

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k20t-i-so

FIGURE 2-3: 40-PIN PDIP PIN DIAGRAMS

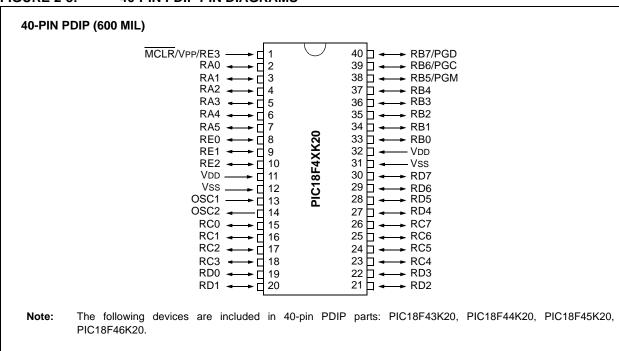


FIGURE 2-4: 44-PIN TQFP PIN DIAGRAMS

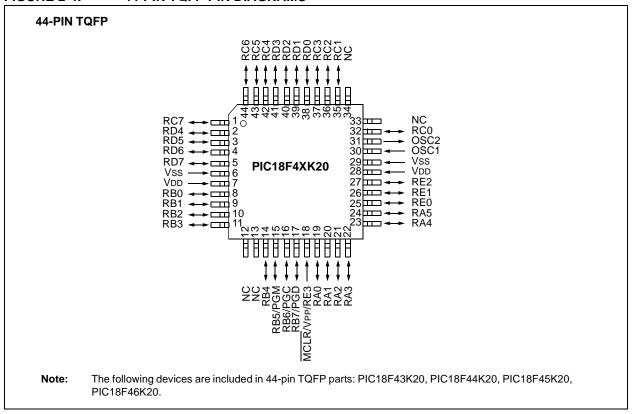
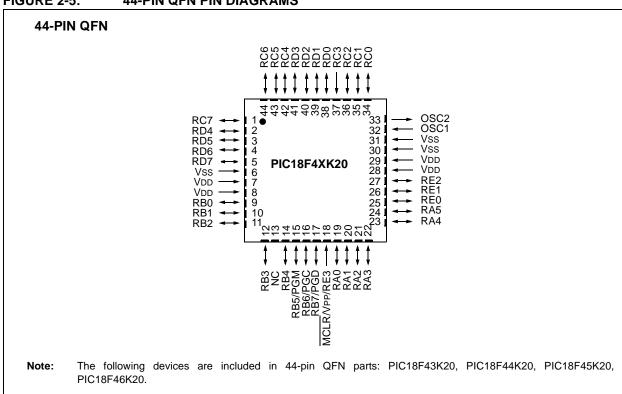
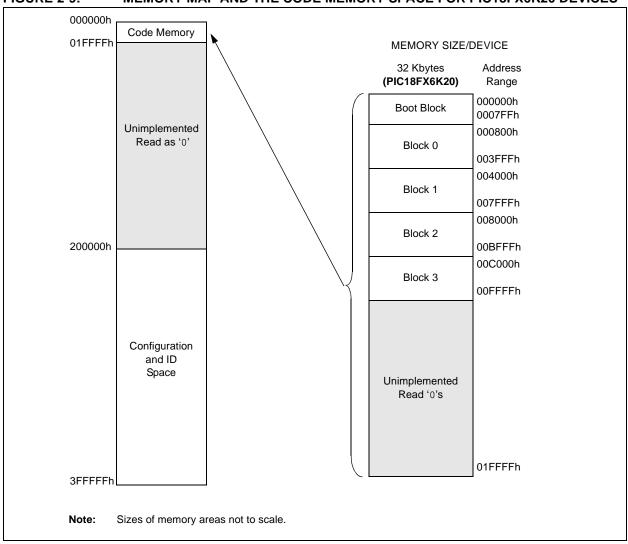



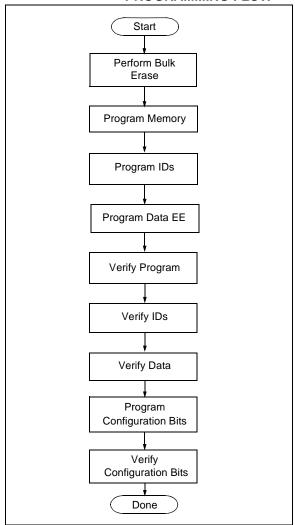
FIGURE 2-5: 44-PIN QFN PIN DIAGRAMS


© 2009 Microchip Technology Inc.

For PIC18FX6K20 devices, the code memory space extends from 000000h to 00FFFFh (64 Kbytes) in four 16-Kbyte blocks. Addresses 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-5: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)	
PIC18F26K20	000000h-00FFFFh (64K)	
PIC18F46K20	00000011-00FFF11 (04K)	


FIGURE 2-9: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX6K20 DEVICES

2.4 High-Level Overview of the Programming Process

Figure 2-11 shows the high-level overview of the programming process. First, a Bulk Erase is performed. Next, the code memory, ID locations and data EEPROM are programmed. These memories are then verified to ensure that programming was successful. If no errors are detected, the Configuration bits are then programmed and verified.

FIGURE 2-11: HIGH-LEVEL PROGRAMMING FLOW

2.5 Entering and Exiting High-Voltage ICSP Program/Verify Mode

As shown in Figure 2-12, the High-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low and then raising MCLR/VPP/RE3 to VIHH (high voltage). Once in this mode, the code memory, data EEPROM, ID locations and Configuration bits can be accessed and programmed in serial fashion. Figure 2-13 shows the exit sequence.

The sequence that enters the device into the Program/ Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-12: ENTERING HIGH-VOLTAGE PROGRAM/VERIFY MODE

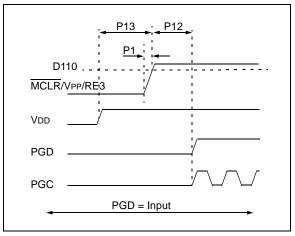
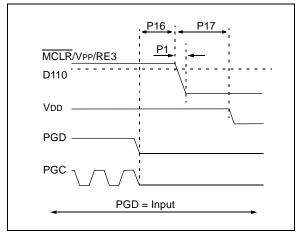



FIGURE 2-13: EXITING HIGH-VOLTAGE PROGRAM/VERIFY MODE

2.6 Entering and Exiting Low-Voltage ICSP Program/Verify Mode

When the LVP Configuration bit is '1' (see **Section 5.3** "**Single-Supply ICSP Programming**"), the Low-Voltage ICSP mode is enabled. As shown in Figure 2-14, Low-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low, placing a logic high on PGM and then raising MCLR/VPP/RE3 to VIH. In this mode, the RB5/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. Figure 2-15 shows the exit sequence.

The sequence that enters the device into the Program/ Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-14: ENTERING LOW-VOLTAGE PROGRAM/VERIFY MODE

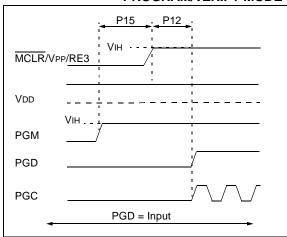
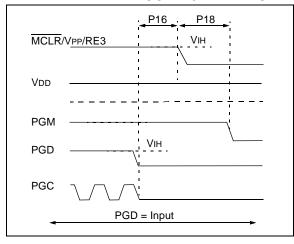



FIGURE 2-15: EXITING LOW-VOLTAGE PROGRAM/VERIFY MODE

2.7 Serial Program/Verify Operation

The PGC pin is used as a clock input pin and the PGD pin is used for entering command bits and data input/output during serial operation. Commands and data are transmitted on the rising edge of PGC, latched on the falling edge of PGC and are Least Significant bit (LSb) first.

2.7.1 4-BIT COMMANDS

All instructions are 20 bits, consisting of a leading 4-bit command followed by a 16-bit operand, which depends on the type of command being executed. To input a command, PGC is cycled four times. The commands needed for programming and verification are shown in Table 2-6.

Depending on the 4-bit command, the 16-bit operand represents 16 bits of input data or 8 bits of input data and 8 bits of output data.

Throughout this specification, commands and data are presented as illustrated in Table 2-7. The 4-bit command is shown Most Significant bit (MSb) first. The command operand, or "Data Payload", is shown <MSB><LSB>. Figure 2-16 demonstrates how to serially present a 20-bit command/operand to the device.

2.7.2 CORE INSTRUCTION

The core instruction passes a 16-bit instruction to the CPU core for execution. This is needed to set up registers as appropriate for use with other commands.

TABLE 2-6: COMMANDS FOR PROGRAMMING

Description	4-Bit Command
Core Instruction (Shift in16-bit instruction)	0000
Shift out TABLAT register	0010
Table Read	1000
Table Read, post-increment	1001
Table Read, post-decrement	1010
Table Read, pre-increment	1011
Table Write	1100
Table Write, post-increment by 2	1101
Table Write, start programming, post-increment by 2	1110
Table Write, start programming	1111

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the EECON1 register must be configured in order to operate on a particular memory region.

When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7>=1) and the CFGS bit must be cleared (EECON1<6>=0). The WREN bit must be set (EECON1<2>=1) to enable writes of any sort (e.g., erases) and this must be done prior to initiating a write sequence. The FREE bit must be set (EECON1<4>=1) in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit (EECON1<1>=1). It is strongly recommended that the WREN bit only be set immediately prior to a program or erase.

3.1 ICSP Erase

3.1.1 HIGH-VOLTAGE ICSP BULK ERASE

Erasing code or data EEPROM is accomplished by configuring two Bulk Erase Control registers located at 3C0004h and 3C0005h. Code memory may be erased portions at a time, or the user may erase the entire device in one action. Bulk Erase operations will also clear any code-protect settings associated with the memory block erased. Erase options are detailed in Table 3-1. If data EEPROM is code-protected (CPD = 0), the user must request an erase of data EEPROM (e.g., 0084h as shown in Table 3-1).

TABLE 3-1: BULK ERASE OPTIONS

TABLE O II. BOLK LIGHT	2 01 110110
Description	Data (3C0005h:3C0004h)
Chip Erase	0F8Fh
Erase User ID	0088h
Erase Data EEPROM	0084h
Erase Boot Block	0081h
Erase Config Bits	0082h
Erase Code EEPROM Block 0	0180h
Erase Code EEPROM Block 1	0280h
Erase Code EEPROM Block 2	0480h
Erase Code EEPROM Block 3	0880h

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (parameter P11). During this time, PGC may continue to toggle but PGD must be held low.

The code sequence to erase the entire device is shown in Table 3-2 and the flowchart is shown in Figure 3-1.

A Bulk Erase is the only way to reprogram code-protect bits from an "on" state to an "off" state.

TABLE 3-2: BULK ERASE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 05	MOVLW 05h
0000	6E F6	MOVWF TBLPTRL
1100	0F 0F	Write OFh to 3C0005h
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 04	MOVLW 04h
0000	6E F6	MOVWF TBLPTRL
1100	8F 8F	Write 8F8Fh TO 3C0004h to erase entire device.
0000	00 00	NOP
0000	00 00	Hold PGD low until erase completes.

FIGURE 3-1: BULK ERASE FLOW

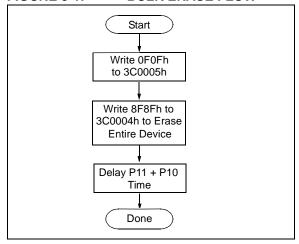


TABLE 3-3: ERASE CODE MEMORY CODE SEQUENCE

4-bit Command	Data Payload	Core Instruction			
Step 1: Direct ad	ccess to code memor	y and enable writes.			
0000 0000 0000	8E A6 9C A6 84 A6	BSF EECON1, EEPGD BCF EECON1, CFGS BSF EECON1, WREN			
0000 0000 0000	first row in code men 6A F8 6A F7 6A F6	CLRF TBLPTRU CLRF TBLPTRH CLRF TBLPTRL			
Step 3: Enable 6	erase and erase sing	e row.			
0000 0000 0000 0000	88 A6 82 A6 00 00 00 00	BSF EECON1, FREE BSF EECON1, WR NOP NOP Erase starts on the 4th clock of this instruction			
Step 4: Poll WR	bit. Repeat until bit is	s clear.			
0000 0000 0000 0010	50 A6 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EECON1, W, 0 MOVWF TABLAT NOP Shift out data(1)			
Step 5: Hold PG	C low for time P10.				
Step 6: Repeat	Step 6: Repeat step 3 with Address Pointer incremented by 64 until all rows are erased.				
Step 7: Disable	Step 7: Disable writes.				
0000	94 A6	BCF EECON1, WREN			

Note 1: See Figure 4-4 for details on shift out data timing.

TABLE 3-7: PROGRAMMING DATA MEMORY

4-bit Command	Data Payload	Core Instruction				
Step 1: Direct ad	Step 1: Direct access to data EEPROM.					
0000	9E A6 9C A6					
Step 2: Set the	data EEPROM Address F	Pointer.				
0000						
Step 3: Load the	e data to be written.					
0000	0E <data> MOVLW <data> 6E A8 MOVWF EEDATA</data></data>					
Step 4: Enable r	memory writes.					
0000	84 A6	BSF EECON1, WREN				
Step 5: Initiate v	vrite.					
0000 0000 0000	82 A6 00 00 00 00	BSF EECON1, WR NOP NOP; write starts on 4th clock of this instruction				
Step 6: Poll WR	bit, repeat until the bit is	clear.				
0000 0000 0000 0010	50 A6 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EECON1, W, 0 MOVWF TABLAT NOP Shift out data(1)				
Step 7: Hold PG	Step 7: Hold PGC low for time P10.					
Step 8: Disable	writes.					
0000	94 A6	BCF EECON1, WREN				
Repeat steps 2	Repeat steps 2 through 8 to write more data.					

Note 1: See Figure 4-4 for details on shift out data timing.

4.0 READING THE DEVICE

4.1 Read Code Memory, ID Locations and Configuration Bits

Code memory is accessed one byte at a time via the 4-bit command, '1001' (table read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH:TBLPTRL) are serially output on PGD.

The 4-bit command is shifted in LSb first. The read is executed during the next 8 clocks, then shifted out on PGD during the last 8 clocks, LSb to MSb. A delay of P6 must be introduced after the falling edge of the 8th

PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to the reading of the ID and Configuration registers.

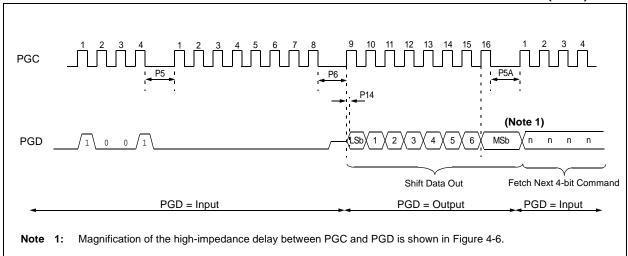

When table read protection is enabled, the first read access to a protected block should be discarded and the read repeated to retrieve valid data. Subsequent reads of the same block can be performed normally.

TABLE 4-1: READ CODE MEMORY SEQUENCE

4-bit Command	Data Payload	Core Instruction		
Step 1: Set Tabl	e Pointer			
0000	0E <addr[21:16]></addr[21:16]>	MOVLW Addr[21:16]		
0000	6E F8	MOVWF TBLPTRU		
0000	0E <addr[15:8]></addr[15:8]>	MOVLW <addr[15:8]></addr[15:8]>		
0000	6E F7	MOVWF TBLPTRH		
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>		
0000	6E F6	MOVWF TBLPTRL		
Step 2: Read memory and then shift out on PGD, LSb to MSb				
1001	00 00	TBLRD *+		

Note:

FIGURE 4-1: TABLE READ POST-INCREMENT INSTRUCTION TIMING DIAGRAM (1001)

4.3 Verify Configuration Bits

A configuration address may be read and output on PGD via the 4-bit command, '1001'. Configuration data is read and written in a byte-wise fashion, so it is not necessary to merge two bytes into a word prior to a compare. The result may then be immediately compared to the appropriate configuration data in the programmer's memory for verification. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading configuration data.

4.4 Read Data EEPROM Memory

Data EEPROM is accessed one byte at a time via an Address Pointer (register pair EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is read by loading EEADRH:EEADR with the desired memory location and initiating a memory read by appropriately configuring the EECON1 register. The data will be loaded into EEDATA, where it may be serially output on PGD via the 4-bit command, '0010' (Shift Out Data Holding register). A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-4).

The command sequence to read a single byte of data is shown in Table 4-2.

FIGURE 4-3: READ DATA EEPROM FLOW

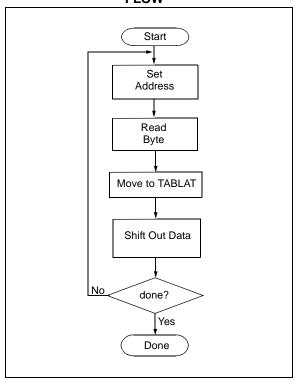


TABLE 4-2: READ DATA EEPROM MEMORY

4-bit Command	Data Payload	Core Instruction		
Step 1: Direct acc	ess to data EEPROM.			
0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS		
Step 2: Set the da	ta EEPROM Address Point	er.		
0000 0000 0000 0000	0E <addr> 6E A9 OE <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>		
Step 3: Initiate a n	nemory read.			
0000	80 A6	BSF EECON1, RD		
Step 4: Load data	Step 4: Load data into the Serial Data Holding register.			
0000 0000 0000 0010	50 A8 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EEDATA, W, 0 MOVWF TABLAT NOP Shift Out Data(1)		

Note 1: The <LSB> is undefined. The <MSB> is the data.

5.0 CONFIGURATION WORD

The PIC18F2XK20/4XK20 devices have several Configuration Words. These bits can be set or cleared to select various device configurations. All other memory areas should be programmed and verified prior to setting Configuration Words. These bits may be read out normally, even after read or code protection. See Table 5-1 for a list of Configuration bits and device IDs and Table 5-3 for the Configuration bit descriptions.

5.1 User ID Locations

A user may store identification information (ID) in eight ID locations mapped in 200000h:200007h. It is recommended that the Most Significant nibble of each ID be Fh. In doing so, if the user code inadvertently tries to execute from the ID space, the ID data will execute as a NOP.

5.2 Device ID Word

The device ID word for the PIC18F2XK20/4XK20 devices is located at 3FFFFEh:3FFFFh. These bits may be used by the programmer to identify what device type is being programmed and read out normally, even after code or read protection. See Table 5-2 for a complete list of device ID values.

FIGURE 5-1: READ DEVICE ID WORD FLOW

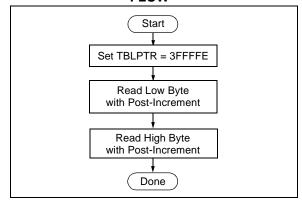


TABLE 5-1: CONFIGURATION BITS AND DEVICE IDs

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed
	1									Value
300001h	CONFIG1H	IESO	FCMEN	_	_	FOSC3	FOSC2	FOSC1	FOSC0	00 0111
300002h	CONFIG2L	_	_	_	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111
300003h	CONFIG2H	_	_		WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111
300005h	CONFIG3H	MCLRE	_	_	_	HFOFST	LPT1OSC	PBADEN	CCP2MX	1 1011
300006h	CONFIG4L	DEBUG	XINST	_	_	_	LVP	_	STVREN	101-1
300008h	CONFIG5L	_	_	_	_	CP3 ⁽¹⁾	CP2 ⁽¹⁾	CP1	CP0	1111
300009h	CONFIG5H	CPD	СРВ	_	_	_	_	_	_	11
30000Ah	CONFIG6L	_	_	_	_	WRT3 ⁽¹⁾	WRT2 ⁽¹⁾	WRT1	WRT0	1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	_	_	_	_	_	111
30000Ch	CONFIG7L	_	_	_	_	EBTR3 ⁽¹⁾	EBTR2 ⁽¹⁾	EBTR1	EBTR0	1111
30000Dh	CONFIG7H	_	EBTRB	_	_	_	_	_	_	-1
3FFFFEh	DEVID1 ⁽²⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table 5-2
3FFFFFh	DEVID2 ⁽²⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table 5-2

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: These bits are only implemented on specific devices. Refer to Section 2.3 "Memory Maps" to determine which bits apply based on available memory.

2: DEVID registers are read-only and cannot be programmed by the user.

TABLE 5-3: PIC18F2XK20/4XK20 BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
WDTEN	CONFIG2H	Watchdog Timer Enable bit
		1 = WDT enabled
		0 = WDT disabled (control is placed on SWDTEN bit)
MCLRE	CONFIG3H	MCLR Pin Enable bit
		1 = MCLR pin enabled, RE3 input pin disabled 0 = RE3 input pin enabled, MCLR pin disabled
LIFOTOT	0001510011	HFINTOSC Fast Start
HFOFST	CONFIG3H	1 = HFINTOSC output is not delayed
		0 = HFINTOSC output is not delayed 0 = HFINTOSC output is delayed until oscillator is stable (IOFS = 1)
LPT1OSC	CONFIG3H	Low-Power Timer1 Oscillator Enable bit
		1 = Timer1 configured for low-power operation
		0 = Timer1 configured for higher power operation
PBADEN	CONFIG3H	PORTB A/D Enable bit
		1 = PORTB A/D<4:0> pins are configured as analog input channels on Reset 0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset
CCP2MX	CONFIG3H	CCP2 MUX bit
		1 = CCP2 input/output is multiplexed with RC1
		0 = CCP2 input/output is multiplexed with RB3
DEBUG	CONFIG4L	Background Debugger Enable bit
		1 = Background debugger disabled, RB6 and RB7 configured as general
		purpose I/O pins 0 = Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit
		Debug
XINST	CONFIG4L	Extended Instruction Set Enable bit
		1 = Instruction set extension and Indexed Addressing mode enabled
		0 = Instruction set extension and Indexed Addressing mode disabled
		(Legacy mode)
LVP	CONFIG4L	Low-Voltage Programming Enable bit
		1 = Low-Voltage Programming enabled, RB5 is the PGM pin 0 = Low-Voltage Programming disabled, RB5 is an I/O pin
STVREN	CONFIG4L	Stack Overflow/Underflow Reset Enable bit
O I VIXLIN	CONTIG4L	1 = Reset on stack overflow/underflow enabled
		0 = Reset on stack overflow/underflow disabled

PIC18F2XK20/4XK20 BIT DESCRIPTIONS (CONTINUED) **TABLE 5-3:**

Bit Name	Configuration Words	Description			
CP3	CONFIG5L	Code Protection bits (Block 3 code memory area) 1 = Block 3 is not code-protected 0 = Block 3 is code-protected			
CP2	CONFIG5L	Code Protection bits (Block 2 code memory area) 1 = Block 2 is not code-protected 0 = Block 2 is code-protected			
CP1	CONFIG5L	Code Protection bits (Block 1 code memory area) 1 = Block 1 is not code-protected 0 = Block 1 is code-protected			
CP0	CONFIG5L	Code Protection bits (Block 0 code memory area) 1 = Block 0 is not code-protected 0 = Block 0 is code-protected			
CPD	CONFIG5H	Code Protection bits (Data EEPROM) 1 = Data EEPROM is not code-protected 0 = Data EEPROM is code-protected			
СРВ	CONFIG5H	Code Protection bits (Boot Block memory area) 1 = Boot Block is not code-protected 0 = Boot Block is code-protected			
WRT3	CONFIG6L	Write Protection bits (Block 3 code memory area) 1 = Block 3 is not write-protected 0 = Block 3 is write-protected			
WRT2	CONFIG6L	Write Protection bits (Block 2 code memory area) 1 = Block 2 is not write-protected 0 = Block 2 is write-protected			
WRT1	CONFIG6L	Write Protection bits (Block 1 code memory area) 1 = Block 1 is not write-protected 0 = Block 1 is write-protected			
WRT0	CONFIG6L	Write Protection bits (Block 0 code memory area) 1 = Block 0 is not write-protected 0 = Block 0 is write-protected			
WRTD	CONFIG6H	Write Protection bit (Data EEPROM) 1 = Data EEPROM is not write-protected 0 = Data EEPROM is write-protected			
WRTB	CONFIG6H	Write Protection bit (Boot Block memory area) 1 = Boot Block is not write-protected 0 = Boot Block is write-protected			
WRTC	CONFIG6H	Write Protection bit (Configuration registers) 1 = Configuration registers are not write-protected 0 = Configuration registers are write-protected			

DS41297F-page 32

TABLE 5-3: PIC18F2XK20/4XK20 BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description			
EBTR3	CONFIG7L	Table Read Protection bit (Block 3 code memory area)			
		 1 = Block 3 is not protected from table reads executed in other blocks 0 = Block 3 is protected from table reads executed in other blocks 			
EBTR2	CONFIG7L	Table Read Protection bit (Block 2 code memory area)			
		 1 = Block 2 is not protected from table reads executed in other blocks 0 = Block 2 is protected from table reads executed in other blocks 			
EBTR1	CONFIG7L	Table Read Protection bit (Block 1 code memory area)			
		 1 = Block 1 is not protected from table reads executed in other blocks 0 = Block 1 is protected from table reads executed in other blocks 			
EBTR0	CONFIG7L	Table Read Protection bit (Block 0 code memory area)			
		 1 = Block 0 is not protected from table reads executed in other blocks 0 = Block 0 is protected from table reads executed in other blocks 			
EBTRB	CONFIG7H	Table Read Protection bit (Boot Block memory area)			
		 1 = Boot Block is not protected from table reads executed in other blocks 0 = Boot Block is protected from table reads executed in other blocks 			
DEV<10:3>	DEVID2	Device ID bits			
		These bits are used with the DEV<2:0> bits in the DEVID1 register to identify part number.			
DEV<2:0>	DEVID1	Device ID bits			
		These bits are used with the DEV<10:3> bits in the DEVID2 register to identify part number.			
REV<4:0>	DEVID1	Revision ID bits			
		These bits are used to indicate the revision of the device.			

TABLE 5-4: CHECKSUM COMPUTATION

Device	Code- Protect	Checksum	Blank Value	0xAA at 0 and Max Address
	None	SUM[0000:01FF]+SUM[0200:0FFF]+SUM[1000:1FFF]+ (CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 03h)+ (CONFIG5H & C0h)+(CONFIG6L & 03h)+(CONFIG6H & E0h)+ (CONFIG7L & 03h)+(CONFIG7H & 40h)	E33Eh	E294h
PIC18FX3K20	Boot Block	SUM[0200:0FFF]+SUM[1000:1FFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 03h)+(CONFIG5H & C0h)+ (CONFIG6L & 03h)+(CONFIG6H & E0h)+(CONFIG7L & 03h)+ (CONFIG7H & 40h)+SUM_ID	E520h	E4C6h
	Boot/ Block 0	F31Fh	F2C5h	
	All	(CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 03h)+ (CONFIG5H & C0h)+(CONFIG6L & 03h)+(CONFIG6H & E0h)+ (CONFIG7L & 03h)+(CONFIG7H & 40h)+SUM_ID	031Dh	0318h
	None	SUM[0000:07FF]+SUM[0800:1FFF]+SUM[2000:3FFF]+ (CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 03h)+ (CONFIG5H & C0h)+(CONFIG6L & 03h)+(CONFIG6H & E0h)+ (CONFIG7L & 03h)+(CONFIG7H & 40h)	C33Eh	C294h
PIC18FX4K20	Boot Block	SUM[0800:1FFF]+SUM[2000:3FFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 03h)+(CONFIG5H & C0h)+ (CONFIG6L & 03h)+(CONFIG6H & E0h)+(CONFIG7L & 03h)+ (CONFIG7H & 40h)+SUM_ID	CB1Eh	CAC4h
	Boot/ Block 0	SUM[2000:3FFF]+(CONFIG1L & 00h)+(CONFIG1H & CFh)+ (CONFIG2L & 1Fh)+(CONFIG2H & 1F)+(CONFIG3L & 00h)+ (CONFIG3H & 8Fh)+(CONFIG4L & C5h)+(CONFIG4H & 00h)+ (CONFIG5L & 03h)+(CONFIG5H & C0h)+(CONFIG6L & 03h)+ (CONFIG6H & E0h)+(CONFIG7L & 03h)+(CONFIG7H & 40h)+SUM_ID	E31Dh	E2C3h
Legend: Item	All	(CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 03h)+ (CONFIG5H & C0h)+(CONFIG6L & 03h)+(CONFIG6H & E0h)+ (CONFIG7L & 03h)+(CONFIG7H & 40h)+SUM_ID	031Bh	0316h

Legend: <u>Item</u> <u>Description</u>

CONFIGx = Configuration Word

SUM[a:b] = Sum of locations, a to b inclusive

SUM_ID = Byte-wise sum of lower four bits of all customer ID locations

+ = Addition & = Bit-wise AND

TABLE 5-4: CHECKSUM COMPUTATION (CONTINUED)

Device	Code- Protect	Checksum	Blank Value	0xAA at 0 and Max Address
	None	SUM[0000:07FF]+SUM[0800:1FFF]+SUM[2000:3FFF]+ SUM[4000:5FFF]+SUM[6000:7FFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 0Fh)+(CONFIG5H & C0h)+ (CONFIG6L & 0Fh)+(CONFIG6H & E0h)+(CONFIG7L & 0Fh)+ (CONFIG7H & 40h)	8362h	82B8h
PIC18FX5K20	Boot Block	SUM[0800:1FFF]+SUM[2000:3FFF]+SUM[4000:5FFF]+SUM[6000:7FFF]+SUM[0800:1FFF]+SUM[6000:7FFF]+SUM[0800:1FFF]+SUM[0800:3FFF]+SUM[4000:5FFF]+SUM[6000:7FFF]+SUM[0800:1FFF]+SUM[08	8B35h	8AEAh
	Boot/ Block 0/ Block 1	SUM[4000:5FFF]+SUM[6000:7FFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 0Fh)+(CONFIG5H & C0h)+ (CONFIG6L & 0Fh)+(CONFIG6H & E0h)+(CONFIG7L & 0Fh)+ (CONFIG7H & 40h)+SUM_ID	C332h	C2E7h
	All	(CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 0Fh)+ (CONFIG5H & C0h)+(CONFIG6L & 0Fh)+(CONFIG6H & E0h)+ (CONFIG7L & 0Fh)+(CONFIG7H & 40h)+SUM_ID	0326h	0330h

 Legend:
 Item
 Description

CONFIGx = Configuration Word

SUM[a:b] = Sum of locations, a to b inclusive

SUM_ID = Byte-wise sum of lower four bits of all customer ID locations

+ = Addition & = Bit-wise AND

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/ VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: 25°C is recommended

Operati	ing Temp	erature: 25°C is recommended				
Param No.	Sym.	Characteristic	Min.	Max.	Units	Conditions
D110	VIHH	High-Voltage Programming Voltage on MCLR/VPP/RE3	VDD + 4.5	9	V	
D110A	VIHL	Low-Voltage Programming Voltage on MCLR/VPP/RE3	1.80	3.60	V	
D111	Vdd	Supply Voltage During Programming	1.80	3.60	V	Row Erase/Write
			2.7	3.60	V	Bulk Erase operations
D112	IPP	Programming Current on MCLR/VPP/RE3	_	300	μΑ	
D113	IDDP	Supply Current During Programming	_	10	mA	
D031	VIL	Input Low Voltage	Vss	0.2 VDD	V	
D041	ViH	Input High Voltage	0.8 VDD	Vdd	V	
D080	Vol	Output Low Voltage	_	0.6	V	IOL = X.X mA @ 2.7V
D090	Vон	Output High Voltage	VDD - 0.7	_	V	IOH = -Y.Y mA @ 2.7V
D012	Сю	Capacitive Loading on I/O pin (PGD)	_	50	pF	To meet AC specifications
P1	TR	MCLR/VPP/RE3 Rise Time to enter Program/Verify mode	_	1.0	μS	(Note 1)
P2	TPGC	Serial Clock (PGC) Period	100		ns	VDD = 3.6V
			1	_	μS	VDD = 1.8V
P2A	TPGCL	Serial Clock (PGC) Low Time	40	_	ns	VDD = 3.6V
			400	_	ns	VDD = 1.8V
P2B	TPGCH	Serial Clock (PGC) High Time	40	_	ns	VDD = 3.6V
			400	_	ns	VDD = 1.8V
P3	TSET1	Input Data Setup Time to Serial Clock ↓	15	_	ns	
P4	THLD1	Input Data Hold Time from PGC \downarrow	15	_	ns	
P5	TDLY1	Delay between 4-bit Command and Command Operand	40	_	ns	
P5A	TDLY1A	Delay between 4-bit Command Operand and next 4-bit Command	40	_	ns	
P6	TDLY2	Delay between Last PGC ↓ of Command Byte to First PGC ↑ of Read of Data Word	20	_	ns	
P9	TDLY5	PGC High Time (minimum programming time)	1	_	ms	Externally Timed
P9A	TDLY5A	PGC High Time	5		ms	Configuration Word programming time
P10	TDLY6	PGC Low Time after Programming (high-voltage discharge time)	200	_	μS	
P11	TDLY7	Delay to allow Self-Timed Data Write or Bulk Erase to occur	5	_	ms	
P11A	TDRWT	Data Write Polling Time	4	_	ms	
			•	•		

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH; this can cause spurious program executions to occur. The maximum transition time is:

¹ TCY + TPWRT (if enabled) + 1024 ToSC (for LP, HS, HS/PLL and XT modes only) + 2 ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only) where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and ToSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/ VERIFY TEST MODE (CONTINUED)

Standard Operating Conditions

Operating Temperature: 25°C is recommended

•						
Param No.	Sym.	Characteristic	Min.	Max.	Units	Conditions
P12	THLD2	Input Data Hold Time from MCLR/VPP/RE3↑	2	_	μS	
P13	TSET2	VDD ↑ Setup Time to MCLR/VPP/RE3 ↑	100	_	ns	
P14	TVALID	Data Out Valid from PGC ↑	10	_	ns	
P15	TSET3	PGM ↑ Setup Time to MCLR/VPP/RE3 ↑	2	_	μS	
P16	TDLY8	Delay between Last PGC \downarrow and $\overline{\text{MCLR}}/\text{VPP/RE3} \downarrow$	0	_	s	
P17	THLD3	MCLR/VPP/RE3 ↓ to VDD ↓	_	100	ns	
P18	THLD4	MCLR/VPP/RE3 ↓ to PGM ↓	0	_	s	
P19	THIZ	Delay from PGC ↑ to PGD High-Z	3	10	nS	
P20	TPPDP	Hold time after VPP changes	5	_	μS	

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH; this can cause spurious program executions to occur. The maximum transition time is:

¹ TCY + TPWRT (if enabled) + 1024 ToSC (for LP, HS, HS/PLL and XT modes only) + 2 ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only) where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and ToSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca. IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2401-1200

Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung

Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen

Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

03/26/09