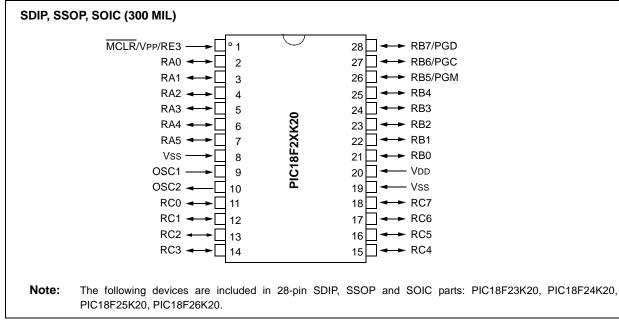


Welcome to E-XFL.COM

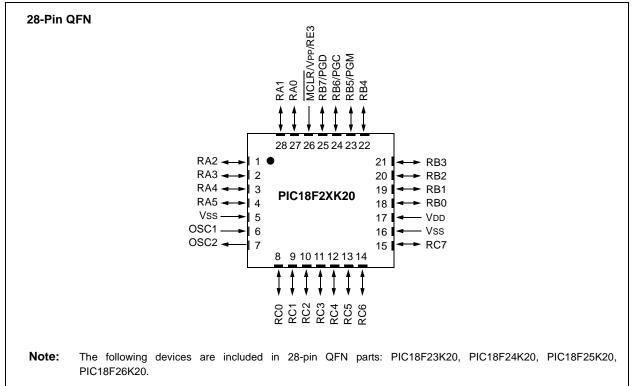
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

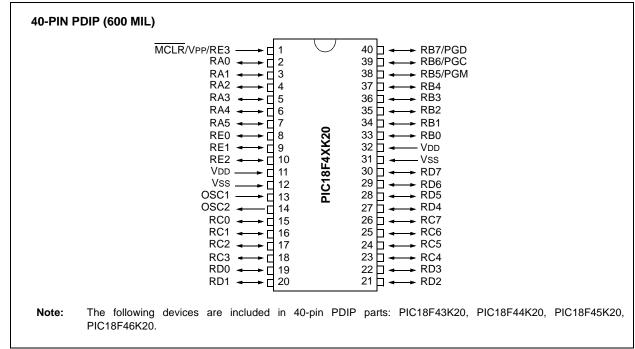
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active	
Core Processor	PIC	
Core Size	8-Bit	
Speed	48MHz	
Connectivity	I²C, SPI, UART/USART	
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT	
Number of I/O	35	
Program Memory Size	8KB (4K x 16)	
Program Memory Type	FLASH	
EEPROM Size	256 x 8	
RAM Size	512 x 8	
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V	
Data Converters	A/D 14x10b	
Oscillator Type	Internal	
Operating Temperature	-40°C ~ 125°C (TA)	
Mounting Type	Through Hole	
Package / Case	40-DIP (0.600", 15.24mm)	
Supplier Device Package	40-PDIP	
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f43k20-e-p	


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


FIGURE 2-1: 28-PIN SDIP, SSOP AND SOIC PIN DIAGRAMS

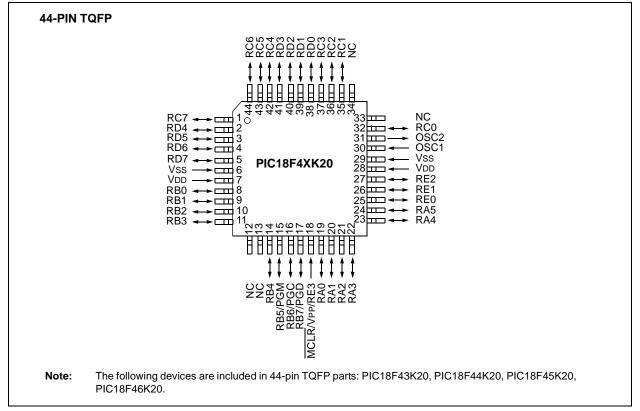
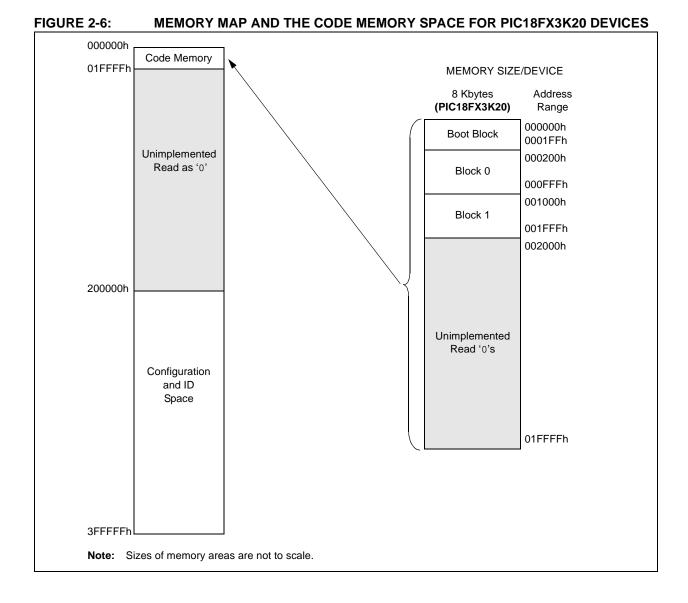


FIGURE 2-3: 40-PIN PDIP PIN DIAGRAMS

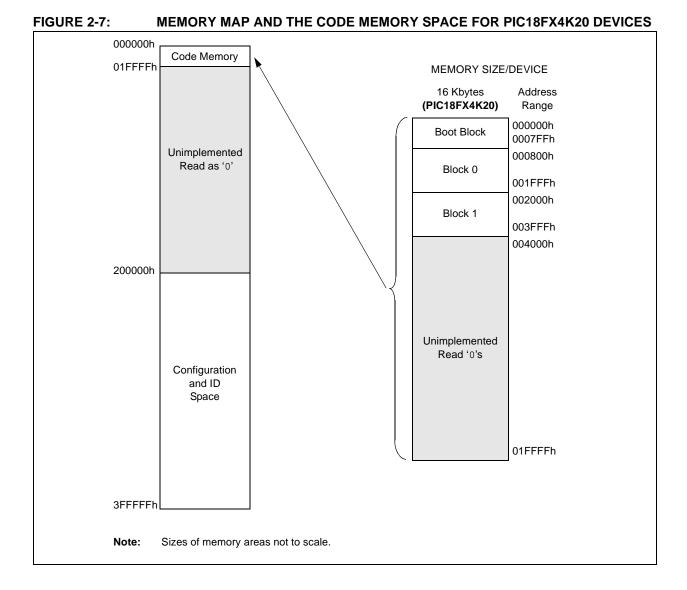
FIGURE 2-4: 44-PIN TQFP PIN DIAGRAMS



2.3 Memory Maps

For the PIC18FX3K20 devices, the code memory space extends from 0000h to 01FFFh (8 Kbytes) in two 4-Kbyte blocks. Addresses 0000h through 01FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-2:IMPLEMENTATION OF CODE
MEMORY


Device	Code Memory Size (Bytes)
PIC18F23K20	
PIC18F43K20	000000h-001FFFh (8K)

For PIC18FX4K20 devices, the code memory space extends from 000000h to 003FFFh (16 Kbytes) in two 8-Kbyte blocks. Addresses 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

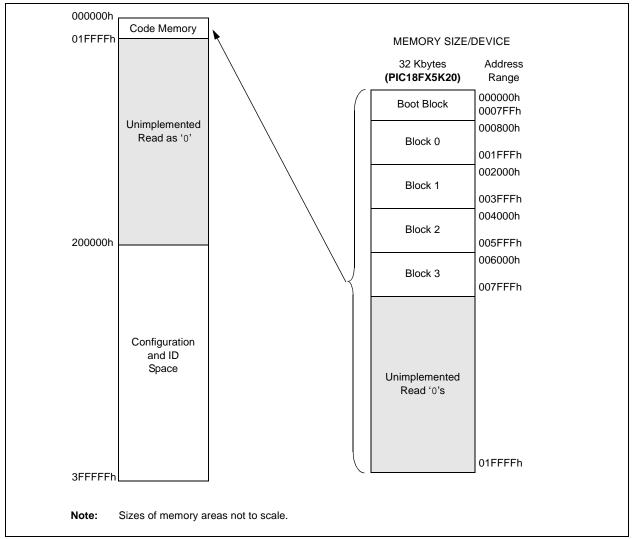
TABLE 2-3:IMPLEMENTATION OF CODE
MEMORY

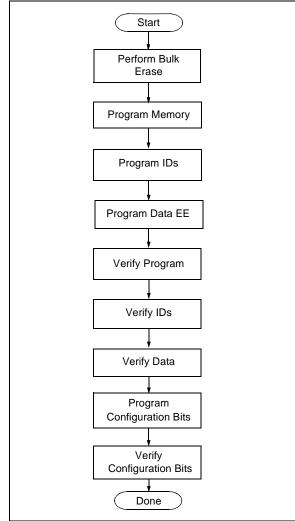
Device	Code Memory Size (Bytes)	
PIC18F24K20	000000h 002EEEh (16K)	
PIC18F44K20	- 000000h-003FFFh (16K)	

For PIC18FX5K20 devices, the code memory space extends from 000000h to 007FFFh (32 Kbytes) in four 8-Kbyte blocks. Addresses 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-4:IMPLEMENTATION OF CODE
MEMORY

Device	Code Memory Size (Bytes)
PIC18F25K20	000000h-007FFFh (32K)
PIC18F45K20	00000011-007FFFI (32K)



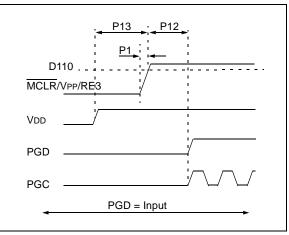

FIGURE 2-8: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX5K20 DEVICES

© 2009 Microchip Technology Inc.

2.4 High-Level Overview of the Programming Process

Figure 2-11 shows the high-level overview of the programming process. First, a Bulk Erase is performed. Next, the code memory, ID locations and data EEPROM are programmed. These memories are then verified to ensure that programming was successful. If no errors are detected, the Configuration bits are then programmed and verified.

FIGURE 2-11: HIGH-LEVEL PROGRAMMING FLOW



2.5 Entering and Exiting High-Voltage ICSP Program/Verify Mode

As shown in Figure 2-12, the High-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low and then raising MCLR/VPP/RE3 to VIHH (high voltage). Once in this mode, the code memory, data EEPROM, ID locations and Configuration bits can be accessed and programmed in serial fashion. Figure 2-13 shows the exit sequence.

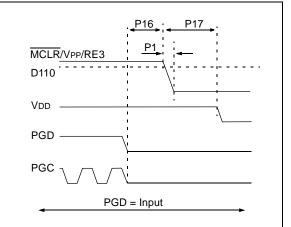

The sequence that enters the device into the Program/ Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-12: ENTERING HIGH-VOLTAGE PROGRAM/VERIFY MODE

FIGURE 2-13:

EXITING HIGH-VOLTAGE PROGRAM/VERIFY MODE

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the EECON1 register must be configured in order to operate on a particular memory region.

When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7> = 1) and the CFGS bit must be cleared (EECON1<6> = 0). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort (e.g., erases) and this must be done prior to initiating a write sequence. The FREE bit must be set (EECON1<4> = 1) in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit (EECON1<1> = 1). It is strongly recommended that the WREN bit only be set immediately prior to a program or erase.

3.1 ICSP Erase

3.1.1 HIGH-VOLTAGE ICSP BULK ERASE

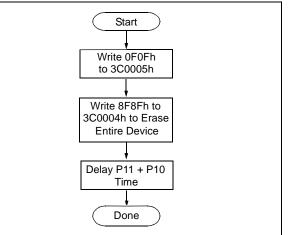
Erasing code or data EEPROM is accomplished by configuring two Bulk Erase Control registers located at 3C0004h and 3C0005h. Code memory may be erased portions at a time, or the user may erase the entire device in one action. Bulk Erase operations will also clear any code-protect settings associated with the memory block erased. Erase options are detailed in Table 3-1. If data EEPROM is code-protected (CPD = 0), the user must request an erase of data EEPROM (e.g., 0084h as shown in Table 3-1).

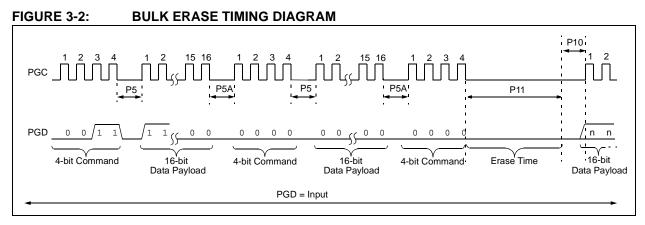
Description	Data (3C0005h:3C0004h)
Chip Erase	0F8Fh
Erase User ID	0088h
Erase Data EEPROM	0084h
Erase Boot Block	0081h
Erase Config Bits	0082h
Erase Code EEPROM Block 0	0180h
Erase Code EEPROM Block 1	0280h
Erase Code EEPROM Block 2	0480h
Erase Code EEPROM Block 3	0880h

TABLE 3-1: BULK ERASE OPTIONS

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (parameter P11). During this time, PGC may continue to toggle but PGD must be held low.

The code sequence to erase the entire device is shown in Table 3-2 and the flowchart is shown in Figure 3-1.


Note: A Bulk Erase is the only way to reprogram code-protect bits from an "on" state to an "off" state.


TABLE 3-2: BULK ERASE COMMAND SEQUENCE

4-Bit	4-Bit Data		
Command	Payload	Core Instruction	
0000	0E 3C	MOVLW 3Ch	
0000	6E F8	MOVWF TBLPTRU	
0000	0E 00	MOVLW 00h	
0000	6E F7	MOVWF TBLPTRH	
0000	0E 05	MOVLW 05h	
0000	6E F6	MOVWF TBLPTRL	
1100	0F 0F	Write OFh to 3C0005h	
0000	0E 3C	MOVLW 3Ch	
0000	6E F8	MOVWF TBLPTRU	
0000	0E 00	MOVLW 00h	
0000	6E F7	MOVWF TBLPTRH	
0000	0E 04	MOVLW 04h	
0000	6E F6	MOVWF TBLPTRL	
1100	8F 8F	Write 8F8Fh TO 3C0004h to erase entire device.	
0000	00 00	NOP	
0000	00 00	Hold PGD low until erase completes.	

FIGURE 3-1:

BULK ERASE FLOW

3.1.2 LOW-VOLTAGE ICSP BULK ERASE

When using low-voltage ICSP, the part must be supplied by the voltage specified in parameter D111 if a Bulk Erase is to be executed. All other Bulk Erase details as described above apply.

If it is determined that a program memory erase must be performed at a supply voltage below the Bulk Erase limit, refer to the erase methodology described in Section 3.1.3 "ICSP Row Erase" and Section 3.2.1 "Modifying Code Memory".

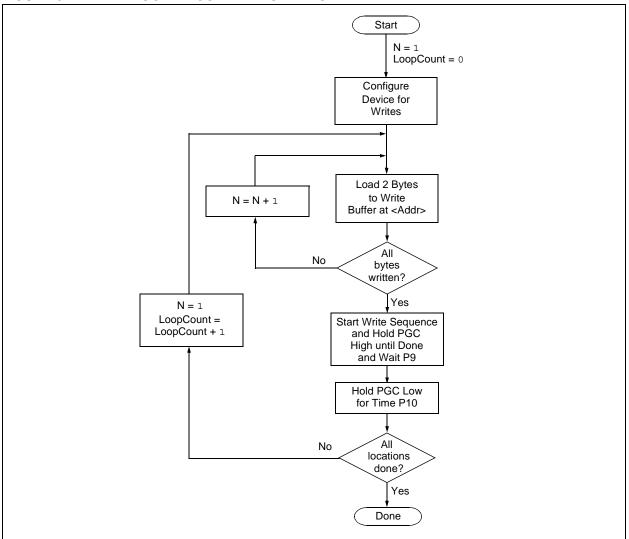
If it is determined that a data EEPROM erase must be performed at a supply voltage below the Bulk Erase limit, follow the methodology described in **Section 3.3** "**Data EEPROM Programming**" and write '1's to the array.

3.1.3 ICSP ROW ERASE

Regardless of whether high or low-voltage ICSP is used, it is possible to erase one row (64 bytes of data), provided the block is not code or write-protected. Rows are located at static boundaries beginning at program memory address 000000h, extending to the internal program memory limit (see **Section 2.3 "Memory Maps"**).

The Row Erase duration is self-timed. After the WR bit in EECON1 is set, two NOPs are issued. Erase starts upon the 4th PGC of the second NOP. It ends when the WR bit is cleared by hardware.

The code sequence to Row Erase a PIC18F2XK20/ 4XK20 device is shown in Table 3-3. The flowchart shown in Figure 3-3 depicts the logic necessary to completely erase a PIC18F2XK20/4XK20 device. The timing diagram for Row Erase is identical to the data EEPROM write timing shown in Figure 3-7.


Note: The TBLPTR register can point at any byte within the row intended for erase.

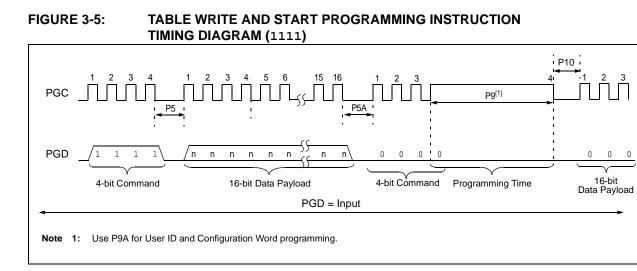

4-bit CommandData PayloadStep 1: Direct access to code memory and enable writes.00008E A600009C A600009C A6000084 A6000085FStep 2: Point to First row in code memory.	Core Instruction		
0000 8E A6 BSF EECON1, EEPGD 0000 9C A6 BCF EECON1, CFGS 0000 84 A6 BSF EECON1, WREN			
0000 9C A6 BCF EECON1, CFGS 0000 84 A6 BSF EECON1, WREN			
Step 2: Point to first row in code memory.			
	Step 2: Point to first row in code memory.		
0000 6A F8 CLRF TBLPTRU 0000 6A F7 CLRF TBLPTRH 0000 6A F6 CLRF TBLPTRL			
Step 3: Enable erase and erase single row.			
0000 88 A6 BSF EECON1, FREE 0000 82 A6 BSF EECON1, WR 0000 00 00 NOP 0000 00 00 NOP	on the 4th clock of this instruction		
Step 4: Poll WR bit. Repeat until bit is clear.			
0000 50 A6 MOVF EECON1, W, 0 0000 6E F5 MOVWF TABLAT 0000 00 00 NOP 0010 <msb><lsb> Shift out data⁽¹⁾</lsb></msb>			
Step 5: Hold PGC low for time P10.			
Step 6: Repeat step 3 with Address Pointer incremented by 64 ur	ntil all rows are erased.		
Step 7: Disable writes.			
0000 94 A6 BCF EECON1, WREN			

TABLE 3-3: ERASE CODE MEMORY CODE SEQUENC

Note 1: See Figure 4-4 for details on shift out data timing.

3.2.1 MODIFYING CODE MEMORY

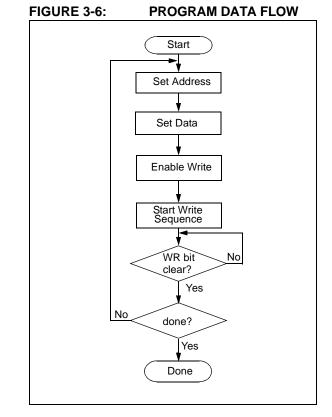
The previous programming example assumed that the device has been Bulk Erased prior to programming (see **Section 3.1.1 "High-Voltage ICSP Bulk Erase"**). It may be the case, however, that the user wishes to modify only a section of an already programmed device.

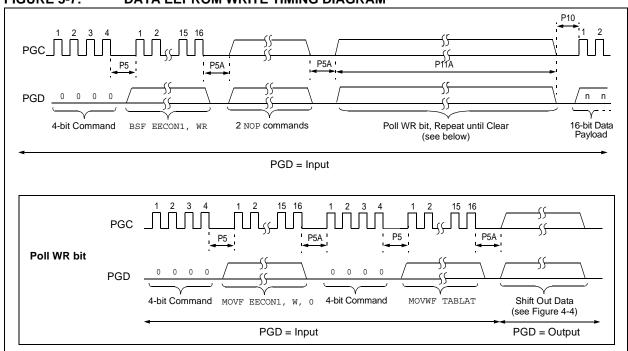
The appropriate number of bytes required for the erase buffer must be read out of code memory (as described in **Section 4.2 "Verify Code Memory and ID Locations**") and buffered. Modifications can be made on this buffer. Then, the block of code memory that was read out must be erased and rewritten with the modified data.

The WREN bit must be set if the WR bit in EECON1 is used to initiate a write sequence.

4-bit Command	Data Payload	Core Instruction	
Step 1: Direct acc	ess to code memory.		
0000	8E A6	BSF EECON1, EEPGD	
0000	9C A6	BCF EECON1, CFGS	
Step 2: Read code	e memory into buffer (Section	on 4.1 "Read Code Memory, ID Locations and Configuration Bits").	
Step 3: Set the Ta	ble Pointer for the block to b	pe erased.	
0000	0E <addr[21:16]></addr[21:16]>	MOVLW <addr[21:16]></addr[21:16]>	
0000	6E F8	MOVWF TBLPTRU	
0000	0E <addr[8:15]></addr[8:15]>	MOVLW <addr[8:15]></addr[8:15]>	
0000	6E F7	MOVWF TBLPTRH	
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>	
0000	6E F6	MOVWF TBLPTRL	
Step 4: Enable me	emory writes and setup an e	rase.	
0000	84 A6	BSF EECON1, WREN	
0000	88 A6	BSF EECON1, FREE	
Step 5: Initiate era	ise.		
0000	88 A6	BSF EECON1, FREE	
0000	82 A6	BSF EECON1, WR	
0000	00 00	NOP	
0000	00 00	NOP Erase starts on the 4th clock of this instruction	
Step 6: Poll WR b	it. Repeat until bit is clear.	•	
0000	50 A6	MOVF EECON1, W, 0	
0000	6E F5	MOVWF TABLAT	
0000	00 00	NOP	
0000	<msb><lsb></lsb></msb>	Shift out data ⁽¹⁾	
Step 7: Load write	buffer. The correct bytes w	ill be selected based on the Table Pointer.	
0000	0E <addr[21:16]></addr[21:16]>	MOVLW <addr[21:16]></addr[21:16]>	
0000	6E F8	MOVWF TBLPTRU	
0000	0E <addr[8:15]></addr[8:15]>	MOVLW <addr[8:15]></addr[8:15]>	
0000	6E F7	MOVWF TBLPTRH	
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>	
0000	6E F6	MOVWF TBLPTRL	
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.	
•	•	-	
•	•	Repeat as many times as necessary to fill the write buffer	
•	•	Write 2 bytes and start programming.	
1111	<msb><lsb></lsb></msb>	NOP - hold PGC high for time P9 and low for time P10.	
0000	00 00		
To continue modifying data, repeat Steps 2 through 6, where the Address Pointer is incremented by the appropriate number of bytes (see Table 3-4) at each iteration of the loop. The write cycle must be repeated enough times to completely rewrite the contents of the erase buffer.			
Step 8: Disable wi	rites.		
0000	94 A6	BCF EECON1, WREN	

TABLE 3-6: MODIFYING CODE MEMORY


3.3 Data EEPROM Programming


Data EEPROM is accessed one byte at a time via an Address Pointer (register pair EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is written by loading EEADRH:EEADR with the desired memory location, EEDATA with the data to be written and initiating a memory write by appropriately configuring the EECON1 register. A byte write automatically erases the location and writes the new data (erase-before-write).

When using the EECON1 register to perform a data EEPROM write, both the EEPGD and CFGS bits must be cleared (EECON1<7:6> = 00). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort and this must be done prior to initiating a write sequence. The write sequence is initiated by setting the WR bit (EECON1<1> = 1).

The write begins on the falling edge of the 24th PGC after the WR bit is set. It ends when the WR bit is cleared by hardware.

After the programming sequence terminates, PGC must be held low for the time specified by parameter P10 to allow high-voltage discharge of the memory array.

FIGURE 3-7: DATA EEPROM WRITE TIMING DIAGRAM

4-bit Command	Data Payload	Core Instruction		
Step 1: Direct a	Step 1: Direct access to data EEPROM.			
0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS		
Step 2: Set the data EEPROM Address Pointer.				
0000 0000 0000 0000	0E <addr> 6E A9 OE <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>		
Step 3: Load the data to be written.				
0000	0E <data> 6E A8</data>	MOVLW <data> MOVWF EEDATA</data>		
Step 4: Enable memory writes.				
0000	84 A6	BSF EECON1, WREN		
Step 5: Initiate write.				
0000 0000 0000	82 A6 00 00 00 00	BSF EECON1, WR NOP NOP ;write starts on 4th clock of this instruction		
Step 6: Poll WR	bit, repeat until the bit is	clear.		
0000 0000 0000 0010	50 A6 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EECON1, W, 0 MOVWF TABLAT NOP Shift out data ⁽¹⁾		
Step 7: Hold PGC low for time P10.				
Step 8: Disable	writes.			
0000	94 A6	BCF EECON1, WREN		
Repeat steps 2 through 8 to write more data.				

TABLE 3-7: PROGRAMMING DATA MEMORY

Note 1: See Figure 4-4 for details on shift out data timing.

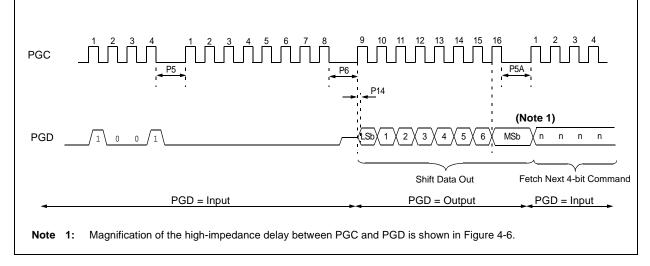
4.0 READING THE DEVICE

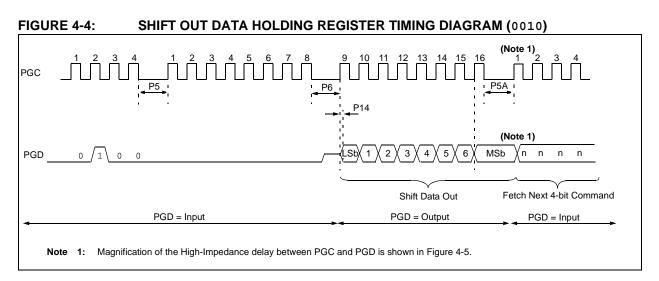
4.1 Read Code Memory, ID Locations and Configuration Bits

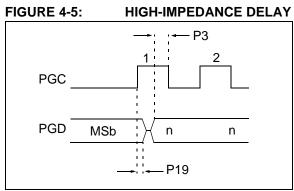
Code memory is accessed one byte at a time via the 4-bit command, '1001' (table read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH:TBLPTRL) are serially output on PGD.

The 4-bit command is shifted in LSb first. The read is executed during the next 8 clocks, then shifted out on PGD during the last 8 clocks, LSb to MSb. A delay of P6 must be introduced after the falling edge of the 8th

TABLE 4-1:	READ CODE MEMORY SEQUENCE
------------	---------------------------


PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.


This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to the reading of the ID and Configuration registers.

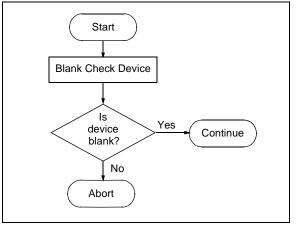

Note: When table read protection is enabled, the first read access to a protected block should be discarded and the read repeated to retrieve valid data. Subsequent reads of the same block can be performed normally.

4-bit Command	Data Payload	Core Instruction	
Step 1: Set Tabl	Step 1: Set Table Pointer		
0000	0E <addr[21:16]></addr[21:16]>	MOVLW Addr[21:16]	
0000	6E F8	MOVWF TBLPTRU	
0000	0E <addr[15:8]></addr[15:8]>	MOVLW <addr[15:8]></addr[15:8]>	
0000	6E F7	MOVWF TBLPTRH	
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>	
0000	6E F6	MOVWF TBLPTRL	
Step 2: Read memory and then shift out on PGD, LSb to MSb			
1001	00 00	TBLRD *+	

FIGURE 4-1: TABLE READ POST-INCREMENT INSTRUCTION TIMING DIAGRAM (1001)

4.5 Verify Data EEPROM

A data EEPROM address may be read via a sequence of core instructions (4-bit command, '0000') and then output on PGD via the 4-bit command, '0010' (TABLAT register). The result may then be immediately compared to the appropriate data in the programmer's memory for verification. Refer to **Section 4.4 "Read Data EEPROM Memory"** for implementation details of reading data EEPROM.


4.6 Blank Check

The term "Blank Check" means to verify that the device has no programmed memory cells. All memories must be verified: code memory, data EEPROM, ID locations and Configuration bits. The device ID registers (3FFFFEh:3FFFFFh) should be ignored.

A "blank" or "erased" memory cell will read as a '1'. Therefore, Blank Checking a device merely means to verify that all bytes read as FFh except the Configuration bits. Unused (reserved) Configuration bits will read '0' (programmed). Refer to Table 5-1 for blank configuration expect data for the various PIC18F2XK20/ 4XK20 devices.

Given that Blank Checking is merely code and data EEPROM verification with FFh expect data, refer to Section 4.4 "Read Data EEPROM Memory" and Section 4.2 "Verify Code Memory and ID Locations" for implementation details.

Bit Name	Configuration Words	Description		
CP3	CONFIG5L	Code Protection bits (Block 3 code memory area)		
		1 = Block 3 is not code-protected		
		0 = Block 3 is code-protected		
· · · ·		Code Protection bits (Block 2 code memory area)		
		1 = Block 2 is not code-protected		
0.54		0 = Block 2 is code-protected		
CP1	CONFIG5L	Code Protection bits (Block 1 code memory area)		
		 1 = Block 1 is not code-protected 0 = Block 1 is code-protected 		
CDO				
CP0	CONFIG5L	Code Protection bits (Block 0 code memory area)		
		 1 = Block 0 is not code-protected 0 = Block 0 is code-protected 		
CPD	CONFIG5H	Code Protection bits (Data EEPROM)		
	001110011	1 = Data EEPROM is not code-protected		
		0 = Data EEPROM is code-protected		
СРВ	CONFIG5H	Code Protection bits (Boot Block memory area)		
		1 = Boot Block is not code-protected		
		0 = Boot Block is code-protected		
WRT3	CONFIG6L	Write Protection bits (Block 3 code memory area)		
		1 = Block 3 is not write-protected		
		0 = Block 3 is write-protected		
WRT2	CONFIG6L	Write Protection bits (Block 2 code memory area)		
		1 = Block 2 is not write-protected		
		0 = Block 2 is write-protected		
WRT1	CONFIG6L	Write Protection bits (Block 1 code memory area)		
		1 = Block 1 is not write-protected		
		0 = Block 1 is write-protected		
WRT0	CONFIG6L	Write Protection bits (Block 0 code memory area)		
		1 = Block 0 is not write-protected		
MOTO		0 = Block 0 is write-protected		
WRTD	CONFIG6H	Write Protection bit (Data EEPROM)		
		 1 = Data EEPROM is not write-protected 0 = Data EEPROM is write-protected 		
WRTB	CONFIG6H	Write Protection bit (Boot Block memory area)		
	CONFIGUR	1 = Boot Block is not write-protected		
		0 = Boot Block is write-protected		
WRTC	CONFIG6H	Write Protection bit (Configuration registers)		
-		1 = Configuration registers are not write-protected		
		0 = Configuration registers are write-protected		

TABLE 5-3: PIC18F2XK20/4XK20 BIT DESCRIPTIONS (CONTINUED)

TABLE 3-3: PICTOFZAR20/4AR20 BIT DESCRIPTIONS (CONTINUED)						
Bit Name Configuration Words		Description				
EBTR3	CONFIG7L	Table Read Protection bit (Block 3 code memory area)				
		 1 = Block 3 is not protected from table reads executed in other blocks 0 = Block 3 is protected from table reads executed in other blocks 				
EBTR2	2 CONFIG7L Table Read Protection bit (Block 2 code memory area)					
		 1 = Block 2 is not protected from table reads executed in other blocks 0 = Block 2 is protected from table reads executed in other blocks 				
EBTR1	CONFIG7L	Table Read Protection bit (Block 1 code memory area)				
		 1 = Block 1 is not protected from table reads executed in other blocks 0 = Block 1 is protected from table reads executed in other blocks 				
EBTR0	CONFIG7L	Table Read Protection bit (Block 0 code memory area)				
		 1 = Block 0 is not protected from table reads executed in other blocks 0 = Block 0 is protected from table reads executed in other blocks 				
EBTRB	CONFIG7H	Table Read Protection bit (Boot Block memory area)				
		 1 = Boot Block is not protected from table reads executed in other blocks 0 = Boot Block is protected from table reads executed in other blocks 				
DEV<10:3>	DEVID2	Device ID bits				
		These bits are used with the DEV<2:0> bits in the DEVID1 register to identify part number.				
DEV<2:0>	DEVID1	Device ID bits				
		These bits are used with the DEV<10:3> bits in the DEVID2 register to identify part number.				
REV<4:0>	DEVID1	Revision ID bits				
		These bits are used to indicate the revision of the device.				

TABLE 5-3: PIC18F2XK20/4XK20 BIT DESCRIPTIONS (CONTINUED)

.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/ VERIFY TEST MODE

Derem						
Param No.	Sym.	Characteristic	Min.	Max.	Units	Conditions
D110	Vінн	High-Voltage Programming Voltage on MCLR/Vpp/RE3	Vdd + 4.5	9	V	
D110A	VIHL	Low-Voltage Programming Voltage on MCLR/VPP/RE3	1.80	3.60	V	
D111	Vdd	Supply Voltage During Programming	1.80	3.60	V	Row Erase/Write
			2.7	3.60	V	Bulk Erase operations
D112	IPP	Programming Current on MCLR/VPP/RE3	_	300	μΑ	
D113	IDDP	Supply Current During Programming	_	10	mA	
D031	VIL	Input Low Voltage	Vss	0.2 Vdd	V	
D041	Vih	Input High Voltage	0.8 Vdd	Vdd	V	
D080	Vol	Output Low Voltage	—	0.6	V	IOL = X.X mA @ 2.7V
D090	Vон	Output High Voltage	Vdd - 0.7	_	V	IOH = -Y.Y mA @ 2.7V
D012	Сю	Capacitive Loading on I/O pin (PGD)	—	50	pF	To meet AC specifications
		I				
P1	Tr	MCLR/VPP/RE3 Rise Time to enter Program/Verify mode	_	1.0	μS	(Note 1)
P2	TPGC	Serial Clock (PGC) Period	100	—	ns	VDD = 3.6V
			1		μS	VDD = 1.8V
P2A TPG	TPGCL	Serial Clock (PGC) Low Time	40		ns	VDD = 3.6V
			400	—	ns	VDD = 1.8V
P2B T	TPGCH	Serial Clock (PGC) High Time	40	—	ns	VDD = 3.6V
			400	—	ns	VDD = 1.8V
P3	TSET1	Input Data Setup Time to Serial Clock \downarrow	15	—	ns	
P4	THLD1	Input Data Hold Time from PGC \downarrow	15	—	ns	
P5	TDLY1	Delay between 4-bit Command and Command Operand	40	_	ns	
P5A	TDLY1A	Delay between 4-bit Command Operand and next 4-bit Command	40	—	ns	
P6	TDLY2	Delay between Last PGC \downarrow of Command Byte to First PGC \uparrow of Read of Data Word	20	—	ns	
P9	TDLY5	PGC High Time (minimum programming time)	1	—	ms	Externally Timed
P9A	TDLY5A	PGC High Time	5		ms	Configuration Word programming time
P10	Tdly6	PGC Low Time after Programming (high-voltage discharge time)	200	—	μS	
P11	Tdly7	Delay to allow Self-Timed Data Write or Bulk Erase to occur	5	_	ms	
P11A	TDRWT	Data Write Polling Time	4	_	ms	

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH; this can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) + 2 ms (for HS/PLL mode only) + 1.5 μs (for EC mode only) where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and Tosc is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/ VERIFY TEST MODE (CONTINUED)

	Standard Operating Conditions Operating Temperature: 25°C is recommended								
Param No.	Sym.	Characteristic	Min.	Max.	Units	Conditions			
P12	THLD2	Input Data Hold Time from MCLR/VPP/RE3 ↑	2	—	μS				
P13	TSET2	VDD ↑ Setup Time to MCLR/VPP/RE3 ↑	100	—	ns				
P14	TVALID	Data Out Valid from PGC \uparrow	10	—	ns				
P15	TSET3	PGM [↑] Setup Time to MCLR/VPP/RE3 [↑]	2	—	μS				
P16	TDLY8	Delay between Last PGC \downarrow and $\overline{MCLR}/VPP/RE3\downarrow$	0	—	S				
P17	Thld3	MCLR/VPP/RE3 ↓ to VDD ↓	—	100	ns				
P18	THLD4	MCLR/VPP/RE3 ↓ to PGM ↓	0	_	S				
P19	Thiz	Delay from PGC ↑ to PGD High-Z	3	10	nS				
P20	TPPDP	Hold time after VPP changes	5	_	μS				

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH; this can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) + 2 ms (for HS/PLL mode only) + 1.5 μs (for EC mode only) where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and Tosc is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

Advance Information