions do not change the flags.

Examples
CLREX
SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

102

11.6.11.1 BKPT

Breakpoint.

Syntax
BKPT #imm

where:

imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system
state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information about the
breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected by the condition
specified by the IT instruction.

Condition Flags

This instruction does not change the flags.

Examples
BKPT 0xAB ; Breakpoint with immediate value set to 0xAB (debugger can

; extract the immediate value by locating it using the PC)

Note: ARM does not recommend the use of the BKPT instruction with an immediate value set to 0xAB for any purpose other
than Semi-hosting.
177SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.8 Nested Vectored Interrupt Controller (NVIC)

This section describes the NVIC and the registers it uses. The NVIC supports:

 1 to 30 interrupts.

 A programmable priority level of 0-15 for each interrupt. A higher level corresponds to a lower priority, so
level 0 is the highest interrupt priority.

 Level detection of interrupt signals.

 Dynamic reprioritization of interrupts.

 Grouping of priority values into group priority and subpriority fields.

 Interrupt tail-chaining.

 An external Non-maskable interrupt (NMI)

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no
instruction overhead. This provides low latency exception handling.

11.8.1 Level-sensitive Interrupts

The processor supports level-sensitive interrupts. A level-sensitive interrupt is held asserted until the peripheral
deasserts the interrupt signal. Typically, this happens because the ISR accesses the peripheral, causing it to clear
the interrupt request.

When the processor enters the ISR, it automatically removes the pending state from the interrupt (see “Hardware
and Software Control of Interrupts”). For a level-sensitive interrupt, if the signal is not deasserted before the
processor returns from the ISR, the interrupt becomes pending again, and the processor must execute its ISR
again. This means that the peripheral can hold the interrupt signal asserted until it no longer requires servicing.

11.8.1.1 Hardware and Software Control of Interrupts

The Cortex-M4 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:

 The NVIC detects that the interrupt signal is HIGH and the interrupt is not active

 The NVIC detects a rising edge on the interrupt signal

 A software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-pending
Registers” , or to the NVIC_STIR register to make an interrupt pending, see “Software Trigger Interrupt
Register” .

A pending interrupt remains pending until one of the following:

 The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to active.
Then:

̶ For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the
interrupt signal. If the signal is asserted, the state of the interrupt changes to pending, which might
cause the processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to
inactive.

 Software writes to the corresponding interrupt clear-pending register bit.
For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not
change. Otherwise, the state of the interrupt changes to inactive.

11.8.2 NVIC Design Hints and Tips

Ensure that the software uses correctly aligned register accesses. The processor does not support unaligned
accesses to NVIC registers. See the individual register descriptions for the supported access sizes.

A interrupt can enter a pending state even if it is disabled. Disabling an interrupt only prevents the processor from
taking that interrupt.
189SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

• SIZE: Size of the MPU Protection Region

The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:

(Region size in bytes) = 2(SIZE+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE
values, with the corresponding region size and value of N in the MPU_RBAR.

Note: 1. In the MPU_RBAR, see “MPU Region Base Address Register”

• ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes” .

SIZE Value Region Size Value of N (1) Note

b00100 (4) 32 B 5 Minimum permitted size

b01001 (9) 1 KB 10 -

b10011 (19) 1 MB 20 -

b11101 (29) 1 GB 30 -

b11111 (31) 4 GB b01100 Maximum possible size
243SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

12.5.6.2 Asynchronous Mode

The TPIU is configured in asynchronous mode, trace data are output using the single TRACESWO pin. The
TRACESWO signal is multiplexed with the TDO signal of the JTAG Debug Port. As a consequence, asynchronous
trace mode is only available when the serial wire debug mode is selected since TDO signal is used in JTAG debug
mode.

Two encoding formats are available for the single pin output:

 Manchester encoded stream. This is the reset value.

 NRZ-based UART byte structure

12.5.6.3 How to Configure the TPIU

This example only concerns the asynchronous trace mode.

 Set the TRCENA bit to 1 into the Debug Exception and Monitor Register (0xE000EDFC) to enable the use of
trace and debug blocks.

 Write 0x2 into the Selected Pin Protocol Register.

̶ Select the Serial Wire Output – NRZ.

 Write 0x100 into the Formatter and Flush Control Register.

 Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the baud rate of the
asynchronous output (this can be done automatically by the debugging tool).

12.5.7 IEEE 1149.1 JTAG Boundary Scan

IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when TST is tied to low, while JTAGSEL is high during power-up
and must be kept in this state during the whole boundary scan operation. The SAMPLE, EXTEST and BYPASS
functions are implemented. In SWD/JTAG debug mode, the ARM processor responds with a non-JTAG chip ID
that identifies the processor. This is not IEEE 1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port operations. A chip reset
must be performed after JTAGSEL is changed. A Boundary-scan Descriptor Language (BSDL) file to set up the
test is provided on www.atmel.com.

12.5.7.1 JTAG Boundary-scan Register

The Boundary-scan Register (BSR) contains a number of bits which corresponds to active pins and associated
control signals.

Each SAM4 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit contains data that can be
forced on the pad. The INPUT bit facilitates the observability of data applied to the pad. The CONTROL bit selects
the direction of the pad.

For more information, please refer to BSDL files available for the SAM4 Series.
255SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

http://www.atmel.com

14.5.2 Real-time Timer Alarm Register

Name: RTT_AR

Address: 0x400E1434

Access: Read-write

• ALMV: Alarm Value

Defines the alarm value (ALMV+1) compared with the Real-time Timer.

Note: The alarm interrupt must be disabled (ALMIEN must be cleared in RTT_MR register) when writing a new ALMV
value.

31 30 29 28 27 26 25 24

ALMV

23 22 21 20 19 18 17 16

ALMV

15 14 13 12 11 10 9 8

ALMV

7 6 5 4 3 2 1 0

ALMV
SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

274

The following checks are performed:

1. Century (check if it is in range 19 - 20 or 13-14 in Persian mode)

2. Year (BCD entry check)

3. Date (check range 01 - 31)

4. Month (check if it is in BCD range 01 - 12, check validity regarding “date”)

5. Day (check range 1 - 7)

6. Hour (BCD checks: in 24-hour mode, check range 00 - 23 and check that AM/PM flag is not set if RTC is set
in 24-hour mode; in 12-hour mode check range 01 - 12)

7. Minute (check BCD and range 00 - 59)

8. Second (check BCD and range 00 - 59)

Note: If the 12-hour mode is selected by means of the RTC_MR register, a 12-hour value can be programmed and the
returned value on RTC_TIMR will be the corresponding 24-hour value. The entry control checks the value of the
AM/PM indicator (bit 22 of RTC_TIMR register) to determine the range to be checked.

15.5.5 RTC Internal Free Running Counter Error Checking

To improve the reliability and security of the RTC, a permanent check is performed on the internal free running
counters to report non-BCD or invalid date/time values.

An error is reported by TDERR bit in the status register (RTC_SR) if an incorrect value has been detected. The
flag can be cleared by programming the TDERRCLR in the RTC status clear control register (RTC_SCCR).

Anyway the TDERR error flag will be set again if the source of the error has not been cleared before clearing the
TDERR flag. The clearing of the source of such error can be done either by reprogramming a correct value on
RTC_CALR and/or RTC_TIMR registers.

The RTC internal free running counters may automatically clear the source of TDERR due to their roll-over (i.e.
every 10 seconds for SECONDS[3:0] bitfield in RTC_TIMR register). In this case the TDERR is held high until a
clear command is asserted by TDERRCLR bit in RTC_SCCR register.

15.5.6 Updating Time/Calendar

To update any of the time/calendar fields, the user must first stop the RTC by setting the corresponding field in the
Control Register. Bit UPDTIM must be set to update time fields (hour, minute, second) and bit UPDCAL must be
set to update calendar fields (century, year, month, date, day).

Then the user must poll or wait for the interrupt (if enabled) of bit ACKUPD in the Status Register. Once the bit
reads 1, it is mandatory to clear this flag by writing the corresponding bit in RTC_SCCR. The user can now write to
the appropriate Time and Calendar register.

Once the update is finished, the user must reset (0) UPDTIM and/or UPDCAL in the Control

When entering programming mode of the calendar fields, the time fields remain enabled. When entering the
programming mode of the time fields, both time and calendar fields are stopped. This is due to the location of the
calendar logic circuity (downstream for low-power considerations). It is highly recommended to prepare all the
fields to be updated before entering programming mode. In successive update operations, the user must wait at
least one second after resetting the UPDTIM/UPDCAL bit in the RTC_CR (Control Register) before setting these
bits again. This is done by waiting for the SEC flag in the Status Register before setting UPDTIM/UPDCAL bit.
After resetting UPDTIM/UPDCAL, the SEC flag must also be cleared.
SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

280

18.3 General Purpose Backup Registers (GPBR) User Interface

Table 18-1. Register Mapping

Offset Register Name Access Reset

0x0 General Purpose Backup Register 0 SYS_GPBR0 Read-write –

...

0x1C General Purpose Backup Register 7 SYS_GPBR7 Read-write –
SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

326

forces MAINCK to be the source clock for the master clock (MCK).Then, regardless of the PMC configuration, a
clock failure detection automatically forces the 12/8/4 MHz Fast RC Oscillator to be the source clock for MAINCK.
If the Fast RC Oscillator is disabled when a clock failure detection occurs, it is automatically re-enabled by the
clock failure detection mechanism.

It takes 2 slow clock RC oscillator cycles to detect and switch from the 3 to 20 MHz Crystal, or Ceramic Resonator-
based Oscillator, to the 12/8/4 MHz Fast RC Oscillator if the Master Clock source is Main Clock, or 3 slow clock
RC oscillator cycles if the Master Clock source is PLLACK .

A clock failure detection activates a fault output that is connected to the Pulse Width Modulator (PWM) Controller.
With this connection, the PWM controller is able to force its outputs and to protect the driven device, if a clock
failure is detected. This fault output remains active until the defect is detected and until it is cleared by the bit
FOCLR in the PMC Fault Output Clear Register (PMC_FOCR).

The user can know the status of the fault output at any time by reading the FOS bit in the PMC_SR register.

25.12 Slow Crystal Clock Frequency Monitor

The frequency of the slow clock crystal oscillator can be monitored by means of logic driven by the main RC
oscillator known as a reliable clock source. This function is enabled by configuring the XT32KFME bit of the Main
Oscillator Register (CKGR_MOR).

An error flag (XT32KERR in PMC_SR) is asserted when the slow clock crystal oscillator frequency is out of the +/-
10% nominal frequency value (i.e. 32768 kHz). The error flag can be cleared only if the slow clock frequency
monitoring is disabled.

When the main RC oscillator frequency is 4 MHz, the accuracy of the measurement is +/-40% as this frequency is
not trimmed during production. Therefore, +/-10% accuracy is obtained only if the RC oscillator frequency is
configured for 8 or 12 MHz.

The monitored clock frequency is declared invalid if at least 4 consecutive clock period measurement results are
over the nominal period +/-10%.

Due to the possible frequency variation of the embedded main RC oscillator acting as reference clock for the
monitor logic, any slow clock crystal frequency deviation over +/-10% of the nominal frequency is systematically
reported as an error by means of XT32KERR in PMC_SR. Between -1% and -10% and +1% and +10%, the error
is not systematically reported.

Thus only a crystal running at 32768 kHz frequency ensures that the error flag will not be asserted. The permitted
drift of the crystal is 10000ppm (1%), which allows any standard crystal to be used.

If the main RC frequency needs to be changed while the slow clock frequency monitor is operating, the monitoring
must be stopped prior to change the main RC frequency. Then it can be re-enabled as soon as MOSCRCS is set
in PMC_SR register.

The error flag can be defined as an interrupt source of the PMC by setting the XT32KERR bit of PMC_IER.

25.13 Programming Sequence
1. Enabling the Main Oscillator:

The main oscillator is enabled by setting the MOSCXTEN field in the Main Oscillator Register
(CKGR_MOR). The user can define a start-up time. This can be achieved by writing a value in the
MOSCXTST field in CKGR_MOR. Once this register has been correctly configured, the user must wait for
MOSCXTS field in the PMC_SR register to be set. This can be done either by polling the status register, or
by waiting the interrupt line to be raised if the associated interrupt to MOSCXTS has been enabled in the
PMC_IER register.

Start Up Time = 8 * MOSCXTST / SLCK = 56 Slow Clock Cycles.
The main oscillator will be enabled (MOSCXTS bit set) after 56 Slow Clock Cycles.
SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

402

27.7 Parallel Input/Output Controller (PIO) User Interface

Each I/O line controlled by the PIO Controller is associated with a bit in each of the PIO Controller User Interface
registers. Each register is 32 bits wide. If a parallel I/O line is not defined, writing to the corresponding bits has no
effect. Undefined bits read zero. If the I/O line is notmultiplexed with any peripheral, the I/O line is controlled by the
PIO Controller and PIO_PSR returns 1 systematically.

Table 27-2. Register Mapping

Offset Register Name Access Reset

0x0000 PIO Enable Register PIO_PER Write-only –

0x0004 PIO Disable Register PIO_PDR Write-only –

0x0008 PIO Status Register PIO_PSR Read-only (1)

0x000C Reserved – – –

0x0010 Output Enable Register PIO_OER Write-only –

0x0014 Output Disable Register PIO_ODR Write-only –

0x0018 Output Status Register PIO_OSR Read-only 0x0000 0000

0x001C Reserved – – –

0x0020 Glitch Input Filter Enable Register PIO_IFER Write-only –

0x0024 Glitch Input Filter Disable Register PIO_IFDR Write-only –

0x0028 Glitch Input Filter Status Register PIO_IFSR Read-only 0x0000 0000

0x002C Reserved – – –

0x0030 Set Output Data Register PIO_SODR Write-only –

0x0034 Clear Output Data Register PIO_CODR Write-only

0x0038 Output Data Status Register PIO_ODSR
Read-only

or(2)

Read-write
–

0x003C Pin Data Status Register PIO_PDSR Read-only (3)

0x0040 Interrupt Enable Register PIO_IER Write-only –

0x0044 Interrupt Disable Register PIO_IDR Write-only –

0x0048 Interrupt Mask Register PIO_IMR Read-only 0x00000000

0x004C Interrupt Status Register(4) PIO_ISR Read-only 0x00000000

0x0050 Multi-driver Enable Register PIO_MDER Write-only –

0x0054 Multi-driver Disable Register PIO_MDDR Write-only –

0x0058 Multi-driver Status Register PIO_MDSR Read-only 0x00000000

0x005C Reserved – – –

0x0060 Pull-up Disable Register PIO_PUDR Write-only –

0x0064 Pull-up Enable Register PIO_PUER Write-only –

0x0068 Pad Pull-up Status Register PIO_PUSR Read-only (1)

0x006C Reserved – – –
451SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

27.7.28 PIO Input Filter Slow Clock Status Register

Name: PIO_IFSCSR

Address: 0x400E0E88 (PIOA), 0x400E1088 (PIOB), 0x400E1288 (PIOC)

Access: Read-only

• P0-P31: Glitch or Debouncing Filter Selection Status

0: The Glitch Filter is able to filter glitches with a duration < Tmck2.

1: The Debouncing Filter is able to filter pulses with a duration < Tdiv_slclk/2.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
481SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

31.7.1.2 Fractional Baud Rate in Asynchronous Mode

The Baud Rate generator previously defined is subject to the following limitation: the output frequency changes by
only integer multiples of the reference frequency. An approach to this problem is to integrate a fractional N clock
generator that has a high resolution. The generator architecture is modified to obtain Baud Rate changes by a
fraction of the reference source clock. This fractional part is programmed with the FP field in the Baud Rate
Generator Register (US_BRGR). If FP is not 0, the fractional part is activated. The resolution is one eighth of the
clock divider. This feature is only available when using USART normal mode. The fractional Baud Rate is
calculated using the following formula:

The modified architecture is presented below:

Figure 31-4. Fractional Baud Rate Generator

31.7.1.3 Baud Rate in Synchronous Mode or SPI Mode

If the USART is programmed to operate in synchronous mode, the selected clock is simply divided by the field CD
in US_BRGR.

In synchronous mode, if the external clock is selected (USCLKS = 3), the clock is provided directly by the signal on
the USART SCK pin. No division is active. The value written in US_BRGR has no effect. The external clock
frequency must be at least 3 times lower than the system clock. In synchronous mode master (USCLKS = 0 or 1,
CLK0 set to 1), the receive part limits the SCK maximum frequency to MCK/3 in USART mode, or MCK/6 in SPI
mode.

When either the external clock SCK or the internal clock divided (MCK/DIV) is selected, the value programmed in
CD must be even if the user has to ensure a 50:50 mark/space ratio on the SCK pin. If the internal clock MCK is
selected, the Baud Rate Generator ensures a 50:50 duty cycle on the SCK pin, even if the value programmed in
CD is odd.

Baudrate
SelectedClock

8 2 Over–() CD
FP
8

-------+

--=

MCK/DIV
16-bit Counter

0

Baud Rate
Clock

CD

CD

Sampling
Divider

0

1

>1

Sampling
Clock

Reserved

MCK

SCK

USCLKS

OVER

SCK

SYNC

SYNC

USCLKS = 3

1

0

2

3
0

1

0

1

FIDIGlitch-free
 Logic

Modulus
Control

FP

FP

BaudRate
SelectedClock

CD
--------------------------------------=
SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

604

31.8.1 USART Control Register

Name: US_CR

Address: 0x40024000 (0), 0x40028000 (1), 0x4002C000 (2)

Access: Write-only

For SPI control, see “USART Control Register (SPI_MODE)” on page 631.

• RSTRX: Reset Receiver

0: No effect.

1: Resets the receiver.

• RSTTX: Reset Transmitter

0: No effect.

1: Resets the transmitter.

• RXEN: Receiver Enable

0: No effect.

1: Enables the receiver, if RXDIS is 0.

• RXDIS: Receiver Disable

0: No effect.

1: Disables the receiver.

• TXEN: Transmitter Enable

0: No effect.

1: Enables the transmitter if TXDIS is 0.

• TXDIS: Transmitter Disable

0: No effect.

1: Disables the transmitter.

• RSTSTA: Reset Status Bits

0: No effect.

1: Resets the status bits PARE, FRAME, OVRE and RXBRK in US_CSR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – RTSDIS RTSEN – –

15 14 13 12 11 10 9 8

RETTO RSTNACK RSTIT SENDA STTTO STPBRK STTBRK RSTSTA

7 6 5 4 3 2 1 0

TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –
629SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Figure 32-5. Example of Transfer with PDC

32.6.10 Trigger Conditions

In addition to the SYNC signal, the software trigger and the RC compare trigger, an external trigger can be defined.

The ABETRG bit in the TC_CMR selects TIOA or TIOB input signal as an external trigger . The External Trigger
Edge Selection parameter (ETRGEDG field in TC_CMR) defines the edge (rising, falling, or both) detected to
generate an external trigger. If ETRGEDG = 0 (none), the external trigger is disabled.

TIOB

TIOA

RA

RB

Transfer to System Memory

Peripheral trigger

RA RB RA RB

T1,T2,T3,T4 = System Bus load dependent (tmin = 8 peripheral clocks)

T1 T2 T3 T4

ETRGEDG = 1, LDRA = 1, LDRB = 2, ABETRG = 0

ETRGEDG = 3, LDRA = 3, LDRB = 0, ABETRG = 0

TIOB

TIOA

RA

Transfer to System Memory

Peripheral trigger

RA RA

T1,T2,T3,T4 = System Bus load dependent (tmin = 8 peripheral clocks)

T1 T2 T3 T4
RA RA
665SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

32.7.12 TC Interrupt Mask Register

Name: TC_IMRx [x=0..2]

Address: 0x4001002C (0)[0], 0x4001006C (0)[1], 0x400100AC (0)[2], 0x4001402C (1)[0], 0x4001406C (1)[1],
0x400140AC (1)[2]

Access: Read-only

• COVFS: Counter Overflow

0: The Counter Overflow Interrupt is disabled.

1: The Counter Overflow Interrupt is enabled.

• LOVRS: Load Overrun

0: The Load Overrun Interrupt is disabled.

1: The Load Overrun Interrupt is enabled.

• CPAS: RA Compare

0: The RA Compare Interrupt is disabled.

1: The RA Compare Interrupt is enabled.

• CPBS: RB Compare

0: The RB Compare Interrupt is disabled.

1: The RB Compare Interrupt is enabled.

• CPCS: RC Compare

0: The RC Compare Interrupt is disabled.

1: The RC Compare Interrupt is enabled.

• LDRAS: RA Loading

0: The Load RA Interrupt is disabled.

1: The Load RA Interrupt is enabled.

• LDRBS: RB Loading

0: The Load RB Interrupt is disabled.

1: The Load RB Interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – RXBUFF ENDRX

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS
SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

700

32.7.18 TC QDEC Interrupt Status Register

Name: TC_QISR

Address: 0x400100D4 (0), 0x400140D4 (1)

Access: Read-only

• IDX: Index

0: No Index input change since the last read of TC_QISR.

1: The IDX input has changed since the last read of TC_QISR.

• DIRCHG: Direction Change

0: No change on rotation direction since the last read of TC_QISR.

1: The rotation direction changed since the last read of TC_QISR.

• QERR: Quadrature Error

0: No quadrature error since the last read of TC_QISR.

1: A quadrature error occurred since the last read of TC_QISR.

• DIR: Direction

Returns an image of the actual rotation direction.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – DIR

7 6 5 4 3 2 1 0

– – – – – QERR DIRCHG IDX
SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

708

Note that in SPI master mode the SAM4N does not sample the data (MISO) on the opposite edge where data
clocks out (MOSI) but the same edge is used as shown in Figure 36-14 and Figure 36-15.

36.10.4 USART in SPI Mode Timings

Timings are given in the following domains:

 1.8V domain: VDDIO from 1.65V to 1.95V, maximum external capacitor = 20 pF

 3.3V domain: VDDIO from 2.85V to 3.6V, maximum external capacitor = 40 pF

Figure 36-18. USART SPI Master Mode

The full speed is obtained for an input source impedance < 50 Ω or tTRACK = 500 ns.

Figure 36-19. USART SPI Slave Mode (Mode 1 or 2)

NSS

SPI0

MSB LSB

SPI1

CPOL = 1

CPOL = 0

MISO

MOSI

SCK

SPI5

SPI2

SPI3

SPI4
SPI4

• MOSI line is driven by the output pin TXD
• MISO line drives the input pin RXD
• SCK line is driven by the output pin SCK
• NSS line is driven by the output pin RTS

SCK

MISO

MOSI

SPI6

SPI7 SPI8

NSS

SPI12
SPI13

• MOSI line drives the input pin RXD
• MISO line is driven by the output pin TXD
• SCK line drives the input pin SCK
• NSS line drives the input pin CTS
SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

824

36.10.5 Two-wire Serial Interface Characteristics

Table 36-44 describes the requirements for devices connected to the Two-wire Serial Bus. For timing symbols
refer to Figure 36-20.

Notes: 1. Required only for fTWCK > 100 kHz.

2. Cb = capacitance of one bus line in pF. Per I2C Standard, Cb Max = 400 pF
3. The TWCK low period is defined as follows: tLOW = ((CLDIV × 2CKDIV) + 4) × tMCK

4. The TWCK high period is defined as follows: tHIGH = ((CHDIV × 2CKDIV) + 4) × tMCK

5. tCPMCK = MCK bus period.

Table 36-44. Two-wire Serial Bus Requirements

Symbol Parameter Condition Min Max Unit

VIL Input Low-voltage -0.3 0.3 × VDDIO V

VIH Input High-voltage 0.7 × VDDIO VCC + 0.3 V

Vhys Hysteresis of Schmitt Trigger Inputs 0.150 – V

VOL Output Low-voltage 3 mA sink current - 0.4 V

tr Rise Time for both TWD and TWCK 20 + 0.1Cb
(1)(2) 300 ns

tof Output Fall Time from VIHmin to VILmax
10 pF < Cb < 400 pF

Figure 36-20
20 + 0.1Cb

(1)(2) 250 ns

Ci
(1) Capacitance for each I/O Pin – 10 pF

fTWCK TWCK Clock Frequency 0 400 kHz

Rp Value of Pull-up Resistor
fTWCK ≤ 100 kHz (VDDIO - 0.4V) ÷ 3mA 1000ns ÷ Cb Ω

fTWCK > 100 kHz (VDDIO - 0.4V) ÷ 3mA 300ns ÷ Cb Ω

tLOW Low Period of the TWCK Clock
fTWCK ≤ 100 kHz (3) – µs

fTWCK > 100 kHz (3) – µs

tHIGH High period of the TWCK Clock
fTWCK ≤ 100 kHz (4) – µs

fTWCK > 100 kHz (4) – µs

th(start) Hold Time (Repeated) START Condition
fTWCK ≤ 100 kHz tHIGH – µs

fTWCK > 100 kHz tHIGH – µs

tsu(start)
Set-up Time for a Repeated START
Condition

fTWCK ≤ 100 kHz tHIGH – µs

fTWCK > 100 kHz tHIGH – µs

th(data) Data Hold Time
fTWCK ≤ 100 kHz 0 3 × tCPMCK

(5) µs

fTWCK > 100 kHz 0 3 × tCPMCK
(5) µs

tsu(data) Data Setup Time
fTWCK ≤ 100 kHz tLOW - 3 × tCPMCK

(5) – ns

fTWCK > 100 kHz tLOW - 3 × tCP_MCK
(5) – ns

tsu(stop) Setup Time for STOP Condition
fTWCK ≤ 100 kHz tHIGH – µs

fTWCK > 100 kHz tHIGH – µs

tBUF
Bus Free Time between a STOP and
START Condition

fTWCK ≤ 100 kHz tLOW – µs

fTWCK > 100 kHz tLOW – µs
SAM4N8/SAM4N16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

826

