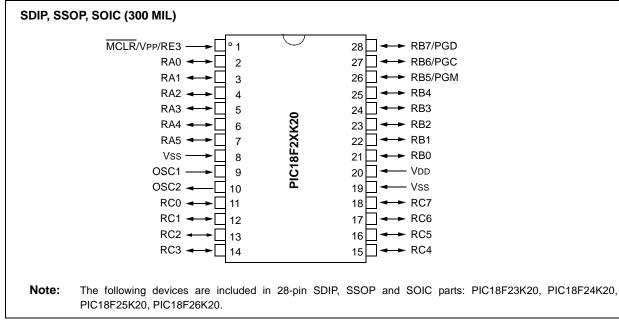


Welcome to E-XFL.COM

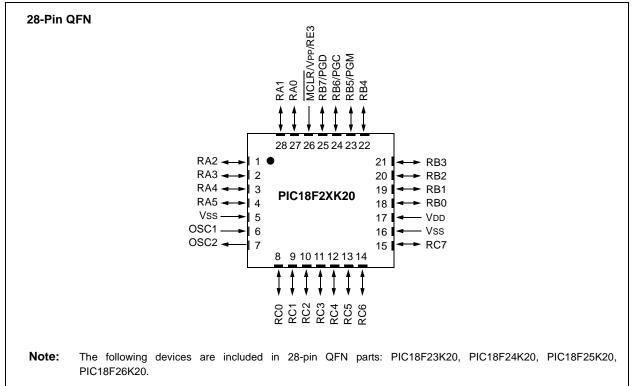
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

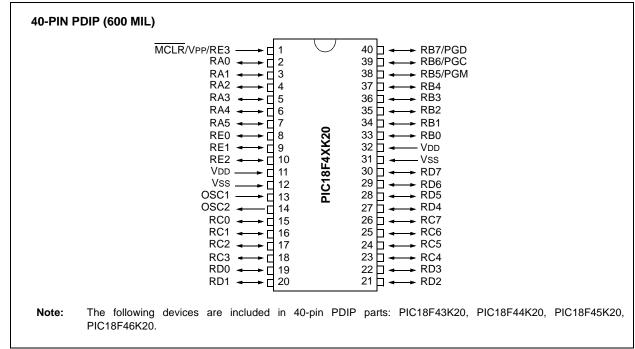
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f23k20t-i-ss


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


FIGURE 2-1: 28-PIN SDIP, SSOP AND SOIC PIN DIAGRAMS

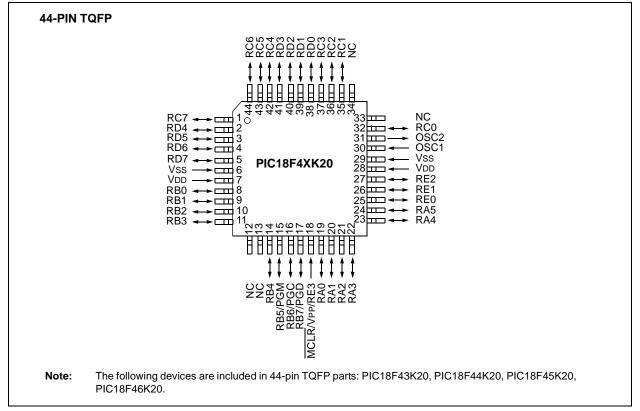
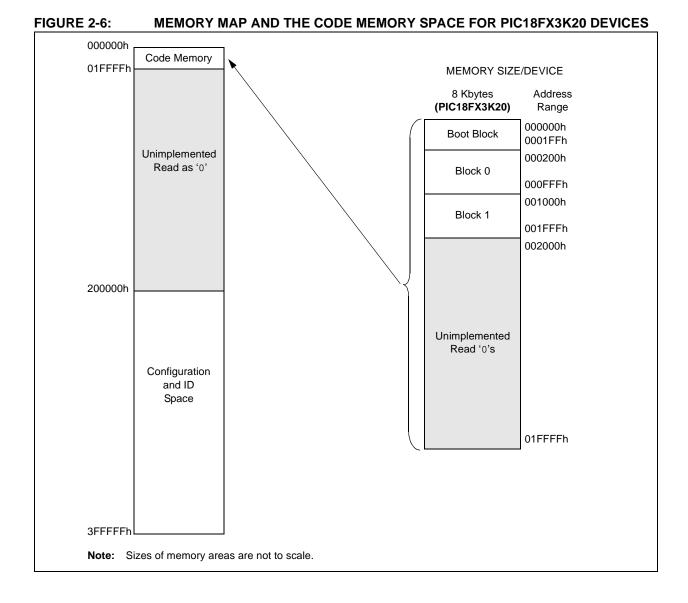


FIGURE 2-3: 40-PIN PDIP PIN DIAGRAMS

FIGURE 2-4: 44-PIN TQFP PIN DIAGRAMS



2.3 Memory Maps

For the PIC18FX3K20 devices, the code memory space extends from 0000h to 01FFFh (8 Kbytes) in two 4-Kbyte blocks. Addresses 0000h through 01FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-2:IMPLEMENTATION OF CODE
MEMORY

Device	Code Memory Size (Bytes)		
PIC18F23K20	000000b 001EEEb (9K)		
PIC18F43K20	000000h-001FFFh (8K)		

In addition to the code memory space, there are three blocks in the configuration and ID space that are accessible to the user through table reads and table writes. Their locations in the memory map are shown in Figure 2-10.

Users may store identification information (ID) in eight ID registers. These ID registers are mapped in addresses 200000h through 200007h. The ID locations read out normally, even after code protection is applied.

Locations 300000h through 30000Dh are reserved for the Configuration bits. These bits select various device options and are described in **Section 5.0 "Configuration Word**". These Configuration bits read out normally, even after code protection.

Locations 3FFFFEh and 3FFFFFh are reserved for the device ID bits. These bits may be used by the programmer to identify what device type is being programmed and are described in **Section 5.0** "**Configuration Word**". These device ID bits read out normally, even after code protection.

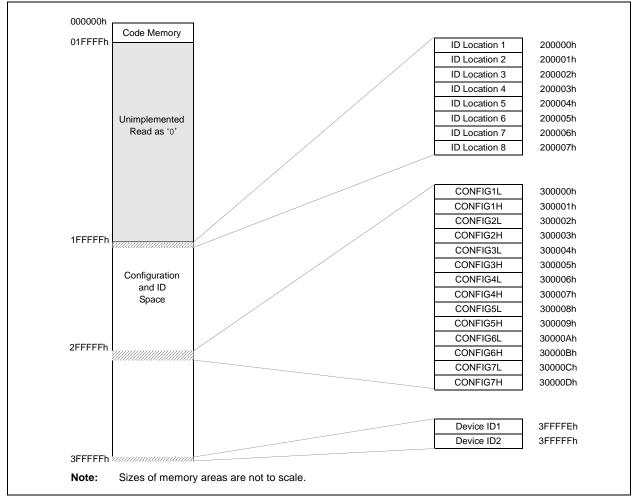
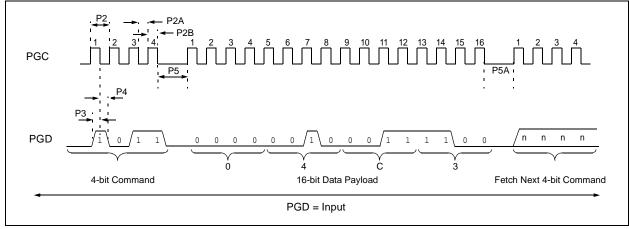
2.3.1 MEMORY ADDRESS POINTER

Memory in the address space, 0000000h to 3FFFFh, is addressed via the Table Pointer register, which is comprised of three Pointer registers:

- TBLPTRU, at RAM address 0FF8h
- TBLPTRH, at RAM address 0FF7h
- TBLPTRL, at RAM address 0FF6h

TBLPTRU	TBLPTRH	TBLPTRL
Addr[21:16]	Addr[15:8]	Addr[7:0]

The 4-bit command, '0000' (core instruction), is used to load the Table Pointer prior to using any read or write operations.

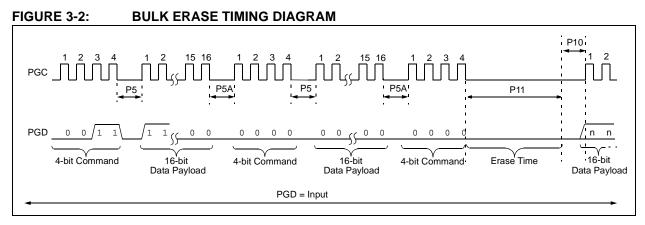

FIGURE 2-10: CONFIGURATION AND ID LOCATIONS FOR PIC18F2XK20/4XK20 DEVICES

TABLE 2-7: SAMPLE COMMAND SEQUENCE

4-Bit Command	it Data and Payload Core Instruct		
1101		Table Write,	
		post-increment by 2	

FIGURE 2-16: TABLE WRITE, POST-INCREMENT TIMING DIAGRAM (1101)

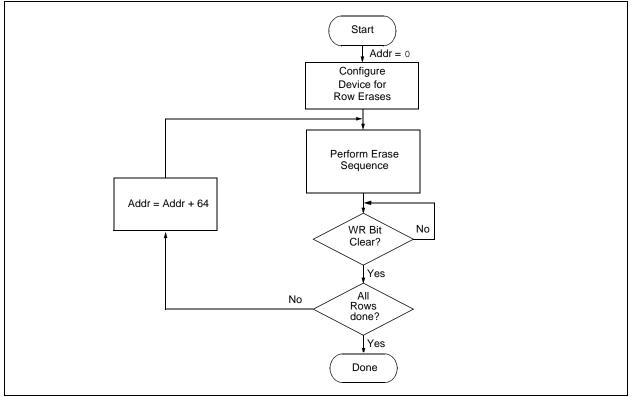
3.1.2 LOW-VOLTAGE ICSP BULK ERASE

When using low-voltage ICSP, the part must be supplied by the voltage specified in parameter D111 if a Bulk Erase is to be executed. All other Bulk Erase details as described above apply.

If it is determined that a program memory erase must be performed at a supply voltage below the Bulk Erase limit, refer to the erase methodology described in Section 3.1.3 "ICSP Row Erase" and Section 3.2.1 "Modifying Code Memory".

If it is determined that a data EEPROM erase must be performed at a supply voltage below the Bulk Erase limit, follow the methodology described in **Section 3.3** "**Data EEPROM Programming**" and write '1's to the array.

3.1.3 ICSP ROW ERASE


Regardless of whether high or low-voltage ICSP is used, it is possible to erase one row (64 bytes of data), provided the block is not code or write-protected. Rows are located at static boundaries beginning at program memory address 000000h, extending to the internal program memory limit (see **Section 2.3 "Memory Maps"**).

The Row Erase duration is self-timed. After the WR bit in EECON1 is set, two NOPs are issued. Erase starts upon the 4th PGC of the second NOP. It ends when the WR bit is cleared by hardware.

The code sequence to Row Erase a PIC18F2XK20/ 4XK20 device is shown in Table 3-3. The flowchart shown in Figure 3-3 depicts the logic necessary to completely erase a PIC18F2XK20/4XK20 device. The timing diagram for Row Erase is identical to the data EEPROM write timing shown in Figure 3-7.

Note: The TBLPTR register can point at any byte within the row intended for erase.

3.2 Code Memory Programming

Programming code memory is accomplished by first loading data into the write buffer and then initiating a programming sequence. The write and erase buffer sizes shown in Table 3-4 can be mapped to any location of the same size beginning at 000000h. The actual memory write sequence takes the contents of this buffer and programs the proper amount of code memory that contains the Table Pointer.

The programming duration is externally timed and is controlled by PGC. After a Start Programming command is issued (4-bit command, '1111'), a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by parameter P10 to allow high-voltage discharge of the memory array.

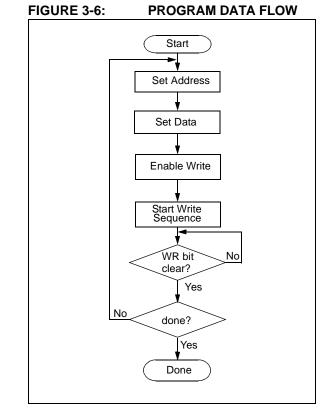
The code sequence to program a PIC18F2XK20/ 4XK20 device is shown in Table 3-5. The flowchart shown in Figure 3-4 depicts the logic necessary to completely write a PIC18F2XK20/4XK20 device. The timing diagram that details the Start Programming command and parameters P9 and P10 is shown in Figure 3-5.

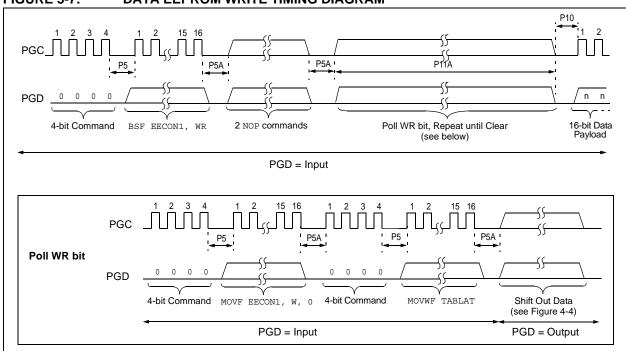
Note: The TBLPTR register must point to the same region when initiating the programming sequence as it did when the write buffers were loaded.

Devices (Arranged by Family)	Write Buffer Size (bytes)	Erase Size (bytes)
PIC18F26K20, PIC18F46K20	64	64
PIC18F24K20, PIC18F25K20, PIC18F44K20, PIC18F45K20	32	64
PIC18F23K20, PIC18F43K20	16	64

4-bit Command	Data Payload	Core Instruction					
Step 1: Direct a	Step 1: Direct access to code memory.						
0000 0000 0000	8E A6 9C A6 84 A6	BSF EECON1, EEPGD BCF EECON1, CFGS BSF EECON1, WREN					
Step 2: Point to	row to write.						
0000 0000 0000 0000 0000 0000	0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[15:8]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[15:8]></addr[21:16]>					
Step 3: Load wr	ite buffer. Repeat for	all but the last two bytes.					
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.					
Step 4: Load wr	ite buffer for last two	bytes and start programming.					
1111 0000	<msb><lsb> 00 00</lsb></msb>	Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.					
To continue writ the loop.	ing data, repeat steps	2 through 4, where the Address Pointer is incremented by 2 at each iteration of					

TABLE 3-5: WRITE CODE MEMORY CODE SEQUENCE

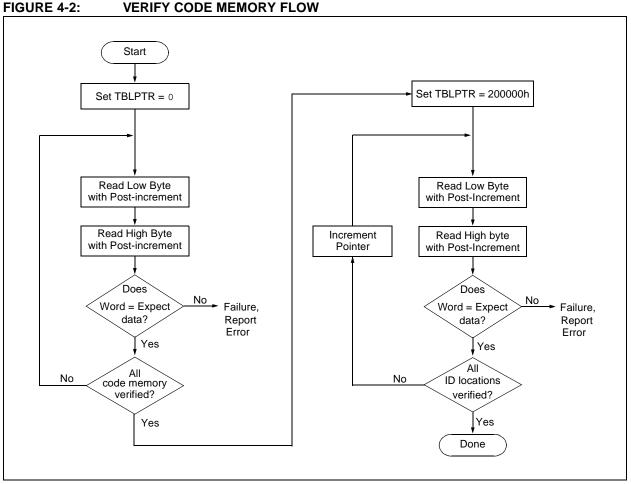

3.3 Data EEPROM Programming

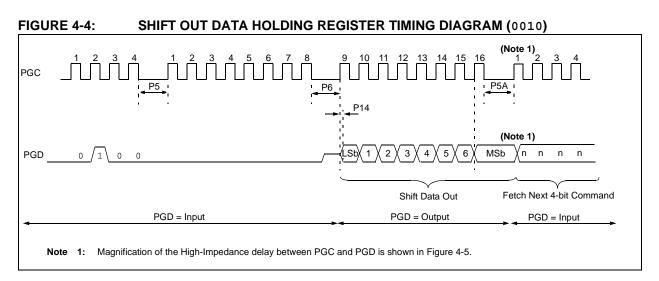

Data EEPROM is accessed one byte at a time via an Address Pointer (register pair EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is written by loading EEADRH:EEADR with the desired memory location, EEDATA with the data to be written and initiating a memory write by appropriately configuring the EECON1 register. A byte write automatically erases the location and writes the new data (erase-before-write).

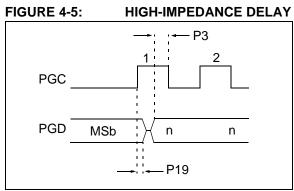
When using the EECON1 register to perform a data EEPROM write, both the EEPGD and CFGS bits must be cleared (EECON1<7:6> = 00). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort and this must be done prior to initiating a write sequence. The write sequence is initiated by setting the WR bit (EECON1<1> = 1).

The write begins on the falling edge of the 24th PGC after the WR bit is set. It ends when the WR bit is cleared by hardware.

After the programming sequence terminates, PGC must be held low for the time specified by parameter P10 to allow high-voltage discharge of the memory array.




FIGURE 3-7: DATA EEPROM WRITE TIMING DIAGRAM

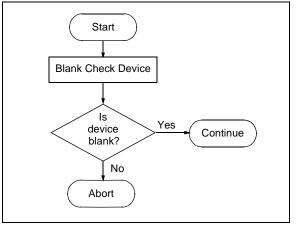

4.2 Verify Code Memory and ID Locations

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading code memory.

The Table Pointer must be manually set to 200000h (base address of the ID locations) once the code memory has been verified. The post-increment feature of the table read 4-bit command can not be used to increment the Table Pointer beyond the code memory space. In a 64-Kbyte device, for example, a post-increment read of address FFFFh will wrap the Table Pointer back to 000000h, rather than point to unimplemented address 010000h.

4.5 Verify Data EEPROM

A data EEPROM address may be read via a sequence of core instructions (4-bit command, '0000') and then output on PGD via the 4-bit command, '0010' (TABLAT register). The result may then be immediately compared to the appropriate data in the programmer's memory for verification. Refer to **Section 4.4 "Read Data EEPROM Memory"** for implementation details of reading data EEPROM.


4.6 Blank Check

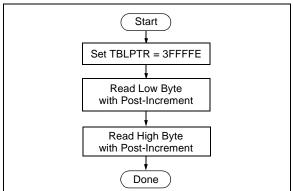
The term "Blank Check" means to verify that the device has no programmed memory cells. All memories must be verified: code memory, data EEPROM, ID locations and Configuration bits. The device ID registers (3FFFFEh:3FFFFFh) should be ignored.

A "blank" or "erased" memory cell will read as a '1'. Therefore, Blank Checking a device merely means to verify that all bytes read as FFh except the Configuration bits. Unused (reserved) Configuration bits will read '0' (programmed). Refer to Table 5-1 for blank configuration expect data for the various PIC18F2XK20/ 4XK20 devices.

Given that Blank Checking is merely code and data EEPROM verification with FFh expect data, refer to Section 4.4 "Read Data EEPROM Memory" and Section 4.2 "Verify Code Memory and ID Locations" for implementation details.

5.0 CONFIGURATION WORD

The PIC18F2XK20/4XK20 devices have several Configuration Words. These bits can be set or cleared to select various device configurations. All other memory areas should be programmed and verified prior to setting Configuration Words. These bits may be read out normally, even after read or code protection. See Table 5-1 for a list of Configuration bits and device IDs and Table 5-3 for the Configuration bit descriptions.


5.1 User ID Locations

A user may store identification information (ID) in eight ID locations mapped in 200000h:200007h. It is recommended that the Most Significant nibble of each ID be Fh. In doing so, if the user code inadvertently tries to execute from the ID space, the ID data will execute as a NOP.

5.2 Device ID Word

The device ID word for the PIC18F2XK20/4XK20 devices is located at 3FFFFEh:3FFFFh. These bits may be used by the programmer to identify what device type is being programmed and read out normally, even after code or read protection. See Table 5-2 for a complete list of device ID values.

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300001h	CONFIG1H	IESO	FCMEN	_	—	FOSC3	FOSC2	FOSC1	FOSC0	00 0111
300002h	CONFIG2L	_	_	_	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111
300003h	CONFIG2H			_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111
300005h	CONFIG3H	MCLRE	_	—	_	HFOFST	LPT1OSC	PBADEN	CCP2MX	1 1011
300006h	CONFIG4L	DEBUG	XINST	_	_		LVP	_	STVREN	101-1
300008h	CONFIG5L			_	_	CP3 ⁽¹⁾	CP2 ⁽¹⁾	CP1	CP0	1111
300009h	CONFIG5H	CPD	CPB	—	_	-	_	—	_	11
30000Ah	CONFIG6L		_	—	_	WRT3 ⁽¹⁾	WRT2 ⁽¹⁾	WRT1	WRT0	1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	_	-	_	—	_	111
30000Ch	CONFIG7L		_	—	_	EBTR3 ⁽¹⁾	EBTR2 ⁽¹⁾	EBTR1	EBTR0	1111
30000Dh	CONFIG7H	_	EBTRB	_	_	_	_		—	-1
3FFFFEh	DEVID1 ⁽²⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table 5-2
3FFFFFh	DEVID2 ⁽²⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table 5-2

TABLE 5-1:CONFIGURATION BITS AND DEVICE IDs

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: These bits are only implemented on specific devices. Refer to Section 2.3 "Memory Maps" to determine which bits apply based on available memory.

2: DEVID registers are read-only and cannot be programmed by the user.

TABLE 5-2: DEVICE ID VALUE

Davias	Device ID Value				
Device	DEVID2	DEVID1			
PIC18F23K20	20h	111x xxxx			
PIC18F24K20	20h	101x xxxx			
PIC18F25K20	20h	011x xxxx			
PIC18F26K20	20h	001x xxxx			
PIC18F43K20	20h	110x xxxx			
PIC18F44K20	20h	100x xxxx			
PIC18F45K20	20h	010x xxxx			
PIC18F46K20	20h	000x xxxx			

Note: The 'x's in DEVID1 contain the device revision code.

 $\ensuremath{\textcircled{}^\circ}$ 2009 Microchip Technology Inc.

TABLE 5-3:						
Bit Name	Configuration Words	Description				
IESO	CONFIG1H	Internal External Switchover bit 1 = Internal External Switchover mode enabled 0 = Internal External Switchover mode disabled				
FCMEN	CONFIG1H	Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled				
		0 = Fail-Safe Clock Monitor disabled				
FOSC<3:0>	CONFIG1H	Oscillator Selection bits 11xx = External RC oscillator, CLKOUT function on RA6 101x = External RC oscillator, CLKOUT function on RA6 1001 = HFINTOSC, CLKOUT function on RA6, port function on RA7 1000 = HFINTOSC, port function on RA6, port function on RA7 0111 = External RC oscillator, port function on RA6 0110 = HS oscillator, PLL enabled (clock frequency = 4 x FOSC1) 0101 = EC oscillator, port function on RA6 0100 = EC oscillator, CLKOUT function on RA6 0011 = External RC oscillator, CLKOUT function on RA6 0011 = External RC oscillator, CLKOUT function on RA6 0010 = HS oscillator 0001 = XT oscillator 0000 = LP oscillator				
BORV<1:0>	CONFIG2L	Brown-out Reset Voltage bits 11 = VBOR set to 1.8V 10 = VBOR set to 2.2V 01 = VBOR set to 2.7V 00 = VBOR set to 3.0V				
BOREN<1:0>	CONFIG2L	 Brown-out Reset Enable bits 11 = Brown-out Reset enabled in hardware only (SBOREN is disabled) 10 = Brown-out Reset enabled in hardware only and disabled in Sleep mode (SBOREN is disabled) 01 = Brown-out Reset enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset disabled in hardware and software 				
PWRTEN	CONFIG2L	Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled				
WDPS<3:0>	CONFIG2H	Watchdog Timer Postscaler Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:2 0001 = 1:2 0000 = 1:1				

TABLE 5-3:PIC18F2XK20/4XK20 BIT DESCRIPTIONS

Bit Name	Configuration Words	Description
WDTEN	CONFIG2H	Watchdog Timer Enable bit
		1 = WDT enabled
		0 = WDT disabled (control is placed on SWDTEN bit)
MCLRE	CONFIG3H	MCLR Pin Enable bit
		1 = MCLR pin enabled, RE3 input pin disabled
		0 = RE3 input pin enabled, MCLR pin disabled
HFOFST	CONFIG3H	HFINTOSC Fast Start
		1 = HFINTOSC output is not delayed
		0 = HFINTOSC output is delayed until oscillator is stable (IOFS = 1)
LPT1OSC	CONFIG3H	Low-Power Timer1 Oscillator Enable bit
		1 = Timer1 configured for low-power operation
		0 = Timer1 configured for higher power operation
PBADEN	CONFIG3H	PORTB A/D Enable bit
		1 = PORTB A/D<4:0> pins are configured as analog input channels on Reset
		0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset
CCP2MX	CONFIG3H	CCP2 MUX bit
		 1 = CCP2 input/output is multiplexed with RC1 0 = CCP2 input/output is multiplexed with RB3
DEBUG	CONFIG4L	Background Debugger Enable bit
DEBUG	CONFIG4L	1 = Background debugger disabled, RB6 and RB7 configured as general
		purpose I/O pins
		0 = Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit
		Debug
XINST	CONFIG4L	Extended Instruction Set Enable bit
		1 = Instruction set extension and Indexed Addressing mode enabled
		0 = Instruction set extension and Indexed Addressing mode disabled
		(Legacy mode)
LVP	CONFIG4L	Low-Voltage Programming Enable bit
		1 = Low-Voltage Programming enabled, RB5 is the PGM pin
		0 = Low-Voltage Programming disabled, RB5 is an I/O pin
STVREN	CONFIG4L	Stack Overflow/Underflow Reset Enable bit
		 1 = Reset on stack overflow/underflow enabled 0 = Reset on stack overflow/underflow disabled

TABLE 5-3: PIC18F2XK20/4XK20 BIT DESCRIPTIONS (CONTINUED)

5.3 Single-Supply ICSP Programming

The LVP bit in Configuration register, CONFIG4L, enables Single-Supply (Low-Voltage) ICSP Programming. The LVP bit defaults to a '1' (enabled) from the factory.

If Single-Supply Programming mode is not used, the LVP bit can be programmed to a '0' and RB5/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed by entering the High-Voltage ICSP mode, where MCLR/VPP/RE3 is raised to VIHH. Once the LVP bit is programmed to a '0', only the High-Voltage ICSP mode is available and only the High-Voltage ICSP mode can be used to program the device.

- Note 1: The High-Voltage ICSP mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR/ VPP/RE3 pin.
 - 2: While in Low-Voltage ICSP mode, the RB5 pin can no longer be used as a general purpose I/O.

5.4 Embedding Configuration Word Information in the HEX File

To allow portability of code, a PIC18F2XK20/4XK20 programmer is required to read the Configuration Word locations from the hex file. If Configuration Word information is not present in the hex file, then a simple warning message should be issued. Similarly, while saving a hex file, all Configuration Word information must be included. An option to not include the Configuration Word information may be provided. When embedding Configuration Word information in the hex file, it should start at address 300000h.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

5.5 Embedding Data EEPROM Information In the HEX File

To allow portability of code, a PIC18F2XK20/4XK20 programmer is required to read the data EEPROM information from the hex file. If data EEPROM information is not present, a simple warning message should be issued. Similarly, when saving a hex file, all data EEPROM information must be included. An option to not include the data EEPROM information may be provided. When embedding data EEPROM information in the hex file, it should start at address F00000h.

Microchip Technology Inc. believes that this feature is important for the benefit of the end customer.

5.6 Checksum Computation

The checksum is calculated by summing the following:

- The contents of all code memory locations
- The Configuration Word, appropriately masked
- ID locations (Only if any portion of program memory is code-protected)

The Least Significant 16 bits of this sum are the checksum.

Code protection limits access to program memory by both external programmer (code-protect) and code execution (table read protect). The ID locations, when included in a code protected checksum, contain the checksum of an unprotected part. The unprotected checksum is distributed: one nibble per ID location. Each nibble is right justified.

Table 5-4 describes how to calculate the checksum for each device.

Note: The checksum calculation differs depending on the code-protect setting. Since the code memory locations read out differently depending on the code-protect setting, the table describes how to manipulate the actual code memory values to simulate the values that would be read from a protected device. When calculating a checksum by reading a device, the entire code memory can simply be read and summed. The Configuration Word and ID locations can always be read.

Device	Code- Protect	Checksum	Blank Value	0xAA at 0 and Max Address
	None	SUM[0000:07FF]+SUM[0800:3FFF]+SUM[4000:7FFF]+ SUM[8000:BFFF]+SUM[C000:FFFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 0Fh)+(CONFIG5H & C0h)+ (CONFIG6L & 0Fh)+(CONFIG6H & E0h)+(CONFIG7L & 0Fh)+ (CONFIG7H & 40h)	0362h	02B8h
PIC18FX6K2	Boot Block	SUM[0800:3FFF]+SUM[4000:7FFF]+SUM[8000:BFFF]+SUM[C000:FFF F]+ (CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 0Fh)+ (CONFIG5H & C0h)+(CONFIG6L & 0Fh)+(CONFIG6H & E0h)+ (CONFIG7L & 0Fh)+(CONFIG7H & 40h)+SUM_ID	0B2Dh	0AE2h
	Boot/ Block 0/ Block 1	SUM[3000:BFFF]+SUM[C000:FFFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 0Fh)+(CONFIG5H & C0h)+ (CONFIG6L & 0Fh)+(CONFIG6H & E0h)+(CONFIG7L & 0Fh)+ (CONFIG7H & 40h)+SUM_ID	832Ah	82DFh
	All	(CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 0Fh)+ (CONFIG5H & C0h)+(CONFIG6L & 0Fh)+(CONFIG6H & E0h)+ (CONFIG7L & 0Fh)+(CONFIG7H & 40h)+SUM_ID	031Eh	0328h
Legend: Ite C	<u>.</u>			
+				

& = Bit-wise AND

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/ VERIFY TEST MODE

Derem		erature: 25°C is recommended				
Param No.	Sym.	Characteristic	Min.	Max.	Units	Conditions
D110	Vінн	High-Voltage Programming Voltage on MCLR/Vpp/RE3	Vdd + 4.5	9	V	
D110A	VIHL	Low-Voltage Programming Voltage on MCLR/VPP/RE3	1.80	3.60	V	
D111	Vdd	Supply Voltage During Programming	1.80	3.60	V	Row Erase/Write
			2.7	3.60	V	Bulk Erase operations
D112	IPP	Programming Current on MCLR/VPP/RE3	_	300	μΑ	
D113	IDDP	Supply Current During Programming	_	10	mA	
D031	VIL	Input Low Voltage	Vss	0.2 Vdd	V	
D041	Vih	Input High Voltage	0.8 Vdd	Vdd	V	
D080	Vol	Output Low Voltage	—	0.6	V	IOL = X.X mA @ 2.7V
D090	Vон	Output High Voltage	Vdd - 0.7	_	V	IOH = -Y.Y mA @ 2.7V
D012	Сю	Capacitive Loading on I/O pin (PGD)	—	50	pF	To meet AC specifications
		I				
P1	Tr	MCLR/VPP/RE3 Rise Time to enter Program/Verify mode	_	1.0	μS	(Note 1)
P2	TPGC	Serial Clock (PGC) Period	100	—	ns	VDD = 3.6V
			1		μS	VDD = 1.8V
P2A	TPGCL	Serial Clock (PGC) Low Time	40		ns	VDD = 3.6V
			400	—	ns	VDD = 1.8V
P2B	TPGCH	Serial Clock (PGC) High Time	40	—	ns	VDD = 3.6V
			400	—	ns	VDD = 1.8V
P3	TSET1	Input Data Setup Time to Serial Clock \downarrow	15	—	ns	
P4	THLD1	Input Data Hold Time from PGC \downarrow	15	—	ns	
P5	TDLY1	Delay between 4-bit Command and Command Operand	40	_	ns	
P5A	TDLY1A	Delay between 4-bit Command Operand and next 4-bit Command	40	—	ns	
P6	TDLY2	Delay between Last PGC \downarrow of Command Byte to First PGC \uparrow of Read of Data Word	20	—	ns	
P9	TDLY5	PGC High Time (minimum programming time)	1	—	ms	Externally Timed
P9A	TDLY5A	PGC High Time	5		ms	Configuration Word programming time
P10	Tdly6	PGC Low Time after Programming (high-voltage discharge time)	200	—	μS	
P11	Tdly7	Delay to allow Self-Timed Data Write or Bulk Erase to occur	5	_	ms	
P11A	TDRWT	Data Write Polling Time	4	_	ms	

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH; this can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) + 2 ms (for HS/PLL mode only) + 1.5 μs (for EC mode only) where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and Tosc is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/ VERIFY TEST MODE (CONTINUED)

Standard Operating Conditions Operating Temperature: 25°C is recommended									
Param No.	Sym.	Characteristic	Min.	Max.	Units	Conditions			
P12	THLD2	Input Data Hold Time from MCLR/VPP/RE3 ↑	2	—	μS				
P13	TSET2	VDD ↑ Setup Time to MCLR/VPP/RE3 ↑	100	—	ns				
P14	TVALID	Data Out Valid from PGC \uparrow	10	—	ns				
P15	TSET3	PGM [↑] Setup Time to MCLR/VPP/RE3 [↑]	2	—	μS				
P16	TDLY8	Delay between Last PGC \downarrow and $\overline{MCLR}/VPP/RE3\downarrow$	0	—	S				
P17	Thld3	MCLR/VPP/RE3 ↓ to VDD ↓	—	100	ns				
P18	THLD4	MCLR/VPP/RE3 ↓ to PGM ↓	0	_	S				
P19	Thiz	Delay from PGC ↑ to PGD High-Z	3	10	nS				
P20	TPPDP	Hold time after VPP changes	5	_	μS				

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH; this can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) + 2 ms (for HS/PLL mode only) + 1.5 μs (for EC mode only) where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and Tosc is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

NOTES: