

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	34
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64К х 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4n8aa-aur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.3 Voltage Regulator

The SAM4N embeds a core voltage regulator that is managed by the Supply Controller and that supplies the Cortex-M4 core, internal memories (SRAM, ROM and Flash logic) and the peripherals. An internal adaptive biasing adjusts the regulator quiescent current depending on the required load current.

For adequate input and output power supply decoupling/bypassing, refer to Table 36-3, "1.2V Voltage Regulator Characteristics," on page 795.

5.4 Typical Powering Schematics

The SAM4N8/16 supports a 1.62–3.6 V single supply mode. The internal regulator input connected to the source and its output feeds VDDCORE. Figure 5-2 shows the power schematics.

As VDDIN powers voltage regulator and ADC/DAC, when the user does not want to use the embedded voltage regulator, he can disable it by software via the SUPC (note that it is different from backup mode).

Figure 5-2. Single Supply

Note: For temperature sensor, VDDIO needs to be greater than 2.4V.

11.4.1.4 General-purpose Registers

R0-R12 are 32-bit general-purpose registers for data operations.

11.4.1.5 Stack Pointer

The *Stack Pointer* (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indicates the stack pointer to use:

- 0 = Main Stack Pointer (MSP). This is the reset value.
- 1 = Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

11.4.1.6 Link Register

The *Link Register* (LR) is register R14. It stores the return information for subroutines, function calls, and exceptions. On reset, the processor loads the LR value 0xFFFFFFF.

11.4.1.7 Program Counter

The *Program Counter* (PC) is register R15. It contains the current program address. On reset, the processor loads the PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the EPSR T-bit at reset and must be 1.

11.6.3 Instruction Descriptions

11.6.3.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions act on the operands and often store the result in a destination register. When there is a destination register in the instruction, it is usually specified before the operands.

Operands in some instructions are flexible, can either be a register or a constant. See "Flexible Second Operand" .

11.6.3.2 Restrictions when Using PC or SP

Many instructions have restrictions on whether the *Program Counter* (PC) or *Stack Pointer* (SP) for the operands or destination register can be used. See instruction descriptions for more information.

Note: Bit[0] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct execution, because this bit indicates the required instruction set, and the Cortex-M4 processor only supports Thumb instructions.

11.6.3.3 Flexible Second Operand

Many general data processing instructions have a flexible second operand. This is shown as *Operand2* in the descriptions of the syntax of each instruction.

Operand2 can be a:

- "Constant"
- "Register with Optional Shift"

Constant

Specify an Operand2 constant in the form:

#constant

where constant can be:

- Any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word
- Any constant of the form 0x00XY00XY
- Any constant of the form 0xXY00XY00
- Any constant of the form 0xXYXYXYXY.

Note: In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, *constant* can take a wider range of values. These are described in the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be produced by shifting an 8-bit value. These instructions do not affect the carry flag if *Operand2* is any other constant.

Instruction Substitution

The assembler might be able to produce an equivalent instruction in cases where the user specifies a constant that is not permitted. For example, an assembler might assemble the instruction CMP *Rd*, #0xFFFFFFE as the equivalent instruction CMN *Rd*, #0x2.

Register with Optional Shift

Specify an Operand2 register in the form:

Rm { , shift }where:Rmis the register holding the data for the second operand.shiftis an optional shift to be applied to Rm. It can be one of:

11.6.8 Packing and Unpacking Instructions

The table below shows the instructions that operate on packing and unpacking data:

Mnemonic	Description
РКН	Pack Halfword
SXTAB	Extend 8 bits to 32 and add
SXTAB16	Dual extend 8 bits to 16 and add
SXTAH	Extend 16 bits to 32 and add
SXTB	Sign extend a byte
SXTB16	Dual extend 8 bits to 16 and add
SXTH	Sign extend a halfword
UXTAB	Extend 8 bits to 32 and add
UXTAB16	Dual extend 8 bits to 16 and add
UXTAH	Extend 16 bits to 32 and add
UXTB	Zero extend a byte
UXTB16	Dual zero extend 8 bits to 16 and add
UXTH	Zero extend a halfword

 Table 11-23.
 Packing and Unpacking Instructions

11.11.2.4 MPU Region Base Address Register Name: MPU RBAR Access: Read-write 0x0000000 Reset: 30 31 29 28 27 26 25 24 ADDR 23 22 21 20 19 18 17 16 ADDR 15 14 13 12 11 10 9 Ν ADDR 5 3 2 0 N-1 6 4 1 VALID REGION _

Note: If the region size is 32B, the ADDR field is bits [31:5] and there is no Reserved field.

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

• ADDR: Region Base Address

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by the SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes),

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB, for example, at 0x00010000 or 0x00020000.

• VALID: MPU Region Number Valid

Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for the region specified in the REGION field.

Always reads as zero.

• REGION: MPU Region

For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

12.5 Functional Description

12.5.1 Test Pin

One dedicated pin, TST, is used to define the device operating mode. When this pin is at low level during powerup, the device is in normal operating mode. When at high level, the device is in test mode or FFPI mode. The TST pin integrates a permanent pull-down resistor of about 15 k Ω , so that it can be left unconnected for normal operation. Note that when setting the TST pin to low or high level at power up, it must remain in the same state during the duration of the whole operation.

12.5.2 Debug Architecture

Figure 12-4 shows the Debug Architecture used in the SAM4. The Cortex-M4 embeds five functional units for debug:

- SWJ-DP (Serial Wire/JTAG Debug Port)
- FPB (Flash Patch Breakpoint
- DWT (Data Watchpoint and Trace)
- ITM (Instrumentation Trace Macrocell)
- TPIU (Trace Port Interface Unit)

The debug architecture information that follows is mainly dedicated to developers of SWJ-DP emulators/probes and debugging tool vendors for Cortex M4-based microcontrollers. For further details on SWJ-DP see the Cortex M4 technical reference manual.

13.5.3 Reset Controller Mode Register

Name:	RSTC_MR						
Address:	0x400E1408						
Access:	Read-write						
31	30	29	28	27	26	25	24
			KE	ΞY			
23	22	21	20	19	18	17	16
_	-	-	-	-	-	-	-
	-	-	-	-		-	
15	14	13	12	11	10	9	8
_	-	-	-	ERSTL			
7	6	5	4	3	2	1	0
-	-		URSTIEN	_	_	_	URSTEN

• URSTEN: User Reset Enable

0 = The detection of a low level on the pin NRST does not generate a User Reset.

1 = The detection of a low level on the pin NRST triggers a User Reset.

• URSTIEN: User Reset Interrupt Enable

0 = USRTS bit in RSTC_SR at 1 has no effect on rstc_irq.

1 = USRTS bit in RSTC_SR at 1 asserts rstc_irq if URSTEN = 0.

• ERSTL: External Reset Length

This field defines the external reset length. The external reset is asserted during a time of $2^{(\text{ERSTL+1})}$ Slow Clock cycles. This allows assertion duration to be programmed between 60 µs and 2 seconds.

• KEY: Write Access Password

Value	Name	Description
0×45	PASSWD	Writing any other value in this field aborts the write operation.
CAXU		Always reads as 0.

15.6.7 RTC Status Register

Name:	RTC_SR						
Address:	0x400E1478						
Access:	Read-only						
31	30	29	28	27	26	25	24
-	_	_	_	_	_	_	_
23	22	21	20	19	18	17	16
—	-	-	_	-	-	-	—
15	14	13	12	11	10	9	8
_	_	-	_	_	-	-	_
7	6	5	4	3	2	1	0
_	-	TDERR	CALEV	TIMEV	SEC	ALARM	ACKUPD

ACKUPD: Acknowledge for Update

- 0 (FREERUN) = Time and calendar registers cannot be updated.
- 1 (UPDATE) = Time and calendar registers can be updated.

• ALARM: Alarm Flag

- 0 (NO_ALARMEVENT) = No alarm matching condition occurred.
- 1 (ALARMEVENT) = An alarm matching condition has occurred.

• SEC: Second Event

- 0 (NO_SECEVENT) = No second event has occurred since the last clear.
- 1 (SECEVENT) = At least one second event has occurred since the last clear.

• TIMEV: Time Event

0 (NO_TIMEVENT) = No time event has occurred since the last clear.

1 (TIMEVENT) = At least one time event has occurred since the last clear.

The time event is selected in the TIMEVSEL field in RTC_CR (Control Register) and can be any one of the following events: minute change, hour change, noon, midnight (day change).

• CALEV: Calendar Event

0 (NO_CALEVENT) = No calendar event has occurred since the last clear.

1 (CALEVENT) = At least one calendar event has occurred since the last clear.

The calendar event is selected in the CALEVSEL field in RTC_CR and can be any one of the following events: week change, month change and year change.

TDERR: Time and/or Date Free Running Error

0 (CORRECT) = The internal free running counters are carrying valid values since the last read of RTC_SR.

1 (ERR_TIMEDATE) = The internal free running counters have been corrupted (invalid date or time, non-BCD values) since the last read and/or they are still invalid.

product electrical characteristics section. In order to set the bypass mode, the OSCBYPASS bit of the Supply Controller Mode Register (SUPC_MR) needs to be set at 1.

17.4.3 Core Voltage Regulator Control/Backup Low Power Mode

The Supply Controller can be used to control the embedded voltage regulator.

The voltage regulator automatically adapts its quiescent current depending on the required load current. Please refer to the electrical characteristics section.

The programmer can switch off the voltage regulator, and thus put the device in Backup mode, by writing the Supply Controller Control Register (SUPC_CR) with the VROFF bit at 1.

This asserts the vddcore_nreset signal after the write resynchronization time which lasts, in the worse case, two slow clock cycles. Once the vddcore_nreset signal is asserted, the processor and the peripherals are stopped one slow clock cycle before the core power supply shuts off.

When the user does not use the internal voltage regulator and wants to supply VDDCORE by an external supply, it is possible to disable the voltage regulator. This is done through ONREG bit in SUPC_MR.

17.4.4 Supply Monitor

The Supply Controller embeds a supply monitor which is located in the VDDIO Power Supply and which monitors VDDIO power supply.

The supply monitor can be used to prevent the processor from falling into an unpredictable state if the Main power supply drops below a certain level.

The threshold of the supply monitor is programmable. It can be selected from 1.9V to 3.4V by steps of 100 mV. This threshold is programmed in the SMTH field of the Supply Controller Supply Monitor Mode Register (SUPC_SMMR).

The supply monitor can also be enabled during one slow clock period on every one of either 32, 256 or 2048 slow clock periods, according to the choice of the user. This can be configured by programming the SMSMPL field in SUPC_SMMR.

Enabling the supply monitor for such reduced times allows to divide the typical supply monitor power consumption respectively by factors of 32, 256 or 2048, if the user does not need a continuous monitoring of the VDDIO power supply.

A supply monitor detection can either generate a reset of the core power supply or a wake-up of the core power supply. Generating a core reset when a supply monitor detection occurs is enabled by writing the SMRSTEN bit to 1 in SUPC_SMMR.

Waking up the core power supply when a supply monitor detection occurs can be enabled by programming the SMEN bit to 1 in the Supply Controller Wake-up Mode Register (SUPC_WUMR).

The Supply Controller provides two status bits in the Supply Controller Status Register for the supply monitor which allows to determine whether the last wake-up was due to the supply monitor:

- The SMOS bit provides real time information, which is updated at each measurement cycle or updated at each Slow Clock cycle, if the measurement is continuous.
- The SMS bit provides saved information and shows a supply monitor detection has occurred since the last read of SUPC_SR.

The SMS bit can generate an interrupt if the SMIEN bit is set to 1 in the Supply Controller Supply Monitor Mode Register (SUPC_SMMR).

22.8 Bus Matrix (MATRIX) User Interface

Table 22-4.Register Mapping

Offset	Register	Name	Access	Reset
0x0000	Master Configuration Register 0	MATRIX_MCFG0	Read-write	0x0000000
0x0004	Master Configuration Register 1	MATRIX_MCFG1	Read-write	0x0000000
0x0008	Master Configuration Register 2	MATRIX_MCFG2	Read-write	0x0000000
0x000C - 0x003C	Reserved	-	_	-
0x0040	Slave Configuration Register 0	MATRIX_SCFG0	Read-write	0x00010010
0x0044	Slave Configuration Register 1	MATRIX_SCFG1	Read-write	0x00050010
0x0048	Slave Configuration Register 2	MATRIX_SCFG2	Read-write	0x0000010
0x004C	Slave Configuration Register 3	MATRIX_SCFG3	Read-write	0x0000010
0x0050 - 0x007C	Reserved	-	_	-
0x0080	Priority Register A for Slave 0	MATRIX_PRAS0	Read-write	0x0000000
0x0084	Reserved	-	_	-
0x0088	Priority Register A for Slave 1	MATRIX_PRAS1	Read-write	0x0000000
0x008C	Reserved	-	-	_
0x0090	Priority Register A for Slave 2	MATRIX_PRAS2	Read-write	0x0000000
0x0094	Reserved	-	_	-
0x0098	Priority Register A for Slave 3	MATRIX_PRAS3	Read-write	0x0000000
0x009C - 0x0110	Reserved	-	_	-
0x0114	System I/O Configuration register	CCFG_SYSIO	Read/Write	0x00000000
0x0118- 0x011C	Reserved	_	_	_
0x0120 - 0x010C	Reserved	-	_	_
0x0110 - 0x01FC	Reserved	-	_	_

25. Power Management Controller (PMC)

25.1 Description

The Power Management Controller (PMC) optimizes power consumption by controlling all system and user peripheral clocks. The PMC enables/disables the clock inputs to many of the peripherals and the Cortex-M4 Processor.

The Supply Controller selects between the 32 kHz RC oscillator or the crystal oscillator. The unused oscillator is disabled automatically so that power consumption is optimized.

By default, at start-up the chip runs out of the Master Clock using the Fast RC Oscillator running at 4 MHz.

The user can trim the 8 and 12 MHz RC Oscillator frequencies by software.

25.2 Embedded Characteristics

The Power Management Controller provides the following clocks:

- MCK, the Master Clock, programmable from a few hundred Hz to the maximum operating frequency of the device. It is available to the modules running permanently, such as the Enhanced Embedded Flash Controller.
- Processor Clock (HCLK), must be switched off when entering the processor in Sleep Mode.
- Free running processor Clock (FCLK)
- The Cortex-M4 SysTick external clock
- Peripheral Clocks, typically MCK, provided to the embedded peripherals (USART, SPI, TWI, TC, HSMCI, etc.) and independently controllable. In order to reduce the number of clock names in a product, the Peripheral Clocks are named MCK in the product datasheet.
- Programmable Clock Outputs can be selected from the clocks provided by the clock generator and driven on the PCKx pins.
- Write Protected Registers

The Power Management Controller also provides the following operations on clocks:

- A main crystal oscillator clock failure detector.
- A 32768 kHz crystal oscillator frequency monitor.
- A frequency counter on main clock and an on-the-fly adjustable main RC oscillator frequency.

Value	Name	Description
13	256K	256 Kbytes
14	96K	96 Kbytes
15	512K	512 Kbytes

• ARCH: Architecture Identifier

Value	Name	Description
0x19	AT91SAM9xx	AT91SAM9xx Series
0x29	AT91SAM9XExx	AT91SAM9XExx Series
0x34	AT91x34	AT91x34 Series
0x37	CAP7	CAP7 Series
0x39	CAP9	CAP9 Series
0x3B	CAP11	CAP11 Series
0x40	AT91x40	AT91x40 Series
0x42	AT91x42	AT91x42 Series
0x45	AT91SAM4SH2	AT91SAM4SH2 Series
0x55	AT91x55	AT91x55 Series
0x60	AT91SAM7Axx	AT91SAM7Axx Series
0x61	AT91SAM7AQxx	AT91SAM7AQxx Series
0x63	AT91x63	AT91x63 Series
0x64	SAM4CxxC	SAM4CxC Series (100-pin version)
0x66	SAM4CxxE	SAM4CxE Series (144-pin version)
0x70	AT91SAM7Sxx	AT91SAM7Sxx Series
0x71	AT91SAM7XCxx	AT91SAM7XCxx Series
0x72	AT91SAM7SExx	AT91SAM7SExx Series
0x73	AT91SAM7Lxx	AT91SAM7Lxx Series
0x75	AT91SAM7Xxx	AT91SAM7Xxx Series
0x76	AT91SAM7SLxx	AT91SAM7SLxx Series
0x80	SAM3UxC	SAM3UxC Series (100-pin version)
0x81	SAM3UxE	SAM3UxE Series (144-pin version)
0x83	SAM3AxC	SAM3AxC Series (100-pin version)
0x84	SAM3XxC	SAM3XxC Series (100-pin version)
0x85	SAM3XxE	SAM3XxE Series (144-pin version)
0x86	SAM3XxG	SAM3XxG Series (208/217-pin version)
0x92	AT91x92	AT91x92 Series
0x93	SAM4NxA	SAM4NxA Series (48-pin version)
0x94	SAM4NxB	SAM4NxB Series (64-pin version)
0x95	SAM4NxC	SAM4NxC Series (100-pin version)
0x99	SAM3SDxB	SAM3SDxB Series (64-pin version)

27.7.13 PIO Pin Data Status Register

Name: PIO_PDSR

Address: 0x400E0E3C (PIOA), 0x400E103C (PIOB), 0x400E123C (PIOC)

Access: Read-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0-P31: Output Data Status

0: The I/O line is at level 0.

1: The I/O line is at level 1.

27.7.27 PIO Input Filter Slow Clock Enable Register

Name:	PIO_IFSCER							
Address:	0x400E0E84 (PIOA), 0x400E1084 (PIOB), 0x400E1284 (PIOC)							
Access:	Write-only							
31	30	29	28	27	26	25	24	
P31	P30	P29	P28	P27	P26	P25	P24	
23	22	21	20	19	18	17	16	
P23	P22	P21	P20	P19	P18	P17	P16	
15	14	13	12	11	10	9	8	
P15	P14	P13	P12	P11	P10	P9	P8	
7	6	5	4	3	2	1	0	
P7	P6	P5	P4	P3	P2	P1	P0	

• P0-P31: Debouncing Filtering Select.

0: No Effect.

1: The Debouncing Filter is able to filter pulses with a duration < Tdiv_slclk/2.

31.7.5.2 IrDA Baud Rate

Table 31-13 gives some examples of CD values, baud rate error and pulse duration. Note that the requirement on the maximum acceptable error of $\pm 1.87\%$ must be met.

Peripheral Clock	Baud Rate	CD	Baud Rate Error	Pulse Time
3 686 400	115 200	2	0.00%	1.63
20 000 000	115 200	11	1.38%	1.63
32 768 000	115 200	18	1.25%	1.63
40 000 000	115 200	22	1.38%	1.63
3 686 400	57 600	4	0.00%	3.26
20 000 000	57 600	22	1.38%	3.26
32 768 000	57 600	36	1.25%	3.26
40 000 000	57 600	43	0.93%	3.26
3 686 400	38 400	6	0.00%	4.88
20 000 000	38 400	33	1.38%	4.88
32 768 000	38 400	53	0.63%	4.88
40 000 000	38 400	65	0.16%	4.88
3 686 400	19 200	12	0.00%	9.77
20 000 000	19 200	65	0.16%	9.77
32 768 000	19 200	107	0.31%	9.77
40 000 000	19 200	130	0.16%	9.77
3 686 400	9 600	24	0.00%	19.53
20 000 000	9 600	130	0.16%	19.53
32 768 000	9 600	213	0.16%	19.53
40 000 000	9 600	260	0.16%	19.53
3 686 400	2 400	96	0.00%	78.13
20 000 000	2 400	521	0.03%	78.13
32 768 000	2 400	853	0.04%	78.13

Table 31-13. IrDA Baud Rate Error

32.6.4 Clock Control

The clock of each counter can be controlled in two different ways: it can be enabled/disabled and started/stopped. See Figure 32-4.

- The clock can be enabled or disabled by the user with the CLKEN and the CLKDIS commands in the TC Channel Control Register (TC_CCR). In Capture mode it can be disabled by an RB load event if LDBDIS is set to 1 in the TC_CMR. In Waveform mode, it can be disabled by an RC Compare event if CPCDIS is set to 1 in TC_CMR. When disabled, the start or the stop actions have no effect: only a CLKEN command in the TC_CCR can re-enable the clock. When the clock is enabled, the CLKSTA bit is set in the TC_SR.
- The clock can also be started or stopped: a trigger (software, synchro, external or compare) always starts the clock. The clock can be stopped by an RB load event in Capture mode (LDBSTOP = 1 in TC_CMR) or an RC compare event in Waveform mode (CPCSTOP = 1 in TC_CMR). The start and the stop commands are effective only if the clock is enabled.

Figure 32-4. Clock Control

32.6.5 Operating Modes

Each channel can operate independently in two different modes:

- Capture mode provides measurement on signals.
- Waveform mode provides wave generation.

The TC operating mode is programmed with the WAVE bit in the TC_CMR.

In Capture mode, TIOA and TIOB are configured as inputs.

In Waveform mode, TIOA is always configured to be an output and TIOB is an output if it is not selected to be the external trigger.

32.6.6 Trigger

A trigger resets the counter and starts the counter clock. Three types of triggers are common to both modes, and a fourth external trigger is available to each mode.

Regardless of the trigger used, it will be taken into account at the following active edge of the selected clock. This means that the counter value can be read differently from zero just after a trigger, especially when a low frequency signal is selected as the clock.

33.6.3.4 Interrupts

Depending on the interrupt mask in the PWM_IMR register, an interrupt is generated at the end of the corresponding channel period. The interrupt remains active until a read operation in the PWM_ISR register occurs.

A channel interrupt is enabled by setting the corresponding bit in the PWM_IER register. A channel interrupt is disabled by setting the corresponding bit in the PWM_IDR register.

34.7.9 ADC Interrupt Enable Register

Name:	ADC_IER						
Address:	0x40038024						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	-	_	RXBUFF	ENDRX	COMPE	GOVRE	DRDY
23	22	21	20	19	18	17	16
EOCAL	_	_	_	TEMPCHG	_	_	EOC16
15	14	13	12	11	10	9	8
EOC15	EOC14	EOC13	EOC12	EOC11	EOC10	EOC9	EOC8
7	6	5	4	3	2	1	0
EOC7	EOC6	EOC5	EOC4	EOC3	EOC2	EOC1	EOC0

- EOCx: End of Conversion Interrupt Enable x
- TEMPCHG: Temperature Change Interrupt Enable
- EOCAL: End of Calibration Sequence
- DRDY: Data Ready Interrupt Enable
- GOVRE: General Overrun Error Interrupt Enable
- COMPE: Comparison Event Interrupt Enable
- ENDRX: End of Receive Buffer Interrupt Enable
- RXBUFF: Receive Buffer Full Interrupt Enable
- 0 = No effect.
- 1 = Enables the corresponding interrupt.

35.7.7 DACC Interrupt Status Register

Name:	DACC_ISR						
Address:	0x4003C018						
Access:	Read-only						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	—	-	-	-	—	—
15	14	13	12	11	10	9	8
_	-	—	Ι	—	-	—	-
7	6	5	4	3	2	1	0
_	-	-	-	-	TXBUFE	ENDTX	TXRDY

• TXRDY: Transmission Ready Interrupt Flag

• ENDTX: End of PDC Interrupt Flag

• TXBUFE: Buffer Empty Interrupt Flag

Figure 36-9. SAM4N8/16 Active Power Consumption with VDDCORE @ 1.2V, T_A = 25°C

