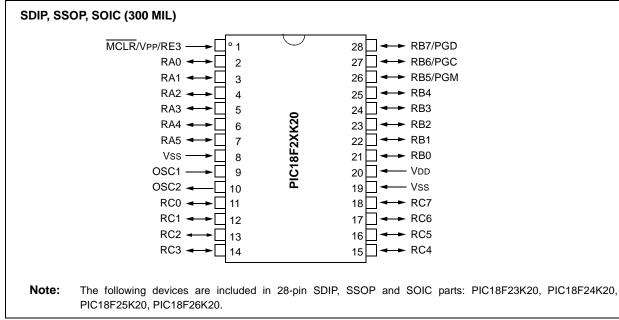


Welcome to E-XFL.COM

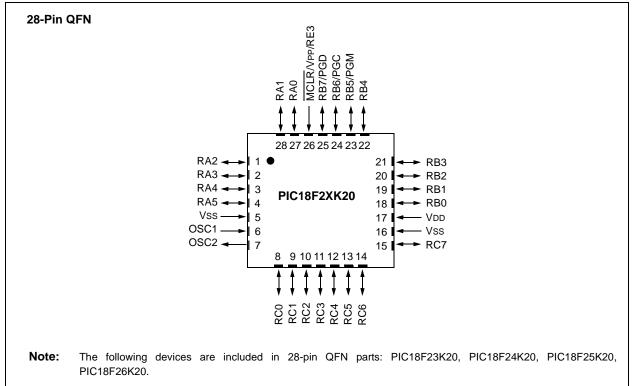
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

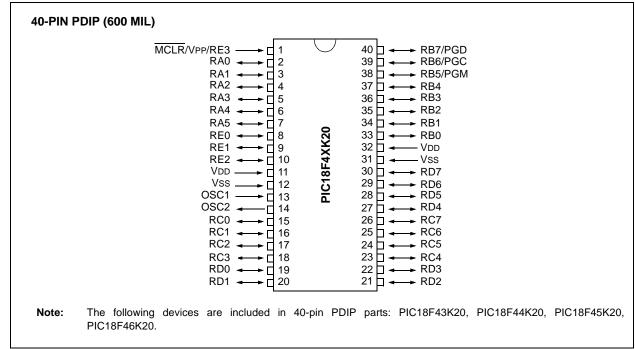
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

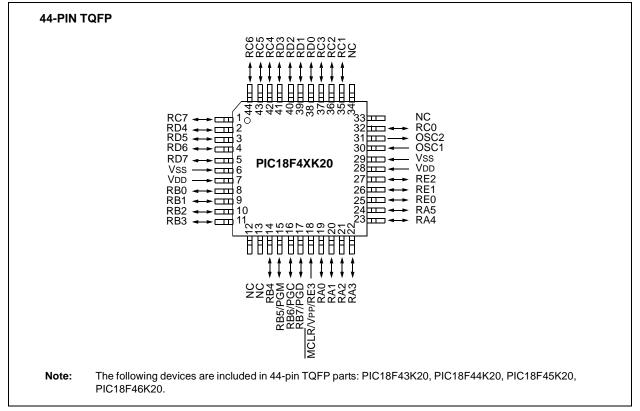

Details

Product Status	Active	
Core Processor	PIC	
Core Size	8-Bit	
Speed	64MHz	
Connectivity	I ² C, SPI, UART/USART	
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT	
Number of I/O	24	
Program Memory Size	8KB (4K x 16)	
Program Memory Type	FLASH	
EEPROM Size	256 x 8	
RAM Size	512 x 8	
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V	
Data Converters	A/D 11x10b	
Oscillator Type	Internal	
Operating Temperature	-40°C ~ 85°C (TA)	
Mounting Type	Surface Mount	
Package / Case	28-VQFN Exposed Pad	
Supplier Device Package	28-QFN (6x6)	
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f23k20-i-ml	


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


FIGURE 2-1: 28-PIN SDIP, SSOP AND SOIC PIN DIAGRAMS



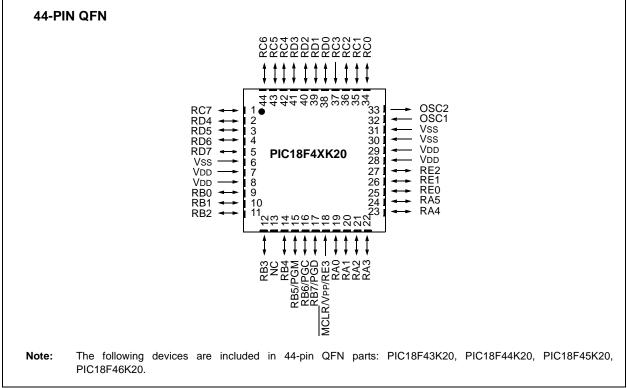
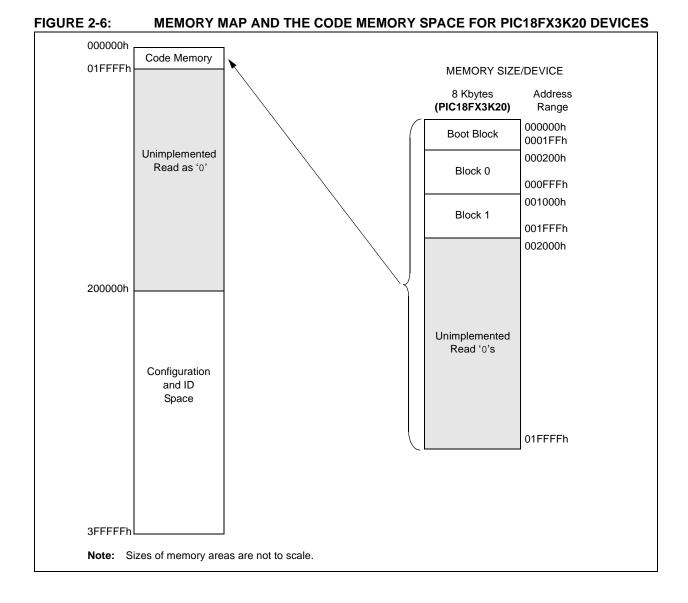

FIGURE 2-3: 40-PIN PDIP PIN DIAGRAMS

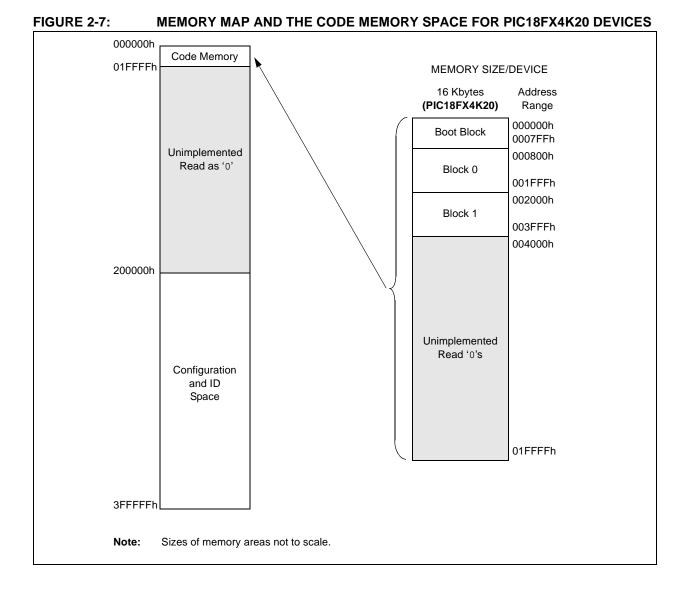
FIGURE 2-4: 44-PIN TQFP PIN DIAGRAMS



2.3 Memory Maps

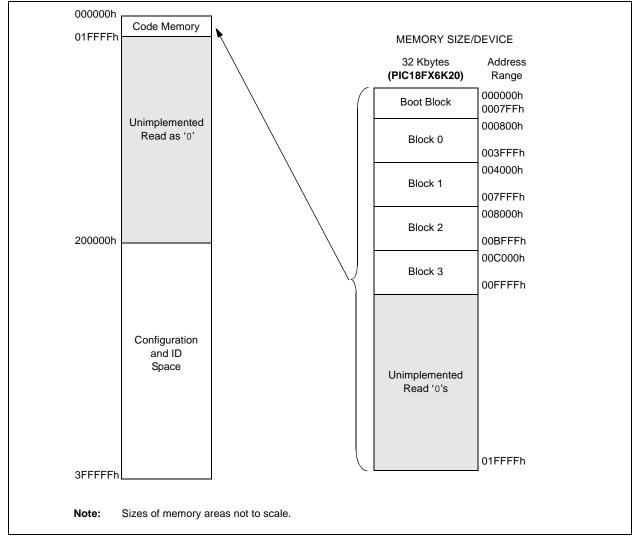
For the PIC18FX3K20 devices, the code memory space extends from 0000h to 01FFFh (8 Kbytes) in two 4-Kbyte blocks. Addresses 0000h through 01FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-2:IMPLEMENTATION OF CODE
MEMORY


Device	Code Memory Size (Bytes)
PIC18F23K20	
PIC18F43K20	000000h-001FFFh (8K)

For PIC18FX4K20 devices, the code memory space extends from 000000h to 003FFFh (16 Kbytes) in two 8-Kbyte blocks. Addresses 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-3:IMPLEMENTATION OF CODE
MEMORY


Device	Code Memory Size (Bytes)	
PIC18F24K20	– 000000h-003FFFh (16K)	
PIC18F44K20		

For PIC18FX6K20 devices, the code memory space extends from 000000h to 00FFFFh (64 Kbytes) in four 16-Kbyte blocks. Addresses 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-5:IMPLEMENTATION OF CODE
MEMORY

Device	Code Memory Size (Bytes)	
PIC18F26K20		
PIC18F46K20	- 000000h-00FFFFh (64K)	

In addition to the code memory space, there are three blocks in the configuration and ID space that are accessible to the user through table reads and table writes. Their locations in the memory map are shown in Figure 2-10.

Users may store identification information (ID) in eight ID registers. These ID registers are mapped in addresses 200000h through 200007h. The ID locations read out normally, even after code protection is applied.

Locations 300000h through 30000Dh are reserved for the Configuration bits. These bits select various device options and are described in **Section 5.0 "Configuration Word**". These Configuration bits read out normally, even after code protection.

Locations 3FFFFEh and 3FFFFFh are reserved for the device ID bits. These bits may be used by the programmer to identify what device type is being programmed and are described in **Section 5.0** "**Configuration Word**". These device ID bits read out normally, even after code protection.

2.3.1 MEMORY ADDRESS POINTER

Memory in the address space, 0000000h to 3FFFFh, is addressed via the Table Pointer register, which is comprised of three Pointer registers:

- TBLPTRU, at RAM address 0FF8h
- TBLPTRH, at RAM address 0FF7h
- TBLPTRL, at RAM address 0FF6h

TBLPTRU	TBLPTRH	TBLPTRL
Addr[21:16]	Addr[15:8]	Addr[7:0]

The 4-bit command, '0000' (core instruction), is used to load the Table Pointer prior to using any read or write operations.

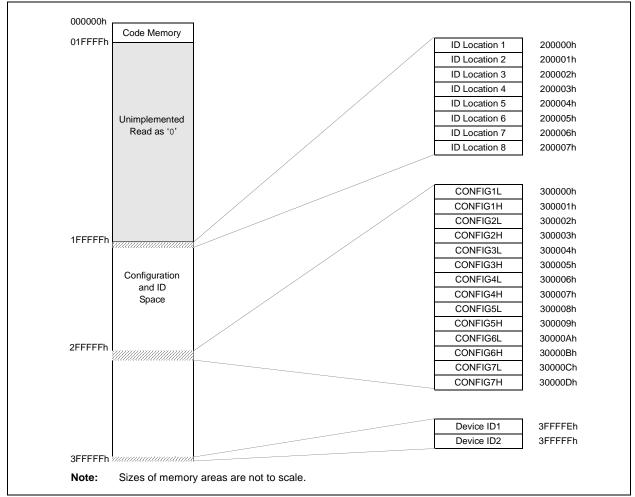
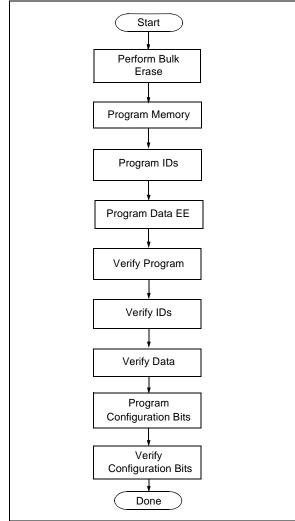
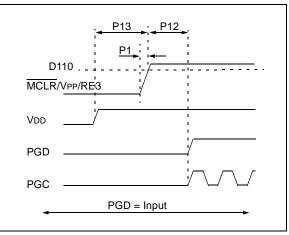



FIGURE 2-10: CONFIGURATION AND ID LOCATIONS FOR PIC18F2XK20/4XK20 DEVICES

2.4 High-Level Overview of the Programming Process

Figure 2-11 shows the high-level overview of the programming process. First, a Bulk Erase is performed. Next, the code memory, ID locations and data EEPROM are programmed. These memories are then verified to ensure that programming was successful. If no errors are detected, the Configuration bits are then programmed and verified.

FIGURE 2-11: HIGH-LEVEL PROGRAMMING FLOW



2.5 Entering and Exiting High-Voltage ICSP Program/Verify Mode

As shown in Figure 2-12, the High-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low and then raising MCLR/VPP/RE3 to VIHH (high voltage). Once in this mode, the code memory, data EEPROM, ID locations and Configuration bits can be accessed and programmed in serial fashion. Figure 2-13 shows the exit sequence.

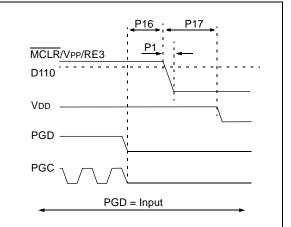

The sequence that enters the device into the Program/ Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-12: ENTERING HIGH-VOLTAGE PROGRAM/VERIFY MODE

FIGURE 2-13:

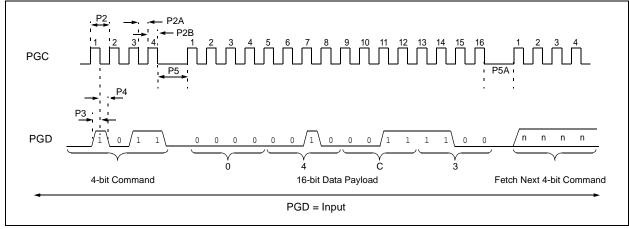

EXITING HIGH-VOLTAGE PROGRAM/VERIFY MODE

TABLE 2-7: SAMPLE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
1101		Table Write,
		post-increment by 2

FIGURE 2-16: TABLE WRITE, POST-INCREMENT TIMING DIAGRAM (1101)

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the EECON1 register must be configured in order to operate on a particular memory region.

When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7> = 1) and the CFGS bit must be cleared (EECON1<6> = 0). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort (e.g., erases) and this must be done prior to initiating a write sequence. The FREE bit must be set (EECON1<4> = 1) in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit (EECON1<1> = 1). It is strongly recommended that the WREN bit only be set immediately prior to a program or erase.

3.1 ICSP Erase

3.1.1 HIGH-VOLTAGE ICSP BULK ERASE

Erasing code or data EEPROM is accomplished by configuring two Bulk Erase Control registers located at 3C0004h and 3C0005h. Code memory may be erased portions at a time, or the user may erase the entire device in one action. Bulk Erase operations will also clear any code-protect settings associated with the memory block erased. Erase options are detailed in Table 3-1. If data EEPROM is code-protected (CPD = 0), the user must request an erase of data EEPROM (e.g., 0084h as shown in Table 3-1).

Description	Data (3C0005h:3C0004h)
Chip Erase	0F8Fh
Erase User ID	0088h
Erase Data EEPROM	0084h
Erase Boot Block	0081h
Erase Config Bits	0082h
Erase Code EEPROM Block 0	0180h
Erase Code EEPROM Block 1	0280h
Erase Code EEPROM Block 2	0480h
Erase Code EEPROM Block 3	0880h

TABLE 3-1: BULK ERASE OPTIONS

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (parameter P11). During this time, PGC may continue to toggle but PGD must be held low.

The code sequence to erase the entire device is shown in Table 3-2 and the flowchart is shown in Figure 3-1.

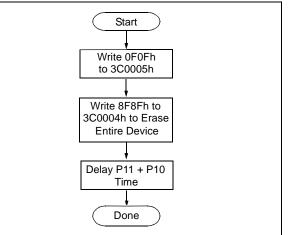

Note: A Bulk Erase is the only way to reprogram code-protect bits from an "on" state to an "off" state.

TABLE 3-2: BULK ERASE COMMAND SEQUENCE

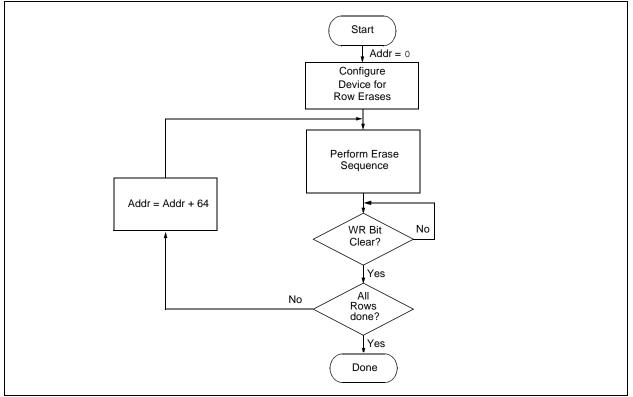

4-Bit Data		
Command	Payload	Core Instruction
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 05	MOVLW 05h
0000	6E F6	MOVWF TBLPTRL
1100	0F 0F	Write OFh to 3C0005h
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 04	MOVLW 04h
0000	6E F6	MOVWF TBLPTRL
1100	8F 8F	Write 8F8Fh TO 3C0004h to erase entire device.
0000	00 00	NOP
0000	00 00	Hold PGD low until erase completes.

FIGURE 3-1:

BULK ERASE FLOW

TABLE 3-7. PROGRAMMING DATA MEMORT				
4-bit Command	Data Payload	Core Instruction		
Step 1: Direct a	Step 1: Direct access to data EEPROM.			
0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS		
Step 2: Set the	Step 2: Set the data EEPROM Address Pointer.			
0000 0000 0000 0000	0E <addr> 6E A9 OE <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>		
Step 3: Load the	Step 3: Load the data to be written.			
0000	0E <data> 6E A8</data>	MOVLW <data> MOVWF EEDATA</data>		
Step 4: Enable	memory writes.			
0000	84 A6	BSF EECON1, WREN		
Step 5: Initiate v	write.			
0000 0000 0000	82 A6 00 00 00 00	BSF EECON1, WR NOP NOP ;write starts on 4th clock of this instruction		
Step 6: Poll WR	bit, repeat until the bit is	clear.		
0000 0000 0000 0010	50 A6 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EECON1, W, 0 MOVWF TABLAT NOP Shift out data ⁽¹⁾		
Step 7: Hold PGC low for time P10.				
Step 8: Disable	Step 8: Disable writes.			
0000	94 A6	BCF EECON1, WREN		
Repeat steps 2	Repeat steps 2 through 8 to write more data.			

TABLE 3-7: PROGRAMMING DATA MEMORY

Note 1: See Figure 4-4 for details on shift out data timing.

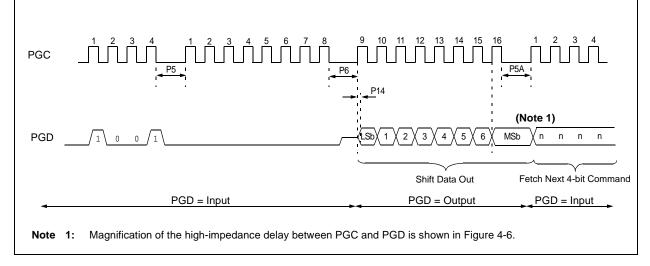
4.0 READING THE DEVICE

4.1 Read Code Memory, ID Locations and Configuration Bits

Code memory is accessed one byte at a time via the 4-bit command, '1001' (table read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH:TBLPTRL) are serially output on PGD.

The 4-bit command is shifted in LSb first. The read is executed during the next 8 clocks, then shifted out on PGD during the last 8 clocks, LSb to MSb. A delay of P6 must be introduced after the falling edge of the 8th

TABLE 4-1:	READ CODE MEMORY SEQUENCE
------------	---------------------------


PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to the reading of the ID and Configuration registers.

Note: When table read protection is enabled, the first read access to a protected block should be discarded and the read repeated to retrieve valid data. Subsequent reads of the same block can be performed normally.

4-bit Command	Data Payload	Core Instruction	
Step 1: Set Tabl	Step 1: Set Table Pointer		
0000	0E <addr[21:16]></addr[21:16]>	MOVLW Addr[21:16]	
0000	6E F8	MOVWF TBLPTRU	
0000	0E <addr[15:8]></addr[15:8]>	MOVLW <addr[15:8]></addr[15:8]>	
0000	6E F7	MOVWF TBLPTRH	
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>	
0000	6E F6	MOVWF TBLPTRL	
Step 2: Read m	Step 2: Read memory and then shift out on PGD, LSb to MSb		
1001	00 00	TBLRD *+	

FIGURE 4-1: TABLE READ POST-INCREMENT INSTRUCTION TIMING DIAGRAM (1001)

Image: Construction Image: Construction			
Bit Name	Configuration Words	Description	
IESO	CONFIG1H	Internal External Switchover bit 1 = Internal External Switchover mode enabled 0 = Internal External Switchover mode disabled	
FCMEN	CONFIG1H	Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled	
		0 = Fail-Safe Clock Monitor disabled	
FOSC<3:0>	CONFIG1H	Oscillator Selection bits 11xx = External RC oscillator, CLKOUT function on RA6 101x = External RC oscillator, CLKOUT function on RA6 1001 = HFINTOSC, CLKOUT function on RA6, port function on RA7 1000 = HFINTOSC, port function on RA6, port function on RA7 0111 = External RC oscillator, port function on RA6 0110 = HS oscillator, PLL enabled (clock frequency = 4 x FOSC1) 0101 = EC oscillator, port function on RA6 0100 = EC oscillator, CLKOUT function on RA6 0110 = HS oscillator, CLKOUT function on RA6 0011 = External RC oscillator, CLKOUT function on RA6 0010 = HS oscillator 0010 = XT oscillator 0000 = LP oscillator	
BORV<1:0>	CONFIG2L	Brown-out Reset Voltage bits 11 = VBOR set to 1.8V 10 = VBOR set to 2.2V 01 = VBOR set to 2.7V 00 = VBOR set to 3.0V	
BOREN<1:0>	CONFIG2L	 Brown-out Reset Enable bits 11 = Brown-out Reset enabled in hardware only (SBOREN is disabled) 10 = Brown-out Reset enabled in hardware only and disabled in Sleep mode (SBOREN is disabled) 01 = Brown-out Reset enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset disabled in hardware and software 	
PWRTEN	CONFIG2L	Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled	
WDPS<3:0>	CONFIG2H	0 = PWRT enabled Watchdog Timer Postscaler Select bits $1111 = 1:32,768$ $1110 = 1:16,384$ $1101 = 1:8,192$ $1100 = 1:4,096$ $1011 = 1:2,048$ $1010 = 1:1,024$ $1001 = 1:512$ $1000 = 1:256$ $0111 = 1:128$ $0110 = 1:64$ $0101 = 1:32$ $0100 = 1:16$ $0011 = 1:8$ $0010 = 1:4$ $0001 = 1:2$ $0000 = 1:1$	

TABLE 5-3:PIC18F2XK20/4XK20 BIT DESCRIPTIONS

TABLE 3-3: PICTOFZAR20/4AR20 BIT DESCRIPTIONS (CONTINUED)					
Bit Name	Configuration Words	Description			
EBTR3	CONFIG7L	Table Read Protection bit (Block 3 code memory area)			
		 1 = Block 3 is not protected from table reads executed in other blocks 0 = Block 3 is protected from table reads executed in other blocks 			
EBTR2	CONFIG7L	Table Read Protection bit (Block 2 code memory area)			
		 1 = Block 2 is not protected from table reads executed in other blocks 0 = Block 2 is protected from table reads executed in other blocks 			
EBTR1	CONFIG7L	Table Read Protection bit (Block 1 code memory area)			
		 1 = Block 1 is not protected from table reads executed in other blocks 0 = Block 1 is protected from table reads executed in other blocks 			
EBTR0	CONFIG7L	Table Read Protection bit (Block 0 code memory area)			
		 1 = Block 0 is not protected from table reads executed in other blocks 0 = Block 0 is protected from table reads executed in other blocks 			
EBTRB	CONFIG7H	Table Read Protection bit (Boot Block memory area)			
		 1 = Boot Block is not protected from table reads executed in other blocks 0 = Boot Block is protected from table reads executed in other blocks 			
DEV<10:3>	DEVID2	Device ID bits			
		These bits are used with the DEV<2:0> bits in the DEVID1 register to identify part number.			
DEV<2:0>	DEVID1	Device ID bits			
		These bits are used with the DEV<10:3> bits in the DEVID2 register to identify part number.			
REV<4:0>	DEVID1	Revision ID bits			
		These bits are used to indicate the revision of the device.			

TABLE 5-3: PIC18F2XK20/4XK20 BIT DESCRIPTIONS (CONTINUED)

.

TABLE 5-4: CHECKSUM COMPUTATION (CONTINUED)

Device	Code- Protect	Blank Value	0xAA at 0 and Max Address			
	None	SUM[0000:07FF]+SUM[0800:1FFF]+SUM[2000:3FFF]+ SUM[4000:5FFF]+SUM[6000:7FFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 0Fh)+(CONFIG5H & C0h)+ (CONFIG6L & 0Fh)+(CONFIG6H & E0h)+(CONFIG7L & 0Fh)+ (CONFIG7H & 40h)	8362h	82B8h		
PIC18FX5K20	Boot Block					
	Boot/ Block 0/ Block 1	SUM[4000:5FFF]+SUM[6000:7FFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 0Fh)+(CONFIG5H & C0h)+ (CONFIG6L & 0Fh)+(CONFIG6H & E0h)+(CONFIG7L & 0Fh)+ (CONFIG7H & 40h)+SUM_ID	C332h	C2E7h		
	All	(CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 0Fh)+ (CONFIG5H & C0h)+(CONFIG6L & 0Fh)+(CONFIG6H & E0h)+ (CONFIG7L & 0Fh)+(CONFIG7H & 40h)+SUM_ID	0326h	0330h		
SUN	NFIGx = 0 //[a:b] = 5	Description Configuration Word Sum of locations, a to b inclusive				

SUM_ID = Byte-wise sum of lower four bits of all customer ID locations

+ = Addition

& = Bit-wise AND

Device	Code- Protect	Checksum	Blank Value	0xAA at 0 and Max Address	
	None	SUM[0000:07FF]+SUM[0800:3FFF]+SUM[4000:7FFF]+ SUM[8000:BFFF]+SUM[C000:FFFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 0Fh)+(CONFIG5H & C0h)+ (CONFIG6L & 0Fh)+(CONFIG6H & E0h)+(CONFIG7L & 0Fh)+ (CONFIG7H & 40h)	0362h	02B8h	
PIC18FX6K2	Boot Block	SUM[0800:3FFF]+SUM[4000:7FFF]+SUM[8000:BFFF]+SUM[C000:FFF F]+ (CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 0Fh)+ (CONFIG5H & C0h)+(CONFIG6L & 0Fh)+(CONFIG6H & E0h)+ (CONFIG7L & 0Fh)+(CONFIG7H & 40h)+SUM_ID	0B2Dh	0AE2h	
	Boot/ Block 0/ Block 1	SUM[3000:BFFF]+SUM[C000:FFFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 0Fh)+(CONFIG5H & C0h)+ (CONFIG6L & 0Fh)+(CONFIG6H & E0h)+(CONFIG7L & 0Fh)+ (CONFIG7H & 40h)+SUM_ID	832Ah	82DFh	
	All	(CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 0Fh)+ (CONFIG5H & C0h)+(CONFIG6L & 0Fh)+(CONFIG6H & E0h)+ (CONFIG7L & 0Fh)+(CONFIG7H & 40h)+SUM_ID	031Eh	0328h	
C SI SI	CONFIGx = Configuration Word SUM[a:b] = Sum of locations, a to b inclusive SUM_ID = Byte-wise sum of lower four bits of all customer ID locations				
+					

& = Bit-wise AND

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/ VERIFY TEST MODE

Derem						
Param No.	Sym.	Characteristic	Min.	Max.	Units	Conditions
D110	Vінн	High-Voltage Programming Voltage on MCLR/Vpp/RE3	Vdd + 4.5	9	V	
D110A	VIHL	Low-Voltage Programming Voltage on MCLR/VPP/RE3	1.80	3.60	V	
D111	Vdd	Supply Voltage During Programming	1.80	3.60	V	Row Erase/Write
			2.7	3.60	V	Bulk Erase operations
D112	IPP	Programming Current on MCLR/VPP/RE3	_	300	μA	
D113	IDDP	Supply Current During Programming	_	10	mA	
D031	VIL	Input Low Voltage	Vss	0.2 Vdd	V	
D041	Vih	Input High Voltage	0.8 Vdd	Vdd	V	
D080	Vol	Output Low Voltage	—	0.6	V	IOL = X.X mA @ 2.7V
D090	Vон	Output High Voltage	Vdd - 0.7	_	V	IOH = -Y.Y mA @ 2.7V
D012	Сю	Capacitive Loading on I/O pin (PGD)	—	50	pF	To meet AC specifications
		I				
P1	Tr	MCLR/VPP/RE3 Rise Time to enter Program/Verify mode	_	1.0	μS	(Note 1)
P2	TPGC	Serial Clock (PGC) Period	100	—	ns	VDD = 3.6V
			1		μS	VDD = 1.8V
P2A	TPGCL	Serial Clock (PGC) Low Time	40		ns	VDD = 3.6V
			400	—	ns	VDD = 1.8V
P2B	TPGCH	Serial Clock (PGC) High Time	40	—	ns	VDD = 3.6V
			400	—	ns	VDD = 1.8V
P3	TSET1	Input Data Setup Time to Serial Clock \downarrow	15	—	ns	
P4	THLD1	Input Data Hold Time from PGC \downarrow	15	—	ns	
P5	TDLY1	Delay between 4-bit Command and Command Operand	40	_	ns	
P5A	TDLY1A	Delay between 4-bit Command Operand and next 4-bit Command	40	—	ns	
P6	TDLY2	Delay between Last PGC \downarrow of Command Byte to First PGC \uparrow of Read of Data Word	20	—	ns	
P9	TDLY5	PGC High Time (minimum programming time)	1	—	ms	Externally Timed
P9A	TDLY5A	PGC High Time	5		ms	Configuration Word programming time
P10	Tdly6	PGC Low Time after Programming (high-voltage discharge time)	200	—	μS	
P11	Tdly7	Delay to allow Self-Timed Data Write or Bulk Erase to occur	5	_	ms	
P11A	TDRWT	Data Write Polling Time	4	_	ms	

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH; this can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) + 2 ms (for HS/PLL mode only) + 1.5 μs (for EC mode only) where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and Tosc is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/ VERIFY TEST MODE (CONTINUED)

Standard Operating Conditions Operating Temperature: 25°C is recommended							
Param No.	Sym.	Characteristic	Min.	Max.	Units	Conditions	
P12	THLD2	Input Data Hold Time from MCLR/VPP/RE3 ↑	2	—	μS		
P13	TSET2	VDD ↑ Setup Time to MCLR/VPP/RE3 ↑	100	—	ns		
P14	TVALID	Data Out Valid from PGC \uparrow	10	—	ns		
P15	TSET3	PGM [↑] Setup Time to MCLR/VPP/RE3 [↑]	2	—	μS		
P16	TDLY8	Delay between Last PGC \downarrow and $\overline{MCLR}/VPP/RE3\downarrow$	0	—	S		
P17	Thld3	MCLR/VPP/RE3 ↓ to VDD ↓	—	100	ns		
P18	THLD4	MCLR/VPP/RE3 ↓ to PGM ↓	0	_	S		
P19	Thiz	Delay from PGC ↑ to PGD High-Z	3	10	nS		
P20	TPPDP	Hold time after VPP changes	5	_	μS		

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH; this can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) + 2 ms (for HS/PLL mode only) + 1.5 μs (for EC mode only) where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and Tosc is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

Note the following details of the code protection feature on Microchip devices:

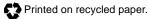
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.