

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-VFBGA
Supplier Device Package	100-VFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/atsam4n8ca-cfu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Signals Description

Table 3-1 gives details on signal names classified by peripheral.

Table 3-1.	Signal Description List
------------	-------------------------

Signal Name	Function	Туре	Active Level	Voltage Reference	Comments		
Power Supplies							
VDDIO	Peripherals I/O Lines Power Supply	Power			1.62V to 3.6V		
VDDIN	Voltage Regulator, ADC and DAC Power Supply	Power			1.6V to 3.6V		
VDDOUT	Voltage Regulator Output	Power			1.2V Output		
VDDPLL	Oscillator Power Supply	Power			1.08V to 1.32V		
VDDCORE	Core Chip Power Supply	Power			1.08V to 1.32V Connected externally to VDDOUT		
GND	Ground	Ground					
	Clocks, Oscillato	ors and PL	Ls				
XIN	Main Oscillator Input	Input		VDDIO			
XOUT	Main Oscillator Output	Output					
XIN32	Slow Clock Oscillator Input	Input		VDDIO			
XOUT32	Slow Clock Oscillator Output	Output					
PCK0–PCK2 Programmable Clock Output		Output					
	ICE and .	JTAG					
тск	Test Clock	Input		VDDIO	No pull-up resistor		
TDI	Test Data In			VDDIO	No pull-up resistor		
TDO	Test Data Out	Output		VDDIO			
TRACESWO	Trace Asynchronous Data Out	Output		VDDIO			
SWDIO	Serial Wire Input/Output	I/O		VDDIO			
SWCLK	Serial Wire Clock	Input		VDDIO			
TMS	Test Mode Select	Input		VDDIO	No pull-up resistor		
JTAGSEL	JTAG Selection	Input	High	VDDIO	Pull-down resistor		
	Flash Me	mory	1	1			
ERASE Flash and NVM Configuration Bits Erase Command		Input	High	VDDIO	Pull-down (15 k Ω) resistor		
	Reset/T	est					
NRST	Microcontroller Reset	I/O	Low	VDDIO	Pull-up resistor		
TST	Test Mode Select	Input		VDDIO	Pull-down resistor		
	Universal Asynchronous Rec	eiver Trans	smitter - L	JARTx			
URXDx	UART Receive Data	Input					
UTXDx	UART Transmit Data	Output					

Instance Name	Channel T/R
TWI0	Transmit
TWI1	Transmit
TWI2	Transmit
UART0	Transmit
UART1	Transmit
UART2	Transmit
USART0	Transmit
USART1	Transmit
USART2	Transmit
DACC	Transmit
SPI	Transmit
TC0–TC2	Receive
TWIO	Receive
TWI1	Receive
TWI2	Receive
UART0	Receive
UART1	Receive
UART2	Receive
USART0	Receive
USART1	Receive
USART2	Receive
ADC	Receive
SPI	Receive

Table 10-5. Peripheral DMA Controller

ASR # <i>n</i>	arithmetic shift right <i>n</i> bits, $1 \le n \le 32$.
----------------	--

LSL #*n* logical shift left *n* bits, $1 \le n \le 31$.

LSR #*n* logical shift right *n* bits, $1 \le n \le 32$.

- ROR #*n* rotate right *n* bits, $1 \le n \le 31$.
- RRX rotate right one bit, with extend.

if omitted, no shift occurs, equivalent to LSL #0.

If the user omits the shift, or specifies LSL #0, the instruction uses the value in Rm.

If the user specifies a shift, the shift is applied to the value in *Rm*, and the resulting 32-bit value is used by the instruction. However, the contents in the register *Rm* remains unchanged. Specifying a register with shift also updates the carry flag when used with certain instructions. For information on the shift operations and how they affect the carry flag, see "Flexible Second Operand"

11.6.3.4 Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits, the *shift length*. Register shift can be performed:

- Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register
- During the calculation of *Operand2* by the instructions that specify the second operand as a register with shift. See "Flexible Second Operand". The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction. If the shift length is 0, no shift occurs. Register shift operations update the carry flag except when the specified shift length is 0. The following subsections describe the various shift operations and how they affect the carry flag. In these descriptions, Rm is the register containing the value to be shifted, and n is the shift length.

ASR

Arithmetic shift right by *n* bits moves the left-hand 32-n bits of the register, Rm, to the right by *n* places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the register into the left-hand *n* bits of the result. See Figure 11-9.

The ASR #n operation can be used to divide the value in the register Rm by 2^n , with the result being rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in *Operand2* with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[*n*-1], of the register *Rm*.

- If *n* is 32 or more, then all the bits in the result are set to the value of bit[31] of *Rm*.
- If *n* is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of *Rm*.

Figure 11-9. ASR #3

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by *n* places, into the right-hand 32-n bits of the result. And it sets the left-hand n bits of the result to 0. See Figure 11-10.

11.6.7.5 QDADD and QDSUB

Saturating Double and Add and Saturating Double and Subtract, signed.

Syntax

 $op\{cond\}$ {Rd}, Rm, Rn

where:

ор	is one of:
	QDADD Saturating Double and Add.
	QDSUB Saturating Double and Subtract.
cond	is an optional condition code, see "Conditional Execution".
Rd	is the destination register.
Rm, Rn	are registers holding the first and second operands.

Operation

The QDADD instruction:

- Doubles the second operand value.
- Adds the result of the doubling to the signed saturated value in the first operand.
- Writes the result to the destination register.

The QDSUB instruction:

- Doubles the second operand value.
- Subtracts the doubled value from the signed saturated value in the first operand.
- Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit signed integer range – $2^{31} \le x \le 2^{31} - 1$. If saturation occurs in either operation, it sets the Q flag in the APSR.

Restrictions

Do not use SP and do not use PC.

Condition Flags

If saturation occurs, these instructions set the Q flag to 1.

Examples

QDADD	R7,	R4,	R2	;	Doubles and saturates R4 to 32 bits, add	s R2,
				;	saturates to 32 bits, writes to R7	
QDSUB	R0,	R3,	R5	;	Subtracts R3 doubled and saturated to 32	bits
				;	from R5, saturates to 32 bits, writes to	R0.

155

14.5.4 Real-time Timer Status Register

Name:	RTT_SR						
Address:	0x400E143C						
Access:	Read-only						
31	30	29	28	27	26	25	24
-	-	—	-	—	-	-	-
		,					
23	22	21	20	19	18	17	16
_	_	—	—	—	—	—	—
15	14	13	12	11	10	9	8
_	_		_	_	_	_	_
7	6	5	4	3	2	1	0
_	-		_	_	_	RTTINC	ALMS

• ALMS: Real-time Alarm Status

0 = The Real-time Alarm has not occurred since the last read of RTT_SR.

1 = The Real-time Alarm occurred since the last read of RTT_SR.

RTTINC: Real-time Timer Increment

0 = The Real-time Timer has not been incremented since the last read of the RTT_SR.

1 = The Real-time Timer has been incremented since the last read of the RTT_SR.

17.4.6.2 Brownout Detector Reset

The brownout detector provides the bodcore_in signal to the SUPC which indicates that the voltage regulation is operating as programmed. If this signal is lost for longer than 1 slow clock period while the voltage regulator is enabled, the Supply Controller can assert vddcore_nreset. This feature is enabled by writing the bit, BODRSTEN (Brownout Detector Reset Enable) to 1 in the Supply Controller Mode Register (SUPC_MR).

If BODRSTEN is set and the voltage regulation is lost (output voltage of the regulator too low), the vddcore_nreset signal is asserted for a minimum of 1 slow clock cycle and then released if bodcore_in has been reactivated. The BODRSTS bit is set in the Supply Controller Status Register (SUPC_SR) so that the user can know the source of the last reset.

Until bodcore_in is deactivated, the vddcore_nreset signal remains active.

17.4.7 Wake-up Sources

The wake-up events allow the device to exit backup mode. When a wake-up event is detected, the Supply Controller performs a sequence which automatically reenables the core power supply.

Figure 17-4. Wake-up Sources

17.4.7.1 Wake-up Inputs

The wake-up inputs, WKUP0 to WKUP15, can be programmed to perform a wake-up of the core power supply. Each input can be enabled by writing to 1 the corresponding bit, WKUPEN0 to WKUPEN 15, in the Wake-up Inputs Register (SUPC_WUIR). The wake-up level can be selected with the corresponding polarity bit, WKUPPL0 to WKUPPL15, also located in SUPC_WUIR.

17.5.7 System Controller Wake-up Inputs Register

Name:	SUPC_WUIR						
Address:	0x400E1420						
Access:	Read-write						
31	30	29	28	27	26	25	24
WKUPT15	WKUPT14	WKUPT13	WKUPT12	WKUPT11	WKUPT10	WKUPT9	WKUPT8
	-	-			-		
23	22	21	20	19	18	17	16
WKUPT7	WKUPT6	WKUPT5	WKUPT4	WKUPT3	WKUPT2	WKUPT1	WKUPT0
	-	-			-		
15	14	13	12	11	10	9	8
WKUPEN15	WKUPEN14	WKUPEN13	WKUPEN12	WKUPEN11	WKUPEN10	WKUPEN9	WKUPEN8
7	6	5	4	3	2	1	0
WKUPEN7	WKUPEN6	WKUPEN5	WKUPEN4	WKUPEN3	WKUPEN2	WKUPEN1	WKUPEN0

• WKUPEN0 - WKUPEN15: Wake-up Input Enable 0 to 15

0 (DISABLE) = the corresponding wake-up input has no wake-up effect.

1 (ENABLE) = the corresponding wake-up input forces the wake-up of the core power supply.

• WKUPT0 - WKUPT15: Wake-up Input Type 0 to 15

0 (LOW) = a low level for a period defined by WKUPDBC on the corresponding wake-up input forces the wake-up of the core power supply.

1 (HIGH) = a high level for a period defined by WKUPDBC on the corresponding wake-up input forces the wake-up of the core power supply.

18.3 General Purpose Backup Registers (GPBR) User Interface

Offset	Register	Name	Access	Reset
0x0	General Purpose Backup Register 0	SYS_GPBR0	Read-write	_
0x1C	General Purpose Backup Register 7	SYS_GPBR7	Read-write	_

Table 18-1. Register Mapping

22. Bus Matrix (MATRIX)

22.1 Description

The Bus Matrix implements a multi-layer AHB that enables parallel access paths between multiple AHB masters and slaves in a system, which increases the overall bandwidth. Bus Matrix interconnects 3 AHB Masters to 4 AHB Slaves. The normal latency to connect a master to a slave is one cycle except for the default master of the accessed slave which is connected directly (zero cycle latency).

The Bus Matrix user interface also provides a Chip Configuration User Interface with Registers that allow to support application specific features.

22.2 Embedded Characteristics

22.2.1 Matrix Masters

The Bus Matrix of the SAM4N product manages 3 masters, which means that each master can perform an access concurrently with others, to an available slave.

Each master has its own decoder, which is defined specifically for each master. In order to simplify the addressing, all the masters have the same decodings.

Table 22-1. List of Bus Matrix Masters

Master 0	Cortex-M4 Instruction/Data
Master 1	Cortex-M4 System
Master 2	Peripheral DMA Controller (PDC)

22.2.2 Matrix Slaves

The Bus Matrix of the SAM4N product manages 4 slaves. Each slave has its own arbiter, allowing a different arbitration per slave.

Table 22-2. List of Bus Matrix Slaves

Slave 0	Internal SRAM
Slave 1	Internal ROM
Slave 2	Internal Flash
Slave 3	Peripheral Bridge

25. Power Management Controller (PMC)

25.1 Description

The Power Management Controller (PMC) optimizes power consumption by controlling all system and user peripheral clocks. The PMC enables/disables the clock inputs to many of the peripherals and the Cortex-M4 Processor.

The Supply Controller selects between the 32 kHz RC oscillator or the crystal oscillator. The unused oscillator is disabled automatically so that power consumption is optimized.

By default, at start-up the chip runs out of the Master Clock using the Fast RC Oscillator running at 4 MHz.

The user can trim the 8 and 12 MHz RC Oscillator frequencies by software.

25.2 Embedded Characteristics

The Power Management Controller provides the following clocks:

- MCK, the Master Clock, programmable from a few hundred Hz to the maximum operating frequency of the device. It is available to the modules running permanently, such as the Enhanced Embedded Flash Controller.
- Processor Clock (HCLK), must be switched off when entering the processor in Sleep Mode.
- Free running processor Clock (FCLK)
- The Cortex-M4 SysTick external clock
- Peripheral Clocks, typically MCK, provided to the embedded peripherals (USART, SPI, TWI, TC, HSMCI, etc.) and independently controllable. In order to reduce the number of clock names in a product, the Peripheral Clocks are named MCK in the product datasheet.
- Programmable Clock Outputs can be selected from the clocks provided by the clock generator and driven on the PCKx pins.
- Write Protected Registers

The Power Management Controller also provides the following operations on clocks:

- A main crystal oscillator clock failure detector.
- A 32768 kHz crystal oscillator frequency monitor.
- A frequency counter on main clock and an on-the-fly adjustable main RC oscillator frequency.

27.7.4 PIO Output Enable Register

Name:	PIO_OER						
Address:	0x400E0E10 (P	IOA), 0x400E10	010 (PIOB), 0x4	00E1210 (PIO	C)		
Access:	Write-only						
31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register can only be written if the WPEN bit is cleared in "PIO Write Protect Mode Register" .

• P0-P31: Output Enable

0: No effect.

1: Enables the output on the I/O line.

27.7.6 PIO Output Status Register

D_OSR

Address: 0x400E0E18 (PIOA), 0x400E1018 (PIOB), 0x400E1218 (PIOC)

Access: Read-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0-P31: Output Status

0: The I/O line is a pure input.

1: The I/O line is enabled in output.

27.7.21 PIO Pull Up Disable Register

Name:	PIO_PUDR						
Address:	0x400E0E60 (PI	OA), 0x400E10	060 (PIOB), 0x4	00E1260 (PIO	C)		
Access:	Write-only						
31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register can only be written if the WPEN bit is cleared in "PIO Write Protect Mode Register" .

• P0-P31: Pull Up Disable.

0: No effect.

1: Disables the pull up resistor on the I/O line.

27.7.23 PIO Pull Up Status Register

Name:	PIO_PUSR						
Address:	0x400E0E68 (P	IOA), 0x400E10	068 (PIOB), 0x4	100E1268 (PIO	C)		
Access:	Read-only						
31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0-P31: Pull Up Status.

0: Pull Up resistor is enabled on the I/O line.

1: Pull Up resistor is disabled on the I/O line.

29. Two-wire Interface (TWI)

29.1 Description

The Atmel Two-wire Interface (TWI) interconnects components on a unique two-wire bus, made up of one clock line and one data line with speeds of up to 400 Kbits per second, based on a byte-oriented transfer format. It can be used with any Atmel Two-wire Interface bus Serial EEPROM and I²C compatible device such as Real Time Clock (RTC), Dot Matrix/Graphic LCD Controllers and Temperature Sensor, to name but a few. The TWI is programmable as a master or a slave with sequential or single-byte access. Multiple master capability is supported.

Arbitration of the bus is performed internally and puts the TWI in slave mode automatically if the bus arbitration is lost.

A configurable baud rate generator permits the output data rate to be adapted to a wide range of core clock frequencies.

Below, Table 29-1 lists the compatibility level of the Atmel Two-wire Interface in Master Mode and a full I²C compatible device.

I ² C Standard	Atmel TWI
Standard Mode Speed (100 KHz)	Supported
Fast Mode Speed (400 KHz)	Supported
7 or 10 bits Slave Addressing	Supported
START BYTE ⁽¹⁾	Not Supported
Repeated Start (Sr) Condition	Supported
ACK and NACK Management	Supported
Slope control and input filtering (Fast mode)	Not Supported
Clock stretching	Supported
Multi Master Capability	Supported

Table 29-1. Atmel TWI compatibility with I²C Standard

Note: 1. START + b000000001 + Ack + Sr

29.2 Embedded Characteristics

- 3 x TWI
- Compatible with Atmel Two-wire Interface Serial Memory and I²C Compatible Devices⁽¹⁾
- One, Two or Three Bytes for Slave Address
- Sequential Read-write Operations
- Master, Multi-master and Slave Mode Operation
- Bit Rate: Up to 400 Kbits
- General Call Supported in Slave mode
- SMBUS Quick Command Supported in Master Mode
- Connection to Peripheral DMA Controller (PDC) Channel Capabilities Optimizes Data Transfers
 One Channel for the Receiver, One Channel for the Transmitter

Note: 1. See Table 29-1 for details on compatibility with I²C Standard.

Figure 29-11. Master Write with One, Two or Three Bytes Internal Address and One Data Byte

Figure 29-12. Master Read with One, Two or Three Bytes Internal Address and One Data Byte

29.8.6.210-bit Slave Addressing

For a slave address higher than 7 bits, the user must configure the address size (IADRSZ) and set the other slave address bits in the internal address register (TWI_IADR). The two remaining Internal address bytes, IADR[15:8] and IADR[23:16] can be used the same as in 7-bit Slave Addressing.

Example: Address a 10-bit device (10-bit device address is b1 b2 b3 b4 b5 b6 b7 b8 b9 b10)

- 1. Program IADRSZ = 1,
- 2. Program DADR with 1 1 1 1 0 b1 b2 (b1 is the MSB of the 10-bit address, b2, etc.)
- 3. Program TWI_IADR with b3 b4 b5 b6 b7 b8 b9 b10 (b10 is the LSB of the 10-bit address)

Figure 29-13 below shows a byte write to an Atmel AT24LC512 EEPROM. This demonstrates the use of internal addresses to access the device.

Figure 29-13. Internal Address Usage

29.8.7 Using the Peripheral DMA Controller (PDC)

The use of the PDC significantly reduces the CPU load.

To assure correct implementation, respect the following programming sequences:

29.10.5.2Write Operation

The write mode is defined as a data transmission from the master.

After a START or a REPEATED START, the decoding of the address starts. If the slave address is decoded, SVACC is set and SVREAD indicates the direction of the transfer (SVREAD is low in this case).

Until a STOP or REPEATED START condition is detected, TWI stores the received data in the TWI_RHR register.

If a STOP condition or a REPEATED START + an address different from SADR is detected, SVACC is reset.

Figure 29-26 on page 557 describes the Write operation.

Figure 29-26. Write Access Ordered by a Master

Notes: 1. When SVACC is low, the state of SVREAD becomes irrelevant.

2. RXRDY is set when data has been transmitted from the shift register to the TWI_RHR and reset when this data is read.

29.10.5.3General Call

The general call is performed in order to change the address of the slave.

If a GENERAL CALL is detected, GACC is set.

After the detection of General Call, it is up to the programmer to decode the commands which come afterwards.

In case of a WRITE command, the programmer has to decode the programming sequence and program a new SADR if the programming sequence matches.

Figure 29-27 on page 557 describes the General Call access.

Figure 29-27. Master Performs a General Call

29.10.5.4Clock Synchronization

In both read and write modes, it may happen that TWI_THR/TWI_RHR buffer is not filled /emptied before the emission/reception of a new character. In this case, to avoid sending/receiving undesired data, a clock stretching mechanism is implemented.

Atmel

33.7.1 PWM Mode Register Name: PWM_MR Address: 0x40020000 Access: Read/Write 31 30 27 26 24 29 28 25 PREB -_ _ _ 23 22 21 20 19 18 17 16 DIVB 10 9 8 15 14 13 12 11 PREA _ _ _ _ 7 6 5 4 2 0 3 1 DIVA

• DIVA, DIVB: CLKA, CLKB Divide Factor

Value	Name	Description	
0	CLK_OFF	CLKA, CLKB clock is turned off	
1	CLK_DIV1	CLKA, CLKB clock is clock selected by PREA, PREB	
2-255	_	CLKA, CLKB clock is clock selected by PREA, PREB divided by DIVA, DIVB factor.	

• PREA, PREB

Value	Name	Description
0000	MCK	Master Clock
0001	MCKDIV2	Master Clock divided by 2
0010	MCKDIV4	Master Clock divided by 4
0011	MCKDIV8	Master Clock divided by 8
0100	MCKDIV16	Master Clock divided by 16
0101	MCKDIV32	Master Clock divided by 32
0110	MCKDIV64	Master Clock divided by 64
0111	MCKDIV128	Master Clock divided by 128
1000	MCKDIV256	Master Clock divided by 256
1001	MCKDIV512	Master Clock divided by 512
1010	MCKDIV1024	Master Clock divided by 1024

Values which are not listed in the table must be considered as "reserved".

36.10.3 SPI Characteristics

Figure 36-16. SPI Slave Mode with (CPOL = 0 and NCPHA = 1) or (CPOL = 1 and NCPHA = 0)

		Millimeter			Inch	
Symbol	Min	Nom	Мах	Min	Nom	Max
А	-	-	1.60	_	_	0.063
A1	0.05	-	0.15	0.002	_	0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
D		12.00 BSC			0.472 BSC	
D1		10.00 BSC			0.383 BSC	
E		12.00 BSC			0.472 BSC	
E1		10.00 BSC			0.383 BSC	
R2	0.08	-	0.20	0.003	-	0.008
R1	0.08	_	_	0.003	-	_
q	0°	3.5°	7°	0°	3.5°	7°
θ1	0°	-	_	0°	-	_
θ2	11°	12°	13°	11°	12°	13°
θ3	11°	12°	13°	11°	12°	13°
С	0.09	-	0.20	0.004	-	0.008
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00 REF		0.039 REF		
S	0.20	-	_	0.008	-	_
b	0.17	0.20	0.27	0.007	0.008	0.011
е		0.50 BSC.		0.020 BSC.		
D2		7.50		0.285		
E2	7.50		0.285			
		Tolerand	es of Form and	Position		
aaa	0.20			0.008		
bbb		0.20			0.008	
ссс		0.08			0.003	
ddd		0.08			0.003	

Table 37-12.	64-lead LOFP Package Dimensions	(in mm	J)
	04 Icad Egil I I ackage Dimensions		•

Table 37-13. Device and 64-lead LQFP Package Maximum Weight

SAM4N	750	mg

Table 37-14. 64-lead LQFP Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	e3

Table 37-15. 64-lead LQFP Package Characteristics

Moisture Sensitivity Level

3

This package respects the recommendations of the NEMI User Group.