

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	I²C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	47
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 11x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4n8ba-mur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 11-11. Faults

Fault	Handler	Bit Name	Fault Status Register		
Bus error on a vector read		VECTTBL			
Fault escalated to a hard fault	Hard fault	FORCED	"Hard Fault Status Register"		
MPU or default memory map mismatch:		-	-		
on instruction access		IACCVIOL			
on data access	Memory	DACCVIOL ⁽²⁾			
during exception stacking	management fault	MSTKERR	"MMFSR: Memory Management Fault Status Subregister"		
during exception unstacking		MUNSKERR			
during lazy floating-point state preservation		MLSPERR			
Bus error:		-	-		
during exception stacking		STKERR			
during exception unstacking		UNSTKERR			
during instruction prefetch	Bus fault	IBUSERR	"DECD, Due Fould Status Cubra sister"		
during lazy floating-point state preservation		LSPERR	"BFSR: Bus Fault Status Subregister"		
Precise data bus error		PRECISERR			
Imprecise data bus error		IMPRECISERR			
Attempt to access a coprocessor		NOCP			
Undefined instruction		UNDEFINSTR			
Attempt to enter an invalid instruction set state ⁽¹⁾		INVSTATE	"IIFSD: Lloogo Foult Status Subracistar"		
Invalid EXC_RETURN value	Usage fault	INVPC	"UFSR: Usage Fault Status Subregister"		
Illegal unaligned load or store		UNALIGNED			
Divide By 0		DIVBYZERO			

Notes: 1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.

2. Attempt to use an instruction set other than the Thumb instruction set, or return to a non load/store-multiple instruction with ICI continuation.

Fault Escalation and Hard Faults

All faults exceptions except for hard fault have configurable exception priority, see "System Handler Priority Registers". The software can disable the execution of the handlers for these faults, see "System Handler Control and State Register".

Usually, the exception priority, together with the values of the exception mask registers, determines whether the processor enters the fault handler, and whether a fault handler can preempt another fault handler, as described in "Exception Model".

Mnemonic	Operands	Description	Flags
SMULBB, SMULBT SMULTB, SMULTT	{Rd,} Rn, Rm	Signed Multiply (halfwords)	-
SMULL	RdLo, RdHi, Rn, Rm	Signed Multiply (32 x 32), 64-bit result	-
SMULWB, SMULWT	{Rd,} Rn, Rm	Signed Multiply word by halfword	-
SMUSD, SMUSDX	{Rd,} Rn, Rm	Signed dual Multiply Subtract	-
SSAT	Rd, #n, Rm {,shift #s}	Signed Saturate	Q
SSAT16	Rd, #n, Rm	Signed Saturate 16	Q
SSAX	{Rd,} Rn, Rm	Signed Subtract and Add with Exchange	GE
SSUB16	{Rd,} Rn, Rm	Signed Subtract 16	-
SSUB8	{Rd,} Rn, Rm	Signed Subtract 8	-
STM	Rn{!}, reglist	Store Multiple registers, increment after	-
STMDB, STMEA	Rn{!}, reglist	Store Multiple registers, decrement before	-
STMFD, STMIA	Rn{!}, reglist	Store Multiple registers, increment after	-
STR	Rt, [Rn, #offset]	Store Register word	-
STRB, STRBT	Rt, [Rn, #offset]	Store Register byte	-
STRD	Rt, Rt2, [Rn, #offset]	Store Register two words	-
STREX	Rd, Rt, [Rn, #offset]	Store Register Exclusive	-
STREXB	Rd, Rt, [Rn]	Store Register Exclusive byte	-
STREXH	Rd, Rt, [Rn]	Store Register Exclusive halfword	-
STRH, STRHT	Rt, [Rn, #offset]	Store Register halfword	-
STRT	Rt, [Rn, #offset]	Store Register word	-
SUB, SUBS	{Rd,} Rn, Op2	Subtract	N,Z,C,V
SUB, SUBW	{Rd,} Rn, #imm12	Subtract	N,Z,C,V
SVC	#imm	Supervisor Call	-
SXTAB	{Rd,} Rn, Rm,{,ROR #}	Extend 8 bits to 32 and add	-
SXTAB16	{Rd,} Rn, Rm,{,ROR #}	Dual extend 8 bits to 16 and add	-
SXTAH	{Rd,} Rn, Rm,{,ROR #}	Extend 16 bits to 32 and add	-
SXTB16	{Rd,} Rm {,ROR #n}	Signed Extend Byte 16	-
SXTB	{Rd,} Rm {,ROR #n}	Sign extend a byte	-
SXTH	{Rd,} Rm {,ROR #n}	Sign extend a halfword	-
ТВВ	[Rn, Rm]	Table Branch Byte	-
ТВН	[Rn, Rm, LSL #1]	Table Branch Halfword	-
TEQ	Rn, Op2	Test Equivalence	N,Z,C
TST	Rn, Op2	Test	N,Z,C
UADD16	{Rd,} Rn, Rm	Unsigned Add 16	GE
UADD8	{Rd,} Rn, Rm	Unsigned Add 8	GE
USAX	{Rd,} Rn, Rm	Unsigned Subtract and Add with Exchange	GE

Table 11-13. Cortex-M4 Instructions (Continued)

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is discarded. See the instruction descriptions for more information.

Note: Most instructions update the status flags only if the S suffix is specified. See the instruction descriptions for more information.

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}. Conditional execution requires a preceding IT instruction. An instruction with a condition code is only executed if the condition code flags in the APSR meet the specified condition. Table 11-16 shows the condition codes to use.

A conditional execution can be used with the IT instruction to reduce the number of branch instructions in code.

Table 11-16 also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Suffix	Flags	Meaning
EQ	Z = 1	Equal
NE	Z = 0	Not equal
CS or HS	C = 1	Higher or same, unsigned ≥
CC or LO	C = 0	Lower, unsigned <
MI	N = 1	Negative
PL	N = 0	Positive or zero
VS	V = 1	Overflow
VC	V = 0	No overflow
ні	C = 1 and Z = 0	Higher, unsigned >
LS	C = 0 or Z = 1	Lower or same, unsigned \leq
GE	N = V	Greater than or equal, signed \geq
LT	N != V	Less than, signed <
GT	Z = 0 and $N = V$	Greater than, signed >
LE	Z = 1 and N != V	Less than or equal, signed \leq
AL	Can have any value	Always. This is the default when no suffix is specified.

Table 11-16.Condition Code Suffixes

Absolute Value

The example below shows the use of a conditional instruction to find the absolute value of a number. R0 = ABS(R1).

MOVS	R0, R1	; R0 = R1, setting flags
IT	MI	; IT instruction for the negative condition
RSBMI	R0, R1, #0	; If negative, R0 = -R1

Compare and Update Value

The example below shows the use of conditional instructions to update the value of R4 if the signed values R0 is greater than R1 and R2 is greater than R3.

CMP	R0, R1	; Compare R0 and R1, setting flags	
ITT	GT	; IT instruction for the two GT conditions	
CMPGT	R2, R3	; If 'greater than', compare R2 and R3, setting flags	
MOVGT	R4, R5	; If still 'greater than', do R4 = R5	

11.6.5.20 UHSUB16 and UHSUB8

Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8

Syntax

op{cond}{Rd,} Rn, Rm

where:

ор	is any of:
	UHSUB16 Performs two unsigned 16-bit integer additions, halves the results, and writes the results to the destination register.
	UHSUB8 Performs four unsigned 8-bit integer additions, halves the results, and writes the results to the destination register.
cond	is an optional condition code, see "Conditional Execution" .
Rd	is the destination register.
Rn	is the first register holding the operand.
Rm	is the second register holding the operand.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination register:

The UHSUB16 instruction:

- 1. Subtracts each halfword of the second operand from the corresponding halfword of the first operand.
- 2. Shuffles each halfword result to the right by one bit, halving the data.
- 3. Writes each unsigned halfword result to the corresponding halfwords in the destination register.

The UHSUB8 instruction:

- 1. Subtracts each byte of second operand from the corresponding byte of the first operand.
- 2. Shuffles each byte result by one bit to the right, halving the data.
- 3. Writes the unsigned byte results to the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

UHSUB16	R1,	R0		; Subtracts halfwords in R0 from corresponding halfword of
				; R1 and writes halved result to corresponding halfword in R1
UHSUB8	R4,	R0,	R5	; Subtracts bytes of R5 from corresponding byte in R0 and
				; writes halved result to corresponding byte in R4.

Atmel

11.6.6.1 MUL, MLA, and MLS

Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a 32-bit result. Syntax

MUL{S}{cond} {Rd,} Rn, Rm ; Multiply
MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate
MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract

where:

cond is an optional condition code, see "Conditional Execution" .

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation, see "Conditional Execution".

Rd is the destination register. If *Rd* is omitted, the destination register is *Rn*.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

Operation

The MUL instruction multiplies the values from *Rn* and *Rm*, and places the least significant 32 bits of the result in *Rd*.

The MLA instruction multiplies the values from *Rn* and *Rm*, adds the value from *Ra*, and places the least significant 32 bits of the result in *Rd*.

The MLS instruction multiplies the values from *Rn* and *Rm*, subtracts the product from the value from *Ra*, and places the least significant 32 bits of the result in *Rd*.

The results of these instructions do not depend on whether the operands are signed or unsigned.

Restrictions

In these instructions, do not use SP and do not use PC.

If the S suffix is used with the MUL instruction:

- Rd, Rn, and Rm must all be in the range R0 to R7
- Rd must be the same as Rm
- The cond suffix must not be used.

Condition Flags

If S is specified, the MUL instruction:

- Updates the N and Z flags according to the result
- Does not affect the C and V flags.

Examples

```
MULR10, R2, R5; Multiply, R10 = R2 x R5MLAR10, R2, R1, R5; Multiply with accumulate, R10 = (R2 x R1) + R5MULSR0, R2, R2; Multiply with flag update, R0 = R2 x R2MULLTR2, R3, R2; Conditionally multiply, R2 = R3 x R2MLSR4, R5, R6, R7; Multiply with subtract, R4 = R7 - (R5 x R6)
```

Atmel

11.9.1.5 Ap Name: Access: Reset:	plication Interrupt a SCB_AIRCR Read-write 0x000000000	nd Reset Co	ontrol Register							
31	30	29	28	27	26	25	24			
	VECTKEYSTAT/VECTKEY									
23	22	21	20	19	18	17	16			
			VECTKEYSTA	T/VECTKEY						
15	14	13	12	11	10	9	8			
ENDIANNES	SS		-			PRIGROUP				
7	6	5	4	3	2	1	0			
		_			SYSRESETREQ	VECTCLRACTI VE	VECTRESET			

The SCB_AIRCR register provides priority grouping control for the exception model, endian status for data accesses, and reset control of the system. To write to this register, write 0x5FA to the VECTKEY field, otherwise the processor ignores the write.

• VECTKEYSTAT: Register Key

Read:

Reads as 0xFA05.

• VECTKEY: Register Key

Write:

Writes 0x5FA to VECTKEY, otherwise the write is ignored.

• ENDIANNESS: Data Endianness

0: Little-endian.

1: Big-endian.

11.9.1.9 S	ystem Handler Priorit	y Register 1						
Name:	SCB_SHPR1							
Access:	Read-write							
Reset:	0x00000000							
31	30	29	28	27	26	25	24	
			-					
23	22	21	20	19	18	17	16	
			PR	_6				
15	14	13	12	11	10	9	8	
PRI_5								
7	6	5	4	3	2	1	0	
			PR	_4				

• PRI_6: Priority

Priority of system handler 6, UsageFault.

• PRI_5: Priority

Priority of system handler 5, BusFault.

• PRI_4: Priority

Priority of system handler 4, MemManage.

25.16.8 PMC Clock Generator Main Clock Frequency Register

Name:	CKGR_MCFR									
Address:	0x400E0424									
Access:	Read-Write									
31	30	29	28	27	26	25	24			
_	-	_	-	-	-	_	-			
23	22	21	20	19	18	17	16			
-	-	—	RCMEAS	-	-	_	MAINFRDY			
			-	-						
15	14	13	12	11	10	9	8			
	MAINF									
7	6	5	4	3	2	1	0			
			MA	INF						

This register can only be written if the WPEN bit is cleared in "PMC Write Protect Mode Register" .

• MAINF: Main Clock Frequency

Gives the number of Main Clock cycles within 16 Slow Clock periods.

• MAINFRDY: Main Clock Ready

0 = MAINF value is not valid or the Main Oscillator is disabled or a measure has just been started by means of RCMEAS.

1 = The Main Oscillator has been enabled previously and MAINF value is available.

Note: To ensure that a correct value is read on the MAINF bitfield, the MAINFRDY flag must be read at 1 then another read access must be performed on the register to get a stable value on the MAINF bitfield.

• RCMEAS: RC Oscillator Frequency Measure (write-only)

0 = No effect.

1 = Restarts measuring of the main RC frequency. MAINF will carry the new frequency as soon as a low to high transition occurs on the MAINFRDY flag.

The measure is performed on the main frequency (i.e. not limited to RC oscillator only), but if the main clock frequency source is the fast crystal oscillator, the restart of measuring is not needed because of the well known stability of crystal oscillators.

25.16.14 PMC Status Register

Name:	PMC_SR						
Address:	0x400E0468						
Access:	Read-only						
31	30	29	28	27	26	25	24
_	-	-	_	-	_	_	_
23	22	21	20	19	18	17	16
—	-	XT32KERR	FOS	CFDS	CFDEV	MOSCRCS	MOSCSELS
15	14	13	12	11	10	9	8
_	—	-	_	—	PCKRDY2	PCKRDY1	PCKRDY0
7	6	5	4	3	2	1	0
OSCSELS	-	-	_	MCKRDY	_	LOCKA	MOSCXTS

MOSCXTS: Main XTAL Oscillator Status

0 = Main XTAL oscillator is not stabilized.

1 = Main XTAL oscillator is stabilized.

LOCKA: PLLA Lock Status

- 0 = PLLA is not locked
- 1 = PLLA is locked.

MCKRDY: Master Clock Status

- 0 = Master Clock is not ready.
- 1 = Master Clock is ready.

OSCSELS: Slow Clock Oscillator Selection

- 0 = Internal slow clock RC oscillator is selected.
- 1 = External slow clock 32 kHz oscillator is selected.

PCKRDYx: Programmable Clock Ready Status

- 0 = Programmable Clock x is not ready.
- 1 = Programmable Clock x is ready.

• MOSCSELS: Main Oscillator Selection Status

- 0 = Selection is in progress.
- 1 = Selection is done.

MOSCRCS: Main On-Chip RC Oscillator Status

- 0 = Main on-chip RC oscillator is not stabilized.
- 1 = Main on-chip RC oscillator is stabilized.

CFDEV: Clock Failure Detector Event

- 0 = No clock failure detection of the main on-chip RC oscillator clock has occurred since the last read of PMC_SR.
- 1 = At least one clock failure detection of the main on-chip RC oscillator clock has occurred since the last read of PMC_SR.

These Additional Modes are:

- Rising Edge Detection
- Falling Edge Detection
- Low Level Detection
- High Level Detection

In order to select an Additional Interrupt Mode:

- The type of event detection (Edge or Level) must be selected by writing in the set of registers; PIO_ESR (Edge Select Register) and PIO_LSR (Level Select Register) which enable respectively, the Edge and Level Detection. The current status of this selection is accessible through the PIO_ELSR (Edge/Level Status Register).
- The Polarity of the event detection (Rising/Falling Edge or High/Low Level) must be selected by writing in the set of registers; PIO_FELLSR (Falling Edge /Low Level Select Register) and PIO_REHLSR (Rising Edge/High Level Select Register) which allow to select Falling or Rising Edge (if Edge is selected in the PIO_ELSR) Edge or High or Low Level Detection (if Level is selected in the PIO_ELSR). The current status of this selection is accessible through the PIO_FRLHSR (Fall/Rise - Low/High Status Register).

When an input Edge or Level is detected on an I/O line, the corresponding bit in PIO_ISR (Interrupt Status Register) is set. If the corresponding bit in PIO_IMR is set, the PIO Controller interrupt line is asserted. The interrupt signals of the thirty-two channels are ORed-wired together to generate a single interrupt signal to the interrupt controller.

When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies that all the interrupts that are pending when PIO_ISR is read must be handled. When an Interrupt is enabled on a "Level", the interrupt is generated as long as the interrupt source is not cleared, even if some read accesses in PIO_ISR are performed.

27.7.9 PIO Input Filter Status Register

Name: PIO_IFSR

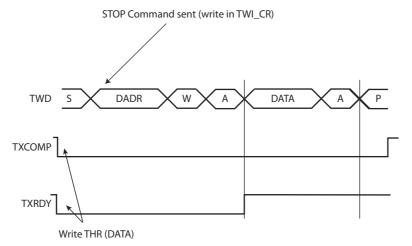
Address: 0x400E0E28 (PIOA), 0x400E1028 (PIOB), 0x400E1228 (PIOC)

Access: Read-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0-P31: Input Filer Status

0: The input glitch filter is disabled on the I/O line.


1: The input glitch filter is enabled on the I/O line.

After a Master Write transfer, the Serial Clock line is stretched (tied low) while no new data is written in the TWI_THR or until a STOP command is performed.

See Figure 29-6, Figure 29-7, and Figure 29-8.

Figure 29-6. Master Write with One Data Byte

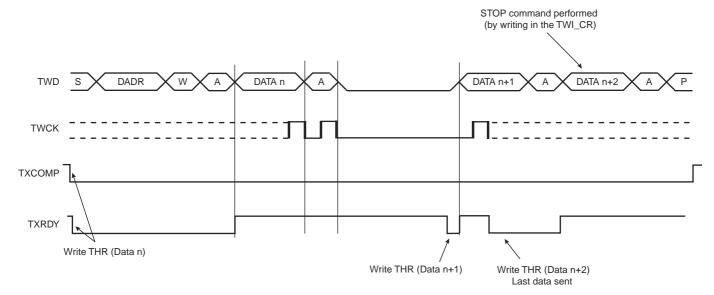
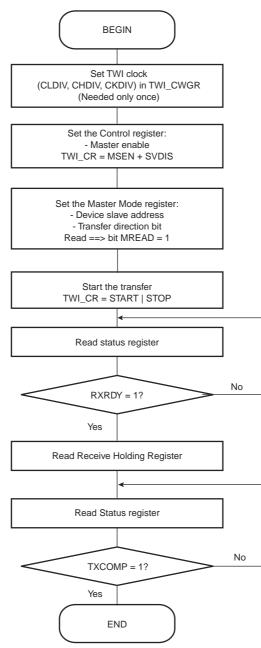



Figure 29-18. TWI Read Operation with Single Data Byte without Internal Address

31.7.7.2 Baud Rate

In SPI Mode, the baudrate generator operates in the same way as in USART synchronous mode: See "Baud Rate in Synchronous Mode or SPI Mode" on page 604. However, there are some restrictions:

In SPI Master Mode:

- The external clock SCK must not be selected (USCLKS ≠ 0x3), and the bit CLKO must be set to "1" in the Mode Register (US_MR), in order to generate correctly the serial clock on the SCK pin.
- To obtain correct behavior of the receiver and the transmitter, the value programmed in CD must be superior or equal to 6.
- If the internal clock divided (MCK/DIV) is selected, the value programmed in CD must be even to ensure a 50:50 mark/space ratio on the SCK pin, this value can be odd if the internal clock is selected (MCK).

In SPI Slave Mode:

- The external clock (SCK) selection is forced regardless of the value of the USCLKS field in the Mode Register (US_MR). Likewise, the value written in US_BRGR has no effect, because the clock is provided directly by the signal on the USART SCK pin.
- To obtain correct behavior of the receiver and the transmitter, the external clock (SCK) frequency must be at least 6 times lower than the system clock.

31.7.7.3 Data Transfer

Up to 9 data bits are successively shifted out on the TXD pin at each rising or falling edge (depending of CPOL and CPHA) of the programmed serial clock. There is no Start bit, no Parity bit and no Stop bit.

The number of data bits is selected by the CHRL field and the MODE 9 bit in the Mode Register (US_MR). The 9 bits are selected by setting the MODE 9 bit regardless of the CHRL field. The MSB data bit is always sent first in SPI Mode (Master or Slave).

Four combinations of polarity and phase are available for data transfers. The clock polarity is programmed with the CPOL bit in the Mode Register. The clock phase is programmed with the CPHA bit. These two parameters determine the edges of the clock signal upon which data is driven and sampled. Each of the two parameters has two possible states, resulting in four possible combinations that are incompatible with one another. Thus, a master/slave pair must use the same parameter pair values to communicate. If multiple slaves are used and fixed in different configurations, the master must reconfigure itself each time it needs to communicate with a different slave.

Table 31-14. SPI Bus	Protocol Mode
----------------------	---------------

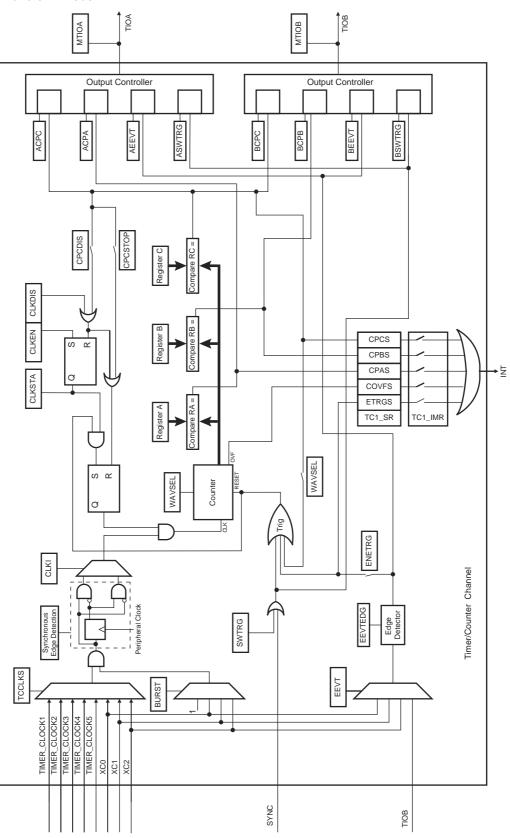
SPI Bus Protocol Mode	CPOL	СРНА
0	0	1
1	0	0
2	1	1
3	1	0

31.8.15 USART Baud Rate Generator Register

Name:	US_BRGR							
Address:	0x40024020 (0),	0x40024020 (0), 0x40028020 (1), 0x4002C020 (2)						
Access:	Read-write							
31	30	29	28	27	26	25	24	
-	-	-	-	_	-	_	—	
23	22	21	20	19	18	17	16	
—	-	—	-	_		FP		
15	14	13	12	11	10	9	8	
			C	D				
7	6	5	4	3	2	1	0	
			C	D				

This register can only be written if the WPEN bit is cleared in "USART Write Protect Mode Register" on page 655.

• CD: Clock Divider


	SYNC = 0 CD OVER = 0 OVER = 1		SYNC = 1 or USART_MODE = SPI (Master or Slave)	USART_MODE =
CD				ISO7816
0		Baud Rate	Clock Disabled	
1 to 65535	Baud Rate = Selected Clock/(16*CD)	Baud Rate = Selected Clock/(8*CD)	Baud Rate = Selected Clock /CD	Baud Rate = Selected Clock/(FI_DI_RATIO*CD)

• FP: Fractional Part

0: Fractional divider is disabled.

1 - 7: Baud rate resolution, defined by FP x 1/8.

Figure 32-7. Waveform Mode

32.7.3 TC Channel Mode Register: Waveform Mode

Name:	TC_CMRx [x=02] (WAVEFORM_MODE)
-------	--------------------------------

Access: Read/Write

31	30	29	28	27	26	25	24
BSV	VTRG	BE	EVT	BC	PC	BC	PB
23	22	21	20	19	18	17	16
ASV	VTRG	AE	EVT	AC	PC	AC	PA
15	14	13	12	11	10	9	8
WAVE	WAV	'SEL	ENETRG	EE	VT	EEV	FEDG
7	6	5	4	3	2	1	0
CPCDIS	CPCSTOP	BL	JRST	CLKI		TCCLKS	

This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

• TCCLKS: Clock Selection

Value	Name	Description
0	TIMER_CLOCK1	Clock selected: internal MCK/2 clock signal (from PMC)
1	TIMER_CLOCK2	Clock selected: internal MCK/8 clock signal (from PMC)
2	TIMER_CLOCK3	Clock selected: internal MCK/32 clock signal (from PMC)
3	TIMER_CLOCK4	Clock selected: internal MCK/128 clock signal (from PMC)
4	TIMER_CLOCK5	Clock selected: internal SLCK clock signal (from PMC)
5	XC0	Clock selected: XC0
6	XC1	Clock selected: XC1
7	XC2	Clock selected: XC2

• CLKI: Clock Invert

0: Counter is incremented on rising edge of the clock.

1: Counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

Value	Name	Description
0	NONE	The clock is not gated by an external signal.
1	XC0	XC0 is ANDed with the selected clock.
2	XC1	XC1 is ANDed with the selected clock.
3	XC2	XC2 is ANDed with the selected clock.

• CPCSTOP: Counter Clock Stopped with RC Compare

0: Counter clock is not stopped when counter reaches RC.

1: Counter clock is stopped when counter reaches RC.

• POSEN: Position Enabled

0: Disable position.

1: Enables the position measure on channel 0 and 1.

• SPEEDEN: Speed Enabled

0: Disabled.

1: Enables the speed measure on channel 0, the time base being provided by channel 2.

QDTRANS: Quadrature Decoding Transparent

0: Full quadrature decoding logic is active (direction change detected).

1: Quadrature decoding logic is inactive (direction change inactive) but input filtering and edge detection are performed.

• EDGPHA: Edge on PHA Count Mode

- 0: Edges are detected on PHA only.
- 1: Edges are detected on both PHA and PHB.

• INVA: Inverted PHA

0: PHA (TIOA0) is directly driving the QDEC.

1: PHA is inverted before driving the QDEC.

• INVB: Inverted PHB

0: PHB (TIOB0) is directly driving the QDEC.

1: PHB is inverted before driving the QDEC.

• INVIDX: Inverted Index

0: IDX (TIOA1) is directly driving the QDEC.

1: IDX is inverted before driving the QDEC.

• SWAP: Swap PHA and PHB

0: No swap between PHA and PHB.

1: Swap PHA and PHB internally, prior to driving the QDEC.

• IDXPHB: Index Pin is PHB Pin

0: IDX pin of the rotary sensor must drive TIOA1.

1: IDX pin of the rotary sensor must drive TIOB0.

• MAXFILT: Maximum Filter

1-63: Defines the filtering capabilities.

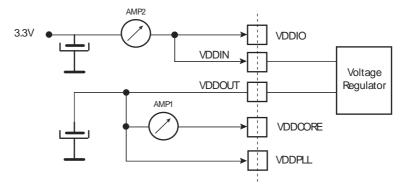
Pulses with a period shorter than MAXFILT+1 peripheral clock cycles are discarded.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDIN}	DC Input Voltage Range	(4)	1.62	3.3	3.6	V
V _{DDOUT}	DC Output Voltage	Normal Mode Standby Mode	1.08	1.2 0	1.32	V
V _{O(accuracy)}	Output Voltage Accuracy	I _{Load} = 0.8 mA to 80 mA (after trimming)	-3		3	%
I _{LOAD}	Maximum DC Output Current	$V_{DDIN} \ge 1.8V$ $V_{DDIN} < 1.8V$			120 40	mA
I _{LOAD-START}	Maximum Peak Current during Startup	(3)		370	400	mA
V _{DROPOUT}	Dropout Voltage	$V_{DDIN} = 1.6V; I_{Load} = Max$		400		mV
V _{LINE}	Line Regulation	V_{DDIN} from 2.7V to 3.6V; $I_{\text{Load}}\text{Max}$		10	30	mV
V _{LINE-TR}	Transient Line Regulation	V_{DDIN} from 2.7V to 3.6V; $t_r = t_f = 5 \ \mu s$; I_{Load} Max		50	150	mV
V _{LOAD}	Load Regulation	$V_{\text{DDIN}} \ge 1.8$ V; I _{Load} = 10% to 90% Max		20	40	mV
$V_{LOAD-TR}$	Transient Load Regulation	$V_{\text{DDIN}} \! \geq \! 1.8 \text{V}; \; I_{\text{Load}} \! = \! 10\% \text{ to } 90\% \text{ Max}; \\ t_r \! = \! t_f \! = \! 5 \; \mu \text{s}$		50	150	mV
		Normal Mode; @ I _{Load} = 0 mA		5		
Ι _Q	Quiescent Current	Normal Mode; @ I _{Load} = 80 mA		500		μA
		Standby Mode		0.02	1	-
CD _{IN}	Input Decoupling Capacitor	(1)		4.7		μF
0.5		(2)		2.2		μF
CD _{OUT}	Output Decoupling Capacitor	ESR	0.1		10	Ω
t _{on}	Turn on Time Standby to Normal Mode	CD_{OUT} = 2.2 µF, V _{DDOUT} reaches 1.2V (± 3%)		300		μs
t _{off}	Turn off Time Normal to Standby Mode	CD _{OUT} = 2.2 μF			40	ms

Table 36-3. 1.2V Voltage Regulator Characteristics

Notes: 1. A 4.7 μF or higher ceramic capacitor must be connected between VDDIN and the closest GND pin of the device. This large decoupling capacitor is mandatory to reduce start-up current, improving transient response and noise rejection.

2. To ensure stability, an external 2.2 μF output capacitor, CD_{OUT} must be connected between the VDDOUT and the closest GND pin of the device. The ESR (Equivalent Series Resistance) of the capacitor must be in the range 0.1 to 10 Ω. Solid tantalum, and multilayer ceramic capacitors are all suitable as output capacitor. A 100 nF bypass capacitor between VDDOUT and the closest GND pin of the device helps decreasing output noise and improves the load transient response.


3. Defined as the current needed to charge external bypass/decoupling capacitor network.

4. Refer to Section 5.2.2 "VDDIO Versus VDDIN"

36.3.2 Sleep and Wait Mode Current Consumption

The Wait mode and Sleep mode configuration and measurements are defined below.

Figure 36-5. Measurement Setup for Sleep Mode

36.3.2.1 Sleep Mode

- Core Clock OFF
- Master Clock (MCK) running at various frequencies with PLLA or the fast RC oscillator
- Fast start-up through pins WKUP0–15
- Current measurement as shown in figure Figure 36-5
- All peripheral clocks deactivated
- T_A = 25°C

Table 36-10 gives current consumption in typical conditions.

Table 36-10. Typical Current Consumption for Sleep Mode

Conditions	VDDCORE Consumption (AMP1)	Total Consumption (AMP2)	Unit
Figure 36-5 @ 25 °C MCK = 48 MHz	2.41	3.28	m ^
There is no activity on the I/Os of the device.	2.41	3.20	mA

