

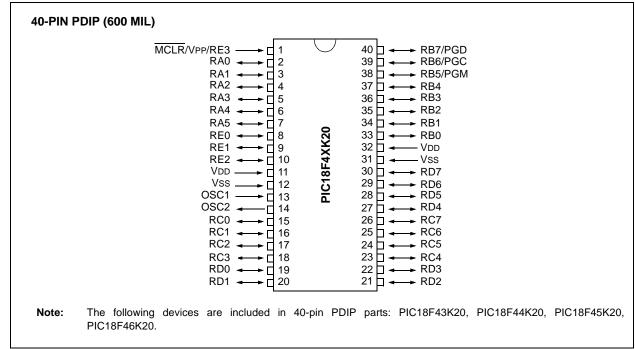
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

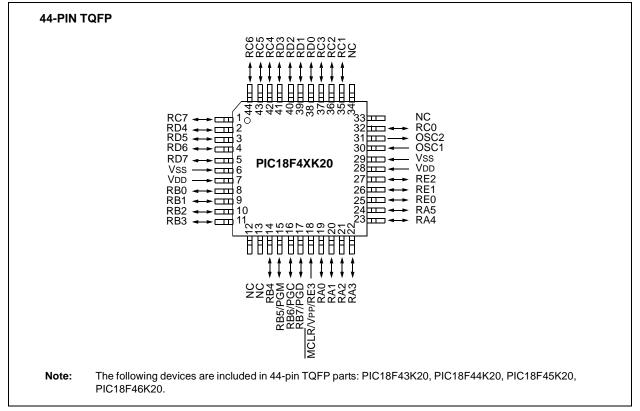
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XF

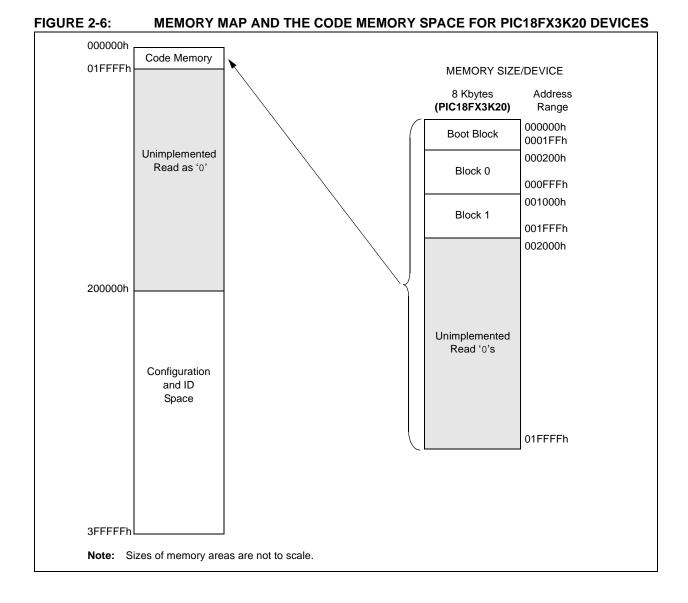
Product Status	Active	
Core Processor	PIC	
Core Size	8-Bit	
Speed	64MHz	
Connectivity	I ² C, SPI, UART/USART	
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT	
Number of I/O	24	
Program Memory Size	64KB (32K x 16)	
Program Memory Type	FLASH	
EEPROM Size	1K x 8	
RAM Size	3.8K x 8	
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V	
Data Converters	A/D 11x10b	
Oscillator Type	Internal	
Operating Temperature	-40°C ~ 85°C (TA)	
Mounting Type	Surface Mount	
Package / Case	28-VQFN Exposed Pad	
Supplier Device Package	28-QFN (6x6)	
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k20t-i-ml	


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-3: 40-PIN PDIP PIN DIAGRAMS

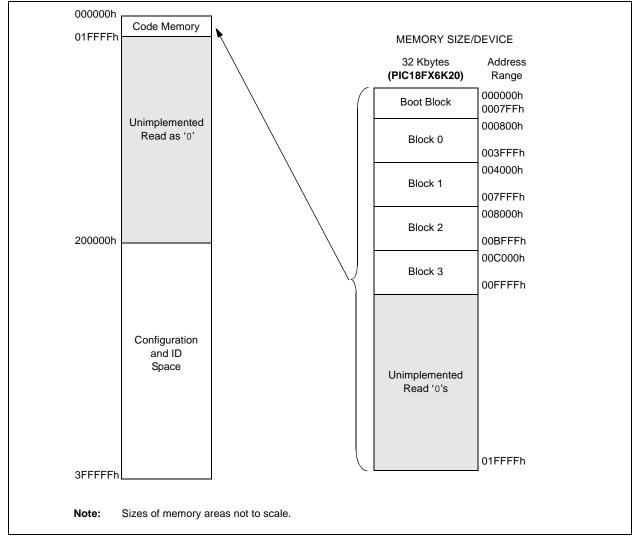
FIGURE 2-4: 44-PIN TQFP PIN DIAGRAMS



2.3 Memory Maps

For the PIC18FX3K20 devices, the code memory space extends from 0000h to 01FFFh (8 Kbytes) in two 4-Kbyte blocks. Addresses 0000h through 01FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-2:IMPLEMENTATION OF CODE
MEMORY


Device	Code Memory Size (Bytes)	
PIC18F23K20		
PIC18F43K20	000000h-001FFFh (8K)	

For PIC18FX6K20 devices, the code memory space extends from 000000h to 00FFFFh (64 Kbytes) in four 16-Kbyte blocks. Addresses 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-5:IMPLEMENTATION OF CODE
MEMORY

Device	Code Memory Size (Bytes)	
PIC18F26K20		
PIC18F46K20	- 000000h-00FFFFh (64K)	

2.6 Entering and Exiting Low-Voltage ICSP Program/Verify Mode

When the LVP Configuration bit is '1' (see Section 5.3 "Single-Supply ICSP Programming"), the Low-Voltage ICSP mode is enabled. As shown in Figure 2-14, Low-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low, placing a logic high on PGM and then raising MCLR/VPP/RE3 to VIH. In this mode, the RB5/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. Figure 2-15 shows the exit sequence.

The sequence that enters the device into the Program/ Verify mode places all unused I/Os in the high-impedance state.

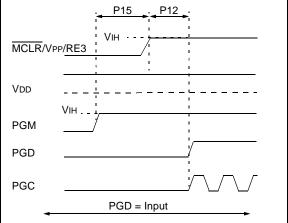
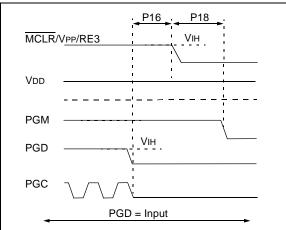



FIGURE 2-15:

EXITING LOW-VOLTAGE PROGRAM/VERIFY MODE

2.7 Serial Program/Verify Operation

The PGC pin is used as a clock input pin and the PGD pin is used for entering command bits and data input/ output during serial operation. Commands and data are transmitted on the rising edge of PGC, latched on the falling edge of PGC and are Least Significant bit (LSb) first.

2.7.1 4-BIT COMMANDS

All instructions are 20 bits, consisting of a leading 4-bit command followed by a 16-bit operand, which depends on the type of command being executed. To input a command, PGC is cycled four times. The commands needed for programming and verification are shown in Table 2-6.

Depending on the 4-bit command, the 16-bit operand represents 16 bits of input data or 8 bits of input data and 8 bits of output data.

Throughout this specification, commands and data are presented as illustrated in Table 2-7. The 4-bit command is shown Most Significant bit (MSb) first. The command operand, or "Data Payload", is shown <MSB><LSB>. Figure 2-16 demonstrates how to serially present a 20-bit command/operand to the device.

2.7.2 CORE INSTRUCTION

The core instruction passes a 16-bit instruction to the CPU core for execution. This is needed to set up registers as appropriate for use with other commands.

TABLE 2-6: COMMANDS FOR PROGRAMMING

Description	4-Bit Command
Core Instruction (Shift in16-bit instruction)	0000
Shift out TABLAT register	0010
Table Read	1000
Table Read, post-increment	1001
Table Read, post-decrement	1010
Table Read, pre-increment	1011
Table Write	1100
Table Write, post-increment by 2	1101
Table Write, start programming, post-increment by 2	1110
Table Write, start programming	1111

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the EECON1 register must be configured in order to operate on a particular memory region.

When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7> = 1) and the CFGS bit must be cleared (EECON1<6> = 0). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort (e.g., erases) and this must be done prior to initiating a write sequence. The FREE bit must be set (EECON1<4> = 1) in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit (EECON1<1> = 1). It is strongly recommended that the WREN bit only be set immediately prior to a program or erase.

3.1 ICSP Erase

3.1.1 HIGH-VOLTAGE ICSP BULK ERASE

Erasing code or data EEPROM is accomplished by configuring two Bulk Erase Control registers located at 3C0004h and 3C0005h. Code memory may be erased portions at a time, or the user may erase the entire device in one action. Bulk Erase operations will also clear any code-protect settings associated with the memory block erased. Erase options are detailed in Table 3-1. If data EEPROM is code-protected (CPD = 0), the user must request an erase of data EEPROM (e.g., 0084h as shown in Table 3-1).

Description	Data (3C0005h:3C0004h)
Chip Erase	0F8Fh
Erase User ID	0088h
Erase Data EEPROM	0084h
Erase Boot Block	0081h
Erase Config Bits	0082h
Erase Code EEPROM Block 0	0180h
Erase Code EEPROM Block 1	0280h
Erase Code EEPROM Block 2	0480h
Erase Code EEPROM Block 3	0880h

TABLE 3-1: BULK ERASE OPTIONS

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (parameter P11). During this time, PGC may continue to toggle but PGD must be held low.

The code sequence to erase the entire device is shown in Table 3-2 and the flowchart is shown in Figure 3-1.

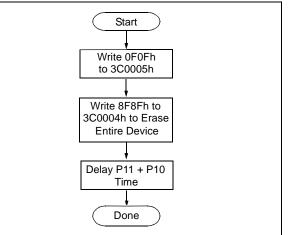
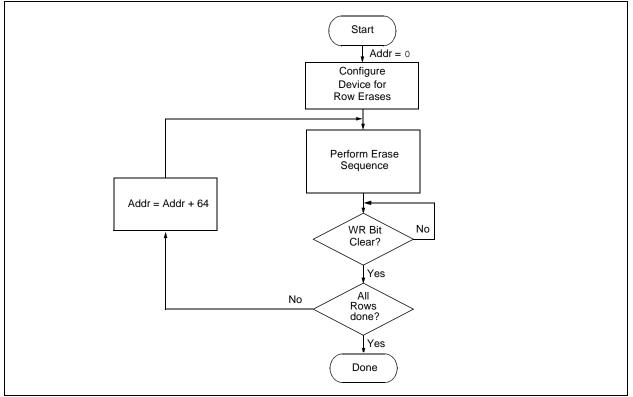

Note: A Bulk Erase is the only way to reprogram code-protect bits from an "on" state to an "off" state.

TABLE 3-2: BULK ERASE COMMAND SEQUENCE

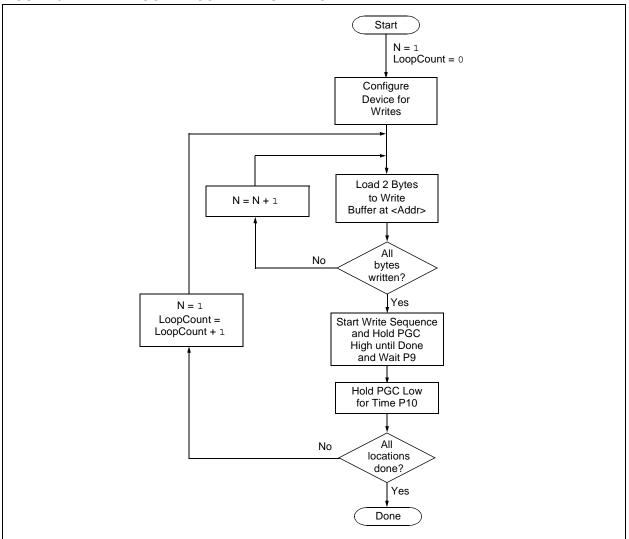
4-Bit	4-Bit Data		
Command	Payload	Core Instruction	
0000	0E 3C	MOVLW 3Ch	
0000	6E F8	MOVWF TBLPTRU	
0000	0E 00	MOVLW 00h	
0000	6E F7	MOVWF TBLPTRH	
0000	0E 05	MOVLW 05h	
0000	6E F6	MOVWF TBLPTRL	
1100	0F 0F	Write OFh to 3C0005h	
0000	0E 3C	MOVLW 3Ch	
0000	6E F8	MOVWF TBLPTRU	
0000	0E 00	MOVLW 00h	
0000	6E F7	MOVWF TBLPTRH	
0000	0E 04	MOVLW 04h	
0000	6E F6	MOVWF TBLPTRL	
1100	8F 8F	Write 8F8Fh TO 3C0004h to erase entire device.	
0000	00 00	NOP	
0000	00 00	Hold PGD low until erase completes.	

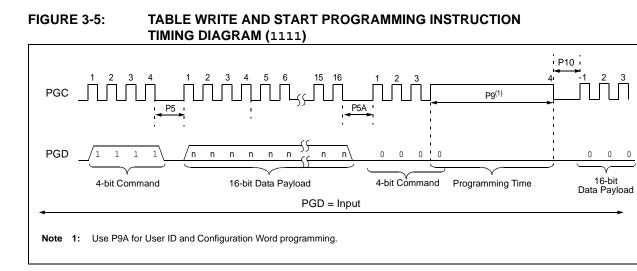
FIGURE 3-1:

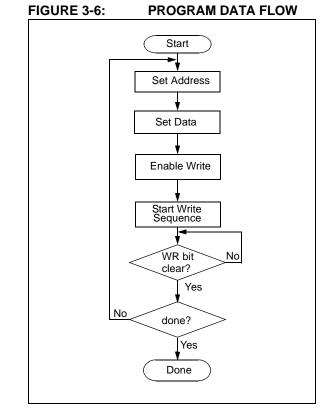
BULK ERASE FLOW

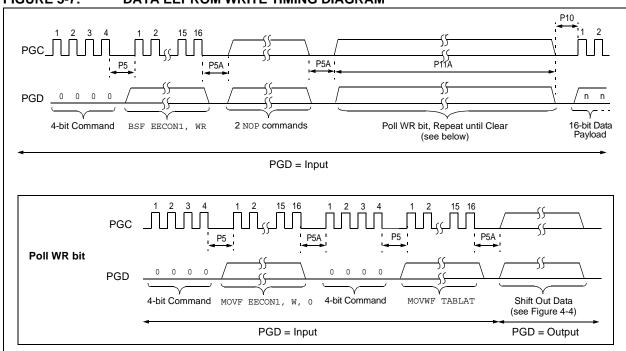


4-bit CommandData PayloadStep 1: Direct access to code memoryand ended00008E A6BSF00009C A6BCF000084 A6BSFStep 2: Point to First row in code memory.break	Core Instruction		
0000 8E A6 BSF EECON1, EEPGD 0000 9C A6 BCF EECON1, CFGS 0000 84 A6 BSF EECON1, WREN			
00009C A6BCFEECON1, CFGS000084 A6BSFEECON1, WREN			
Step 2: Point to first row in code memory.			
	Step 2: Point to first row in code memory.		
0000 6A F8 CLRF TBLPTRU 0000 6A F7 CLRF TBLPTRH 0000 6A F6 CLRF TBLPTRL			
Step 3: Enable erase and erase single row.			
0000 88 A6 BSF EECON1, FREE 0000 82 A6 BSF EECON1, WR 0000 00 00 NOP 0000 00 00 NOP	on the 4th clock of this instruction		
Step 4: Poll WR bit. Repeat until bit is clear.			
0000 50 A6 MOVF EECON1, W, 0 0000 6E F5 MOVWF TABLAT 0000 00 00 NOP 0010 <msb><lsb> Shift out data⁽¹⁾</lsb></msb>			
Step 5: Hold PGC low for time P10.			
Step 6: Repeat step 3 with Address Pointer incremented by 64 ur	ntil all rows are erased.		
Step 7: Disable writes.			
0000 94 A6 BCF EECON1, WREN			


TABLE 3-3: ERASE CODE MEMORY CODE SEQUENC


Note 1: See Figure 4-4 for details on shift out data timing.


3.3 Data EEPROM Programming


Data EEPROM is accessed one byte at a time via an Address Pointer (register pair EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is written by loading EEADRH:EEADR with the desired memory location, EEDATA with the data to be written and initiating a memory write by appropriately configuring the EECON1 register. A byte write automatically erases the location and writes the new data (erase-before-write).

When using the EECON1 register to perform a data EEPROM write, both the EEPGD and CFGS bits must be cleared (EECON1<7:6> = 00). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort and this must be done prior to initiating a write sequence. The write sequence is initiated by setting the WR bit (EECON1<1> = 1).

The write begins on the falling edge of the 24th PGC after the WR bit is set. It ends when the WR bit is cleared by hardware.

After the programming sequence terminates, PGC must be held low for the time specified by parameter P10 to allow high-voltage discharge of the memory array.

FIGURE 3-7: DATA EEPROM WRITE TIMING DIAGRAM

TABLE 0 1.				
4-bit Command	Data Payload	Core Instruction		
Step 1: Direct a	Step 1: Direct access to data EEPROM.			
0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS		
Step 2: Set the	Step 2: Set the data EEPROM Address Pointer.			
0000 0000 0000 0000	0E <addr> 6E A9 OE <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>		
Step 3: Load the	Step 3: Load the data to be written.			
0000	0E <data> 6E A8</data>	MOVLW <data> MOVWF EEDATA</data>		
Step 4: Enable memory writes.				
0000	84 A6	BSF EECON1, WREN		
Step 5: Initiate v	Step 5: Initiate write.			
0000 0000 0000	82 A6 00 00 00 00	BSF EECON1, WR NOP NOP ;write starts on 4th clock of this instruction		
Step 6: Poll WR	bit, repeat until the bit is	clear.		
0000 0000 0000 0010	50 A6 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EECON1, W, 0 MOVWF TABLAT NOP Shift out data ⁽¹⁾		
Step 7: Hold PGC low for time P10.				
Step 8: Disable	writes.			
0000	94 A6	BCF EECON1, WREN		
Repeat steps 2	Repeat steps 2 through 8 to write more data.			

TABLE 3-7: PROGRAMMING DATA MEMORY

Note 1: See Figure 4-4 for details on shift out data timing.

3.4 ID Location Programming

The ID locations are programmed much like the code memory. The ID registers are mapped in addresses 200000h through 200007h. These locations read out normally even after code protection.

Note:	The user only needs to fill the first 8 bytes	
	of the write buffer in order to write the ID	
	locations.	

Table 3-8 demonstrates the code sequence required to write the ID locations.

In order to modify the ID locations, refer to the methodology described in **Section 3.2.1** "**Modifying Code Memory**". As with code memory, the ID locations must be erased before being modified.

When VDD is below the minimum for Bulk Erase operation, ID locations can be cleared with the Row Erase method described in **Section 3.1.3** "**ICSP Row Erase**".

4-bit Command	Data Payload	Core Instruction
Step 1: Direct ad	ccess to code memory.	
0000	8E A6	BSF EECON1, EEPGD
0000	9C A6	BCF EECON1, CFGS
0000	84 A6	BSF EECON1, WREN
Step 2: Set Tabl	e Pointer to ID. Load writ	te buffer with 8 bytes and write.
0000	0E 20	MOVLW 20h
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 00	MOVLW 00h
0000	6E F6	MOVWF TBLPTRL
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.
1111	<msb><lsb></lsb></msb>	Write 2 bytes and start programming.
0000	00 00	NOP - hold PGC high for time P9 and low for time P10.

TABLE 3-8: WRITE ID SEQUENCE

3.5 Boot Block Programming

The code sequence detailed in Table 3-5 should be used, except that the address used in "Step 2" will be in the range of 000000h to 0007FFh.

3.6 Configuration Bits Programming

Unlike code memory, the Configuration bits are programmed a byte at a time. The Table Write, Begin Programming 4-bit command ('1111') is used, but only 8 bits of the following 16-bit payload will be written. The LSB of the payload will be written to even addresses and the MSB will be written to odd addresses. The code sequence to program two consecutive configuration locations is shown in Table 3-9. See Figure 3-5 for the timing diagram.

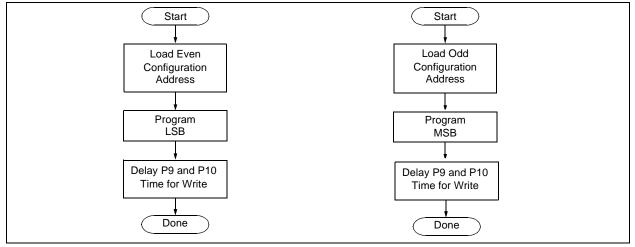
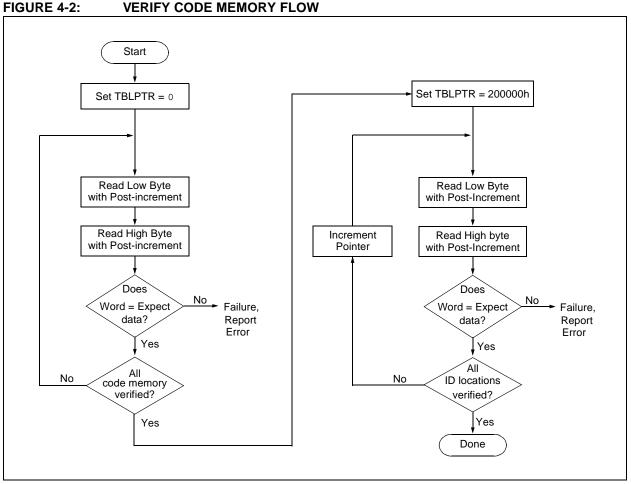

Note: The address must be explicitly written for each byte programmed. The addresses can not be incremented in this mode.

TABLE 3-9: SET ADDRESS POINTER TO CONFIGURATION LOCATION

4-bit Command	Data Payload	Core Instruction
Step 1: Direct access to config memory.		
0000	8E A6	BSF EECON1, EEPGD
0000	8C A6	BSF EECON1, CFGS
0000	84 A6	BSF EECON1, WREN
Step 2 ⁽¹⁾ : Set Table Pointer for config byte to be written. Write even/odd addresses.		
0000	0E 30	MOVLW 30h
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPRTH
0000	0E 00	MOVLW 00h
0000	6E F6	MOVWF TBLPTRL
1111	<msb ignored=""><lsb></lsb></msb>	Load 2 bytes and start programming.
0000	00 00	NOP - hold PGC high for time P9 and low for time P10.
0000	0E 01	MOVLW 01h
0000	6E F6	MOVWF TBLPTRL
1111	<msb><lsb ignored=""></lsb></msb>	Load 2 bytes and start programming.
0000	00 00	NOP - hold PGC high for time P9A and low for time P10.

Note 1: Enabling the write protection of Configuration bits (WRTC = 0 in CONFIG6H) will prevent further writing of Configuration bits. Always write all the Configuration bits before enabling the write protection for Configuration bits.


FIGURE 3-8: CONFIGURATION PROGRAMMING FLOW

4.2 Verify Code Memory and ID Locations

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading code memory.

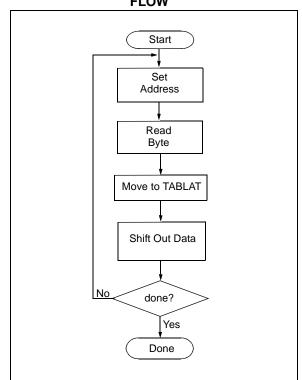
The Table Pointer must be manually set to 200000h (base address of the ID locations) once the code memory has been verified. The post-increment feature of the table read 4-bit command can not be used to increment the Table Pointer beyond the code memory space. In a 64-Kbyte device, for example, a post-increment read of address FFFFh will wrap the Table Pointer back to 000000h, rather than point to unimplemented address 010000h.

4.3 Verify Configuration Bits

A configuration address may be read and output on PGD via the 4-bit command, '1001'. Configuration data is read and written in a byte-wise fashion, so it is not necessary to merge two bytes into a word prior to a compare. The result may then be immediately compared to the appropriate configuration data in the programmer's memory for verification. Refer to **Section 4.1 "Read Code Memory, ID Locations and Configuration Bits"** for implementation details of reading configuration data.

4.4 Read Data EEPROM Memory

Data EEPROM is accessed one byte at a time via an Address Pointer (register pair EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is read by loading EEADRH:EEADR with the desired memory location and initiating a memory read by appropriately configuring the EECON1 register. The data will be loaded into EEDATA, where it may be serially output on PGD via the 4-bit command, '0010' (Shift Out Data Holding register). A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-4).


The command sequence to read a single byte of data is shown in Table 4-2.

4-bit Command	Data Payload	Core Instruction				
Step 1: Direct acc	ess to data EEPROM.					
0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS				
Step 2: Set the da	ata EEPROM Address Point	er.				
0000 0000 0000 0000	0E <addr> 6E A9 OE <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>				
Step 3: Initiate a r	Step 3: Initiate a memory read.					
0000	80 A6	BSF EECON1, RD				
Step 4: Load data into the Serial Data Holding register.						
0000 0000 0000 0010	50 A8 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EEDATA, W, O MOVWF TABLAT NOP Shift Out Data ⁽¹⁾				

TABLE 4-2: READ DATA EEPROM MEMORY

Note 1: The <LSB> is undefined. The <MSB> is the data.

FIGURE 4-3: READ DATA EEPROM FLOW

TABLE 5-2: DEVICE ID VALUE

Davias	Device ID Value			
Device	DEVID2	DEVID1		
PIC18F23K20	20h	111x xxxx		
PIC18F24K20	20h	101x xxxx		
PIC18F25K20	20h	011x xxxx		
PIC18F26K20	20h	001x xxxx		
PIC18F43K20	20h	110x xxxx		
PIC18F44K20	20h	100x xxxx		
PIC18F45K20	20h	010x xxxx		
PIC18F46K20	20h	000x xxxx		

Note: The 'x's in DEVID1 contain the device revision code.

 $\ensuremath{\textcircled{}^\circ}$ 2009 Microchip Technology Inc.

Device Code- Protect Checksur		Checksum	Blank Value	0xAA at 0 and Max Address
	None	SUM[0000:01FF]+SUM[0200:0FFF]+SUM[1000:1FFF]+ (CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 03h)+ (CONFIG5H & C0h)+(CONFIG6L & 03h)+(CONFIG6H & E0h)+ (CONFIG7L & 03h)+(CONFIG7H & 40h)	E33Eh	E294h
PIC18FX3K20	Boot Block	SUM[0200:0FFF]+SUM[1000:1FFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 03h)+(CONFIG5H & C0h)+ (CONFIG6L & 03h)+(CONFIG6H & E0h)+(CONFIG7L & 03h)+ (CONFIG7H & 40h)+SUM_ID	E520h	E4C6h
	Boot/ Block 0	F31Fh	F2C5h	
	All	(CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 03h)+ (CONFIG5H & C0h)+(CONFIG6L & 03h)+(CONFIG6H & E0h)+ (CONFIG7L & 03h)+(CONFIG7H & 40h)+SUM_ID	031Dh	0318h
	None	SUM[0000:07FF]+SUM[0800:1FFF]+SUM[2000:3FFF]+ (CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 03h)+ (CONFIG5H & C0h)+(CONFIG6L & 03h)+(CONFIG6H & E0h)+ (CONFIG7L & 03h)+(CONFIG7H & 40h)	C33Eh	C294h
PIC18FX4K20	Boot Block	SUM[0800:1FFF]+SUM[2000:3FFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 03h)+(CONFIG5H & C0h)+ (CONFIG6L & 03h)+(CONFIG6H & E0h)+(CONFIG7L & 03h)+ (CONFIG7H & 40h)+SUM_ID	CB1Eh	CAC4h
	Boot/ Block 0	SUM[2000:3FFF]+(CONFIG1L & 00h)+(CONFIG1H & CFh)+ (CONFIG2L & 1Fh)+(CONFIG2H & 1F)+(CONFIG3L & 00h)+ (CONFIG3H & 8Fh)+(CONFIG4L & C5h)+(CONFIG4H & 00h)+ (CONFIG5L & 03h)+(CONFIG5H & C0h)+(CONFIG6L & 03h)+ (CONFIG6H & E0h)+(CONFIG7L & 03h)+(CONFIG7H & 40h)+SUM_ID	E31Dh	E2C3h
	All	(CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 03h)+ (CONFIG5H & C0h)+(CONFIG6L & 03h)+(CONFIG6H & E0h)+ (CONFIG7L & 03h)+(CONFIG7H & 40h)+SUM_ID	031Bh	0316h
SUN	NFIGx = 0 //[a:b] = 3 //_ID = 1	<u>Description</u> Configuration Word Sum of locations, a to b inclusive Byte-wise sum of lower four bits of all customer ID locations Addition		

+ = Addition & = Bit-wise AND

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/ VERIFY TEST MODE

Derem						
Param No.	Sym.	Characteristic	Min.	Max.	Units	Conditions
D110	Vінн	High-Voltage Programming Voltage on MCLR/Vpp/RE3	Vdd + 4.5	9	V	
D110A	VIHL	Low-Voltage Programming Voltage on MCLR/VPP/RE3	1.80	3.60	V	
D111	Vdd	Supply Voltage During Programming	1.80	3.60	V	Row Erase/Write
			2.7	3.60	V	Bulk Erase operations
D112	IPP	Programming Current on MCLR/VPP/RE3	_	300	μΑ	
D113	IDDP	Supply Current During Programming	_	10	mA	
D031	VIL	Input Low Voltage	Vss	0.2 Vdd	V	
D041	Vih	Input High Voltage	0.8 Vdd	Vdd	V	
D080	Vol	Output Low Voltage	—	0.6	V	IOL = X.X mA @ 2.7V
D090	Vон	Output High Voltage	Vdd - 0.7	_	V	IOH = -Y.Y mA @ 2.7V
D012	Сю	Capacitive Loading on I/O pin (PGD)	—	50	pF	To meet AC specifications
		I				
P1	Tr	MCLR/VPP/RE3 Rise Time to enter Program/Verify mode	_	1.0	μS	(Note 1)
P2	TPGC	Serial Clock (PGC) Period	100	—	ns	VDD = 3.6V
			1		μS	VDD = 1.8V
P2A	TPGCL	Serial Clock (PGC) Low Time	40		ns	VDD = 3.6V
			400	—	ns	VDD = 1.8V
P2B	TPGCH	Serial Clock (PGC) High Time	40	—	ns	VDD = 3.6V
			400	—	ns	VDD = 1.8V
P3	TSET1	Input Data Setup Time to Serial Clock \downarrow	15	—	ns	
P4	THLD1	Input Data Hold Time from PGC \downarrow	15	—	ns	
P5	TDLY1	Delay between 4-bit Command and Command Operand	40	_	ns	
P5A	TDLY1A	Delay between 4-bit Command Operand and next 4-bit Command	40	—	ns	
P6	TDLY2	Delay between Last PGC \downarrow of Command Byte to First PGC \uparrow of Read of Data Word	20	—	ns	
P9	TDLY5	PGC High Time (minimum programming time)	1	—	ms	Externally Timed
P9A	TDLY5A	PGC High Time	5		ms	Configuration Word programming time
P10	Tdly6	PGC Low Time after Programming (high-voltage discharge time)	200	—	μS	
P11	Tdly7	Delay to allow Self-Timed Data Write or Bulk Erase to occur	5	_	ms	
P11A	TDRWT	Data Write Polling Time	4	_	ms	

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH; this can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) + 2 ms (for HS/PLL mode only) + 1.5 μs (for EC mode only) where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and Tosc is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/ VERIFY TEST MODE (CONTINUED)

Standard Operating Conditions Operating Temperature: 25°C is recommended							
Param No.	Sym.	Characteristic	Min.	Max.	Units	Conditions	
P12	THLD2	Input Data Hold Time from MCLR/VPP/RE3 ↑	2	—	μS		
P13	TSET2	VDD ↑ Setup Time to MCLR/VPP/RE3 ↑	100	—	ns		
P14	TVALID	Data Out Valid from PGC \uparrow	10	—	ns		
P15	TSET3	PGM [↑] Setup Time to MCLR/VPP/RE3 [↑]	2	—	μS		
P16	TDLY8	Delay between Last PGC \downarrow and $\overline{MCLR}/VPP/RE3\downarrow$	0	—	S		
P17	Thld3	MCLR/VPP/RE3 ↓ to VDD ↓	—	100	ns		
P18	THLD4	MCLR/VPP/RE3 ↓ to PGM ↓	0	_	S		
P19	Thiz	Delay from PGC ↑ to PGD High-Z	3	10	nS		
P20	TPPDP	Hold time after VPP changes	5	_	μS		

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH; this can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) + 2 ms (for HS/PLL mode only) + 1.5 μs (for EC mode only) where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and Tosc is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

NOTES:

Note the following details of the code protection feature on Microchip devices:

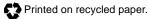
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.