

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

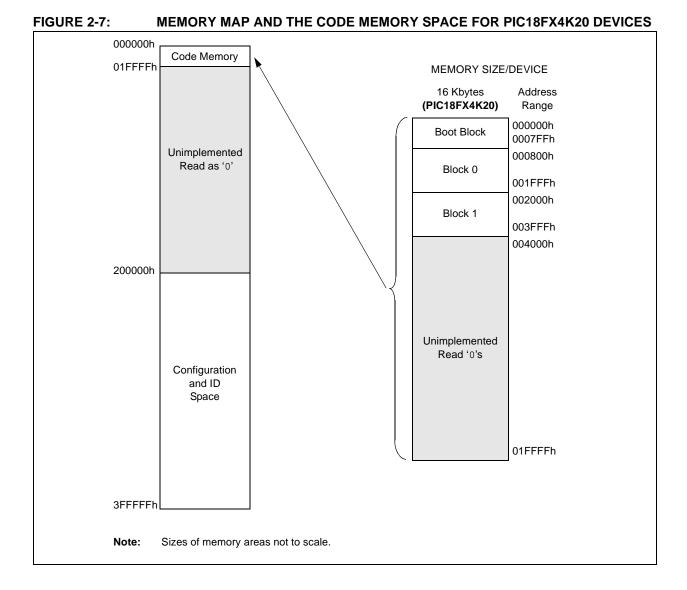
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active	
Core Processor	PIC	
Core Size	8-Bit	
Speed	48MHz	
Connectivity	I ² C, SPI, UART/USART	
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT	
Number of I/O	35	
Program Memory Size	8KB (4K x 16)	
Program Memory Type	FLASH	
EEPROM Size	256 x 8	
RAM Size	512 x 8	
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V	
Data Converters	A/D 14x10b	
Oscillator Type	Internal	
Operating Temperature	-40°C ~ 125°C (TA)	
Mounting Type	Surface Mount	
Package / Case	44-TQFP	
Supplier Device Package	44-TQFP (10x10)	
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f43k20-e-pt	

Email: info@E-XFL.COM

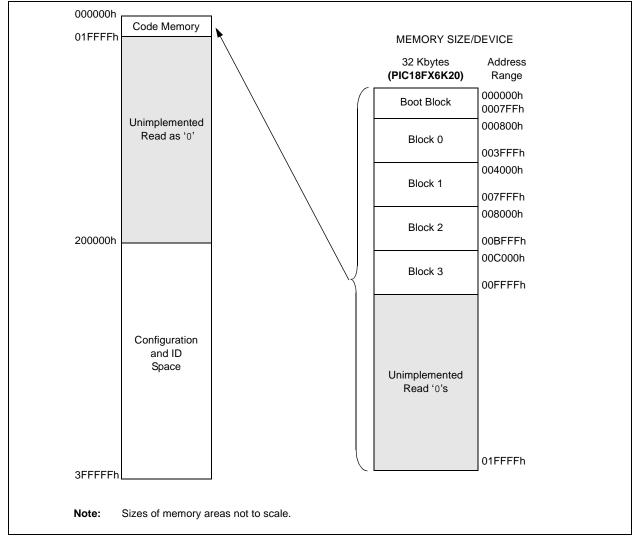

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18F2XK20/4XK20

For PIC18FX4K20 devices, the code memory space extends from 000000h to 003FFFh (16 Kbytes) in two 8-Kbyte blocks. Addresses 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-3:IMPLEMENTATION OF CODE
MEMORY

Device	Code Memory Size (Bytes)	
PIC18F24K20	000000h 002EEEh (16K)	
PIC18F44K20	000000h-003FFFh (16K)	



PIC18F2XK20/4XK20

For PIC18FX6K20 devices, the code memory space extends from 000000h to 00FFFFh (64 Kbytes) in four 16-Kbyte blocks. Addresses 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-5:IMPLEMENTATION OF CODE
MEMORY

Device	Code Memory Size (Bytes)	
PIC18F26K20		
PIC18F46K20	000000h-00FFFFh (64K)	

2.6 Entering and Exiting Low-Voltage ICSP Program/Verify Mode

When the LVP Configuration bit is '1' (see Section 5.3 "Single-Supply ICSP Programming"), the Low-Voltage ICSP mode is enabled. As shown in Figure 2-14, Low-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low, placing a logic high on PGM and then raising MCLR/VPP/RE3 to VIH. In this mode, the RB5/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. Figure 2-15 shows the exit sequence.

The sequence that enters the device into the Program/ Verify mode places all unused I/Os in the high-impedance state.

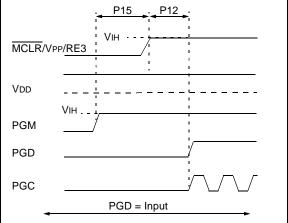
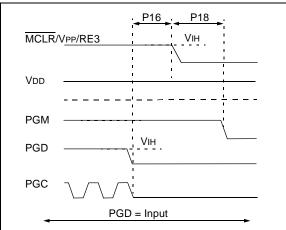



FIGURE 2-15:

EXITING LOW-VOLTAGE PROGRAM/VERIFY MODE

2.7 Serial Program/Verify Operation

The PGC pin is used as a clock input pin and the PGD pin is used for entering command bits and data input/ output during serial operation. Commands and data are transmitted on the rising edge of PGC, latched on the falling edge of PGC and are Least Significant bit (LSb) first.

2.7.1 4-BIT COMMANDS

All instructions are 20 bits, consisting of a leading 4-bit command followed by a 16-bit operand, which depends on the type of command being executed. To input a command, PGC is cycled four times. The commands needed for programming and verification are shown in Table 2-6.

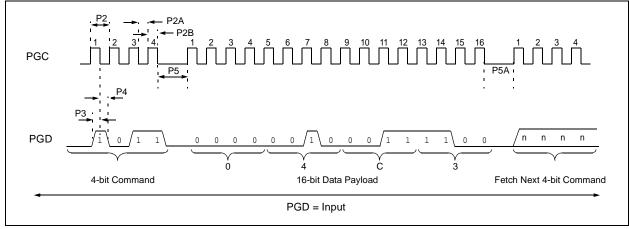
Depending on the 4-bit command, the 16-bit operand represents 16 bits of input data or 8 bits of input data and 8 bits of output data.

Throughout this specification, commands and data are presented as illustrated in Table 2-7. The 4-bit command is shown Most Significant bit (MSb) first. The command operand, or "Data Payload", is shown <MSB><LSB>. Figure 2-16 demonstrates how to serially present a 20-bit command/operand to the device.

2.7.2 CORE INSTRUCTION

The core instruction passes a 16-bit instruction to the CPU core for execution. This is needed to set up registers as appropriate for use with other commands.

TABLE 2-6: COMMANDS FOR PROGRAMMING


Description	4-Bit Command
Core Instruction (Shift in16-bit instruction)	0000
Shift out TABLAT register	0010
Table Read	1000
Table Read, post-increment	1001
Table Read, post-decrement	1010
Table Read, pre-increment	1011
Table Write	1100
Table Write, post-increment by 2	1101
Table Write, start programming, post-increment by 2	1110
Table Write, start programming	1111

PIC18F2XK20/4XK20

TABLE 2-7: SAMPLE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
1101		Table Write,
		post-increment by 2

FIGURE 2-16: TABLE WRITE, POST-INCREMENT TIMING DIAGRAM (1101)

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the EECON1 register must be configured in order to operate on a particular memory region.

When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7> = 1) and the CFGS bit must be cleared (EECON1<6> = 0). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort (e.g., erases) and this must be done prior to initiating a write sequence. The FREE bit must be set (EECON1<4> = 1) in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit (EECON1<1> = 1). It is strongly recommended that the WREN bit only be set immediately prior to a program or erase.

3.1 ICSP Erase

3.1.1 HIGH-VOLTAGE ICSP BULK ERASE

Erasing code or data EEPROM is accomplished by configuring two Bulk Erase Control registers located at 3C0004h and 3C0005h. Code memory may be erased portions at a time, or the user may erase the entire device in one action. Bulk Erase operations will also clear any code-protect settings associated with the memory block erased. Erase options are detailed in Table 3-1. If data EEPROM is code-protected (CPD = 0), the user must request an erase of data EEPROM (e.g., 0084h as shown in Table 3-1).

Description	Data (3C0005h:3C0004h)
Chip Erase	0F8Fh
Erase User ID	0088h
Erase Data EEPROM	0084h
Erase Boot Block	0081h
Erase Config Bits	0082h
Erase Code EEPROM Block 0	0180h
Erase Code EEPROM Block 1	0280h
Erase Code EEPROM Block 2	0480h
Erase Code EEPROM Block 3	0880h

TABLE 3-1: BULK ERASE OPTIONS

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (parameter P11). During this time, PGC may continue to toggle but PGD must be held low.

The code sequence to erase the entire device is shown in Table 3-2 and the flowchart is shown in Figure 3-1.

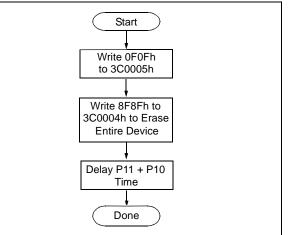

Note: A Bulk Erase is the only way to reprogram code-protect bits from an "on" state to an "off" state.

TABLE 3-2: BULK ERASE COMMAND SEQUENCE

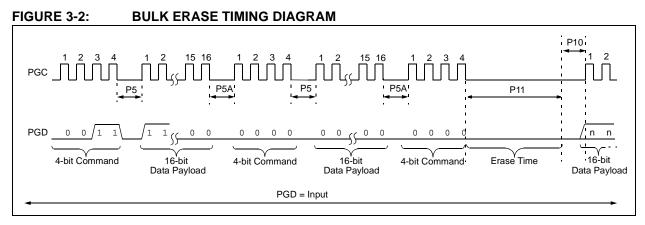

4-Bit Data			
Command	Payload	Core Instruction	
0000	0E 3C	MOVLW 3Ch	
0000	6E F8	MOVWF TBLPTRU	
0000	0E 00	MOVLW 00h	
0000	6E F7	MOVWF TBLPTRH	
0000	0E 05	MOVLW 05h	
0000	6E F6	MOVWF TBLPTRL	
1100	0F 0F	Write OFh to 3C0005h	
0000	0E 3C	MOVLW 3Ch	
0000	6E F8	MOVWF TBLPTRU	
0000	0E 00	MOVLW 00h	
0000	6E F7	MOVWF TBLPTRH	
0000	0E 04	MOVLW 04h	
0000	6E F6	MOVWF TBLPTRL	
1100	8F 8F	Write 8F8Fh TO 3C0004h to erase entire device.	
0000	00 00	NOP	
0000	00 00	Hold PGD low until erase completes.	

FIGURE 3-1:

BULK ERASE FLOW

PIC18F2XK20/4XK20

3.1.2 LOW-VOLTAGE ICSP BULK ERASE

When using low-voltage ICSP, the part must be supplied by the voltage specified in parameter D111 if a Bulk Erase is to be executed. All other Bulk Erase details as described above apply.

If it is determined that a program memory erase must be performed at a supply voltage below the Bulk Erase limit, refer to the erase methodology described in Section 3.1.3 "ICSP Row Erase" and Section 3.2.1 "Modifying Code Memory".

If it is determined that a data EEPROM erase must be performed at a supply voltage below the Bulk Erase limit, follow the methodology described in **Section 3.3** "**Data EEPROM Programming**" and write '1's to the array.

3.1.3 ICSP ROW ERASE

Regardless of whether high or low-voltage ICSP is used, it is possible to erase one row (64 bytes of data), provided the block is not code or write-protected. Rows are located at static boundaries beginning at program memory address 000000h, extending to the internal program memory limit (see **Section 2.3 "Memory Maps"**).

The Row Erase duration is self-timed. After the WR bit in EECON1 is set, two NOPs are issued. Erase starts upon the 4th PGC of the second NOP. It ends when the WR bit is cleared by hardware.

The code sequence to Row Erase a PIC18F2XK20/ 4XK20 device is shown in Table 3-3. The flowchart shown in Figure 3-3 depicts the logic necessary to completely erase a PIC18F2XK20/4XK20 device. The timing diagram for Row Erase is identical to the data EEPROM write timing shown in Figure 3-7.

Note: The TBLPTR register can point at any byte within the row intended for erase.

3.2.1 MODIFYING CODE MEMORY

The previous programming example assumed that the device has been Bulk Erased prior to programming (see **Section 3.1.1 "High-Voltage ICSP Bulk Erase"**). It may be the case, however, that the user wishes to modify only a section of an already programmed device.

The appropriate number of bytes required for the erase buffer must be read out of code memory (as described in **Section 4.2 "Verify Code Memory and ID Locations**") and buffered. Modifications can be made on this buffer. Then, the block of code memory that was read out must be erased and rewritten with the modified data.

The WREN bit must be set if the WR bit in EECON1 is used to initiate a write sequence.

4-bit Command	Data Payload	Core Instruction	
Step 1: Direct acc	ess to code memory.		
0000	8E A6	BSF EECON1, EEPGD	
0000	9C A6	BCF EECON1, CFGS	
Step 2: Read code	e memory into buffer (Section	on 4.1 "Read Code Memory, ID Locations and Configuration Bits").	
Step 3: Set the Ta	ble Pointer for the block to b	pe erased.	
0000	0E <addr[21:16]></addr[21:16]>	MOVLW <addr[21:16]></addr[21:16]>	
0000	6E F8	MOVWF TBLPTRU	
0000	0E <addr[8:15]></addr[8:15]>	MOVLW <addr[8:15]></addr[8:15]>	
0000	6E F7	MOVWF TBLPTRH	
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>	
0000	6E F6	MOVWF TBLPTRL	
Step 4: Enable me	emory writes and setup an e	rase.	
0000	84 A6	BSF EECON1, WREN	
0000	88 A6	BSF EECON1, FREE	
Step 5: Initiate era	ise.		
0000	88 A6	BSF EECON1, FREE	
0000	82 A6	BSF EECON1, WR	
0000	00 00	NOP	
0000	00 00	NOP Erase starts on the 4th clock of this instruction	
Step 6: Poll WR b	it. Repeat until bit is clear.	•	
0000	50 A6	MOVF EECON1, W, 0	
0000	6E F5	MOVWF TABLAT	
0000	00 00	NOP	
0000	<msb><lsb></lsb></msb>	Shift out data ⁽¹⁾	
Step 7: Load write	buffer. The correct bytes w	ill be selected based on the Table Pointer.	
0000	0E <addr[21:16]></addr[21:16]>	MOVLW <addr[21:16]></addr[21:16]>	
0000	6E F8	MOVWF TBLPTRU	
0000	0E <addr[8:15]></addr[8:15]>	MOVLW <addr[8:15]></addr[8:15]>	
0000	6E F7	MOVWF TBLPTRH	
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>	
0000	6E F6	MOVWF TBLPTRL	
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.	
•	•	-	
•	•	Repeat as many times as necessary to fill the write buffer	
•	•	Write 2 bytes and start programming.	
1111	<msb><lsb></lsb></msb>	NOP - hold PGC high for time P9 and low for time P10.	
0000	00 00		
		ough 6, where the Address Pointer is incremented by the appropriate number of bytes he write cycle must be repeated enough times to completely rewrite the contents of the	
Step 8: Disable wi	rites.		
0000	94 A6	BCF EECON1, WREN	

TABLE 3-6: MODIFYING CODE MEMORY

3.4 ID Location Programming

The ID locations are programmed much like the code memory. The ID registers are mapped in addresses 200000h through 200007h. These locations read out normally even after code protection.

Note:	The user only needs to fill the first 8 bytes		
	of the write buffer in order to write the ID		
	locations.		

Table 3-8 demonstrates the code sequence required to write the ID locations.

In order to modify the ID locations, refer to the methodology described in **Section 3.2.1** "**Modifying Code Memory**". As with code memory, the ID locations must be erased before being modified.

When VDD is below the minimum for Bulk Erase operation, ID locations can be cleared with the Row Erase method described in **Section 3.1.3** "**ICSP Row Erase**".

4-bit Command	Data Payload	Core Instruction	
Step 1: Direct ad	ccess to code memory.		
0000	8E A6	BSF EECON1, EEPGD	
0000	9C A6	BCF EECON1, CFGS	
0000	84 A6	BSF EECON1, WREN	
Step 2: Set Tabl	Step 2: Set Table Pointer to ID. Load write buffer with 8 bytes and write.		
0000	0E 20	MOVLW 20h	
0000	6E F8	MOVWF TBLPTRU	
0000	0E 00	MOVLW 00h	
0000	6E F7	MOVWF TBLPTRH	
0000	0E 00	MOVLW 00h	
0000	6E F6	MOVWF TBLPTRL	
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.	
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.	
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.	
1111	<msb><lsb></lsb></msb>	Write 2 bytes and start programming.	
0000	00 00	NOP - hold PGC high for time P9 and low for time P10.	

TABLE 3-8: WRITE ID SEQUENCE

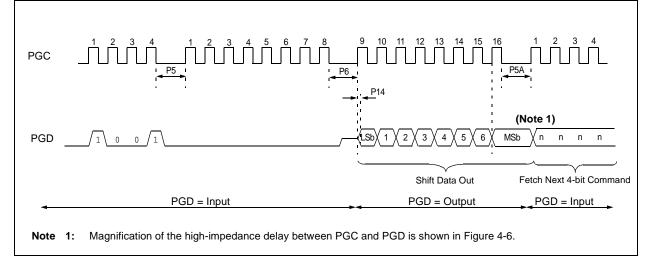
4.0 READING THE DEVICE

4.1 Read Code Memory, ID Locations and Configuration Bits

Code memory is accessed one byte at a time via the 4-bit command, '1001' (table read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH:TBLPTRL) are serially output on PGD.

The 4-bit command is shifted in LSb first. The read is executed during the next 8 clocks, then shifted out on PGD during the last 8 clocks, LSb to MSb. A delay of P6 must be introduced after the falling edge of the 8th

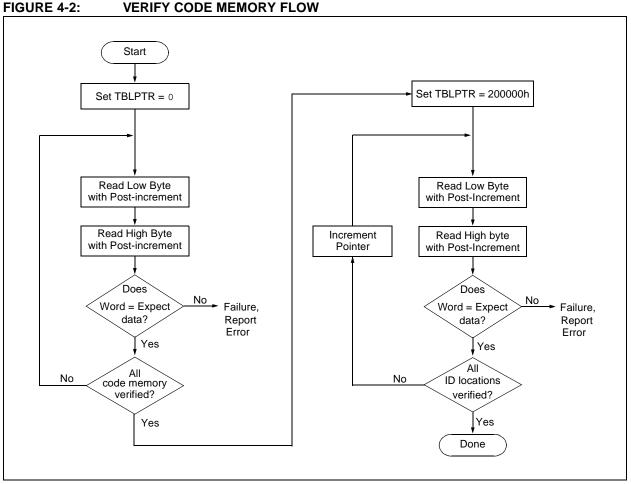
TABLE 4-1:	READ CODE MEMORY SEQUENCE
------------	---------------------------


PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to the reading of the ID and Configuration registers.

Note: When table read protection is enabled, the first read access to a protected block should be discarded and the read repeated to retrieve valid data. Subsequent reads of the same block can be performed normally.

4-bit Command	Data Payload	Core Instruction
Step 1: Set Tabl	le Pointer	
0000	0E <addr[21:16]></addr[21:16]>	MOVLW Addr[21:16]
0000	6E F8	MOVWF TBLPTRU
0000	0E <addr[15:8]></addr[15:8]>	MOVLW <addr[15:8]></addr[15:8]>
0000	6E F7	MOVWF TBLPTRH
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>
0000	6E F6	MOVWF TBLPTRL
Step 2: Read memory and then shift out on PGD, LSb to MSb		
1001	00 00	TBLRD *+


FIGURE 4-1: TABLE READ POST-INCREMENT INSTRUCTION TIMING DIAGRAM (1001)

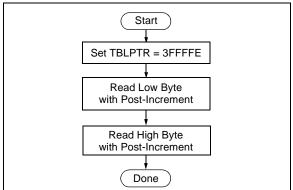
4.2 Verify Code Memory and ID Locations

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading code memory.

The Table Pointer must be manually set to 200000h (base address of the ID locations) once the code memory has been verified. The post-increment feature of the table read 4-bit command can not be used to increment the Table Pointer beyond the code memory space. In a 64-Kbyte device, for example, a post-increment read of address FFFFh will wrap the Table Pointer back to 000000h, rather than point to unimplemented address 010000h.

5.0 CONFIGURATION WORD

The PIC18F2XK20/4XK20 devices have several Configuration Words. These bits can be set or cleared to select various device configurations. All other memory areas should be programmed and verified prior to setting Configuration Words. These bits may be read out normally, even after read or code protection. See Table 5-1 for a list of Configuration bits and device IDs and Table 5-3 for the Configuration bit descriptions.


5.1 User ID Locations

A user may store identification information (ID) in eight ID locations mapped in 200000h:200007h. It is recommended that the Most Significant nibble of each ID be Fh. In doing so, if the user code inadvertently tries to execute from the ID space, the ID data will execute as a NOP.

5.2 Device ID Word

The device ID word for the PIC18F2XK20/4XK20 devices is located at 3FFFFEh:3FFFFh. These bits may be used by the programmer to identify what device type is being programmed and read out normally, even after code or read protection. See Table 5-2 for a complete list of device ID values.

File Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300001h	CONFIG1H	IESO	FCMEN	_	—	FOSC3	FOSC2	FOSC1	FOSC0	00 0111
300002h	CONFIG2L	_	_	_	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111
300003h	CONFIG2H			_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111
300005h	CONFIG3H	MCLRE	_	—	_	HFOFST	LPT1OSC	PBADEN	CCP2MX	1 1011
300006h	CONFIG4L	DEBUG	XINST	_	_		LVP	_	STVREN	101-1
300008h	CONFIG5L			_	_	CP3 ⁽¹⁾	CP2 ⁽¹⁾	CP1	CP0	1111
300009h	CONFIG5H	CPD	CPB	—	_	-	_	—	_	11
30000Ah	CONFIG6L		_	—	_	WRT3 ⁽¹⁾	WRT2 ⁽¹⁾	WRT1	WRT0	1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	_	-	_	—	_	111
30000Ch	CONFIG7L		_	—	_	EBTR3 ⁽¹⁾	EBTR2 ⁽¹⁾	EBTR1	EBTR0	1111
30000Dh	CONFIG7H	_	EBTRB	_	_	_	_		—	-1
3FFFFEh	DEVID1 ⁽²⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table 5-2
3FFFFFh	DEVID2 ⁽²⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table 5-2

TABLE 5-1:CONFIGURATION BITS AND DEVICE IDs

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: These bits are only implemented on specific devices. Refer to Section 2.3 "Memory Maps" to determine which bits apply based on available memory.

2: DEVID registers are read-only and cannot be programmed by the user.

TABLE 5-2: DEVICE ID VALUE

Davias	Device ID Value				
Device	DEVID2	DEVID1			
PIC18F23K20	20h	111x xxxx			
PIC18F24K20	20h	101x xxxx			
PIC18F25K20	20h	011x xxxx			
PIC18F26K20	20h	001x xxxx			
PIC18F43K20	20h	110x xxxx			
PIC18F44K20	20h	100x xxxx			
PIC18F45K20	20h	010x xxxx			
PIC18F46K20	20h	000x xxxx			

Note: The 'x's in DEVID1 contain the device revision code.

 $\ensuremath{\textcircled{}^\circ}$ 2009 Microchip Technology Inc.

FABLE 5-3: PIC18F2XK20/4XK20 BIT DESCRIPTIONS						
Bit Name	Configuration Words	Description				
IESO	CONFIG1H	Internal External Switchover bit 1 = Internal External Switchover mode enabled 0 = Internal External Switchover mode disabled				
FCMEN	CONFIG1H	Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled				
		0 = Fail-Safe Clock Monitor disabled				
FOSC<3:0>	CONFIG1H	Oscillator Selection bits 11xx = External RC oscillator, CLKOUT function on RA6 101x = External RC oscillator, CLKOUT function on RA6 1001 = HFINTOSC, CLKOUT function on RA6, port function on RA7 1000 = HFINTOSC, port function on RA6, port function on RA7 0111 = External RC oscillator, port function on RA6 0110 = HS oscillator, PLL enabled (clock frequency = 4 x FOSC1) 0101 = EC oscillator, port function on RA6 0100 = EC oscillator, CLKOUT function on RA6 0011 = External RC oscillator, CLKOUT function on RA6 0011 = External RC oscillator, CLKOUT function on RA6 0010 = HS oscillator 0001 = XT oscillator 0000 = LP oscillator				
BORV<1:0>	CONFIG2L	Brown-out Reset Voltage bits 11 = VBOR set to 1.8V 10 = VBOR set to 2.2V 01 = VBOR set to 2.7V 00 = VBOR set to 3.0V				
BOREN<1:0>	CONFIG2L	 Brown-out Reset Enable bits 11 = Brown-out Reset enabled in hardware only (SBOREN is disabled) 10 = Brown-out Reset enabled in hardware only and disabled in Sleep mode (SBOREN is disabled) 01 = Brown-out Reset enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset disabled in hardware and software 				
PWRTEN	CONFIG2L	Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled				
WDPS<3:0>	CONFIG2H	Watchdog Timer Postscaler Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:2 0001 = 1:2 0000 = 1:1				

TABLE 5-3:PIC18F2XK20/4XK20 BIT DESCRIPTIONS

Bit Name	Configuration Words	Description
CP3	CONFIG5L	Code Protection bits (Block 3 code memory area)
		1 = Block 3 is not code-protected
		0 = Block 3 is code-protected
CP2	CONFIG5L	Code Protection bits (Block 2 code memory area)
		1 = Block 2 is not code-protected
0.54		0 = Block 2 is code-protected
CP1	CONFIG5L	Code Protection bits (Block 1 code memory area)
		 1 = Block 1 is not code-protected 0 = Block 1 is code-protected
CDO		
CP0	CONFIG5L	Code Protection bits (Block 0 code memory area)
		 1 = Block 0 is not code-protected 0 = Block 0 is code-protected
CPD	CONFIG5H	Code Protection bits (Data EEPROM)
	001110011	1 = Data EEPROM is not code-protected
		0 = Data EEPROM is code-protected
СРВ	CONFIG5H	Code Protection bits (Boot Block memory area)
		1 = Boot Block is not code-protected
		0 = Boot Block is code-protected
WRT3	CONFIG6L	Write Protection bits (Block 3 code memory area)
		1 = Block 3 is not write-protected
		0 = Block 3 is write-protected
WRT2	CONFIG6L	Write Protection bits (Block 2 code memory area)
		1 = Block 2 is not write-protected
		0 = Block 2 is write-protected
WRT1	CONFIG6L	Write Protection bits (Block 1 code memory area)
		1 = Block 1 is not write-protected
		0 = Block 1 is write-protected
WRT0	CONFIG6L	Write Protection bits (Block 0 code memory area)
		1 = Block 0 is not write-protected
MOTO		0 = Block 0 is write-protected
WRTD	CONFIG6H	Write Protection bit (Data EEPROM)
		 1 = Data EEPROM is not write-protected 0 = Data EEPROM is write-protected
WRTB	CONFIG6H	Write Protection bit (Boot Block memory area)
	CONFIGOR	1 = Boot Block is not write-protected
		0 = Boot Block is write-protected
WRTC	CONFIG6H	Write Protection bit (Configuration registers)
		1 = Configuration registers are not write-protected
		0 = Configuration registers are write-protected

TABLE 5-3: PIC18F2XK20/4XK20 BIT DESCRIPTIONS (CONTINUED)

TABLE 3-3: PIC 18F2AR20/4AR20 BIT DESCRIPTIONS (CONTINUED)					
Bit Name	Configuration Words	Description			
EBTR3	CONFIG7L	Table Read Protection bit (Block 3 code memory area)			
		 1 = Block 3 is not protected from table reads executed in other blocks 0 = Block 3 is protected from table reads executed in other blocks 			
EBTR2	CONFIG7L	Table Read Protection bit (Block 2 code memory area)			
		 1 = Block 2 is not protected from table reads executed in other blocks 0 = Block 2 is protected from table reads executed in other blocks 			
EBTR1	CONFIG7L	Table Read Protection bit (Block 1 code memory area)			
		 1 = Block 1 is not protected from table reads executed in other blocks 0 = Block 1 is protected from table reads executed in other blocks 			
EBTR0	CONFIG7L	Table Read Protection bit (Block 0 code memory area)			
		 1 = Block 0 is not protected from table reads executed in other blocks 0 = Block 0 is protected from table reads executed in other blocks 			
EBTRB	CONFIG7H	Table Read Protection bit (Boot Block memory area)			
		 1 = Boot Block is not protected from table reads executed in other blocks 0 = Boot Block is protected from table reads executed in other blocks 			
DEV<10:3>	DEVID2	Device ID bits			
		These bits are used with the DEV<2:0> bits in the DEVID1 register to identify part number.			
DEV<2:0>	DEVID1	Device ID bits			
		These bits are used with the DEV<10:3> bits in the DEVID2 register to identify part number.			
REV<4:0>	DEVID1	Revision ID bits			
		These bits are used to indicate the revision of the device.			

TABLE 5-3: PIC18F2XK20/4XK20 BIT DESCRIPTIONS (CONTINUED)

.

Device	Code- Protect	Blank Value	0xAA at 0 and Max Address	
	None	SUM[0000:01FF]+SUM[0200:0FFF]+SUM[1000:1FFF]+ (CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 03h)+ (CONFIG5H & C0h)+(CONFIG6L & 03h)+(CONFIG6H & E0h)+ (CONFIG7L & 03h)+(CONFIG7H & 40h)	E33Eh	E294h
PIC18FX3K20	Boot Block	SUM[0200:0FFF]+SUM[1000:1FFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 03h)+(CONFIG5H & C0h)+ (CONFIG6L & 03h)+(CONFIG6H & E0h)+(CONFIG7L & 03h)+ (CONFIG7H & 40h)+SUM_ID	E520h	E4C6h
	Boot/ SUM[1000:1FFF]+(CONFIG1L & 00h)+(CONFIG1H & CFh)+ Block 0 (CONFIG2L & 1Fh)+(CONFIG2H & 1F)+(CONFIG3L & 00h)+ (CONFIG3H & 8Fh)+(CONFIG2H & C5h)+(CONFIG4H & 00h)+ (CONFIG5L & 03h)+(CONFIG5H & C0h)+(CONFIG6L & 03h)+ (CONFIG5L & 03h)+(CONFIG5H & C0h)+(CONFIG6L & 03h)+ (CONFIG6H & E0h)+(CONFIG7L & 03h)+(CONFIG7H & 40h)+SUM_ID		F31Fh	F2C5h
	All	031Dh	0318h	
	None	SUM[0000:07FF]+SUM[0800:1FFF]+SUM[2000:3FFF]+ (CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 03h)+ (CONFIG5H & C0h)+(CONFIG6L & 03h)+(CONFIG6H & E0h)+ (CONFIG7L & 03h)+(CONFIG7H & 40h)	C33Eh	C294h
PIC18FX4K20	Boot Block	SUM[0800:1FFF]+SUM[2000:3FFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 03h)+(CONFIG5H & C0h)+ (CONFIG6L & 03h)+(CONFIG6H & E0h)+(CONFIG7L & 03h)+ (CONFIG7H & 40h)+SUM_ID	CB1Eh	CAC4h
	Boot/ Block 0	SUM[2000:3FFF]+(CONFIG1L & 00h)+(CONFIG1H & CFh)+ (CONFIG2L & 1Fh)+(CONFIG2H & 1F)+(CONFIG3L & 00h)+ (CONFIG3H & 8Fh)+(CONFIG4L & C5h)+(CONFIG4H & 00h)+ (CONFIG5L & 03h)+(CONFIG5H & C0h)+(CONFIG6L & 03h)+ (CONFIG6H & E0h)+(CONFIG7L & 03h)+(CONFIG7H & 40h)+SUM_ID	E31Dh	E2C3h
	All	(CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 03h)+ (CONFIG5H & C0h)+(CONFIG6L & 03h)+(CONFIG6H & E0h)+ (CONFIG7L & 03h)+(CONFIG7H & 40h)+SUM_ID	031Bh	0316h
SUN	NFIGx = 0 //[a:b] = 3 //_ID = 1	<u>Description</u> Configuration Word Sum of locations, a to b inclusive Byte-wise sum of lower four bits of all customer ID locations Addition		

+ = Addition & = Bit-wise AND

TABLE 5-4: CHECKSUM COMPUTATION (CONTINUED)

Device	Code- Protect	Checksum	Blank Value	0xAA at 0 and Max Address
	None	SUM[0000:07FF]+SUM[0800:1FFF]+SUM[2000:3FFF]+ SUM[4000:5FFF]+SUM[6000:7FFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 0Fh)+(CONFIG5H & C0h)+ (CONFIG6L & 0Fh)+(CONFIG6H & E0h)+(CONFIG7L & 0Fh)+ (CONFIG7H & 40h)	8362h	82B8h
PIC18FX5K20	Boot Block	SUM[0800:1FFF]+SUM[2000:3FFF]+SUM[4000:5FFF]+SUM[6000:7FFF]+ (CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 0Fh)+ (CONFIG5H & C0h)+(CONFIG6L & 0Fh)+(CONFIG6H & E0h)+ (CONFIG7L & 0Fh)+(CONFIG7H & 40h)+SUM_ID	8B35h	8AEAh
	Boot/ Block 0/ Block 1	SUM[4000:5FFF]+SUM[6000:7FFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 0Fh)+(CONFIG5H & C0h)+ (CONFIG6L & 0Fh)+(CONFIG6H & E0h)+(CONFIG7L & 0Fh)+ (CONFIG7H & 40h)+SUM_ID	C332h	C2E7h
	All	(CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 0Fh)+ (CONFIG5H & C0h)+(CONFIG6L & 0Fh)+(CONFIG6H & E0h)+ (CONFIG7L & 0Fh)+(CONFIG7H & 40h)+SUM_ID	0326h	0330h
SUN	NFIGx = 0 M[a:b] = 5	Description Configuration Word Sum of locations, a to b inclusive		

SUM_ID = Byte-wise sum of lower four bits of all customer ID locations

+ = Addition

& = Bit-wise AND

Device	Code- Protect	Checksum	Blank Value	0xAA at 0 and Max Address
	None	SUM[0000:07FF]+SUM[0800:3FFF]+SUM[4000:7FFF]+ SUM[8000:BFFF]+SUM[C000:FFFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 0Fh)+(CONFIG5H & C0h)+ (CONFIG6L & 0Fh)+(CONFIG6H & E0h)+(CONFIG7L & 0Fh)+ (CONFIG7H & 40h)	0362h	02B8h
PIC18FX6K2	Boot Block	SUM[0800:3FFF]+SUM[4000:7FFF]+SUM[8000:BFFF]+SUM[C000:FFF F]+ (CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 0Fh)+ (CONFIG5H & C0h)+(CONFIG6L & 0Fh)+(CONFIG6H & E0h)+ (CONFIG7L & 0Fh)+(CONFIG7H & 40h)+SUM_ID	0B2Dh	0AE2h
	Boot/ Block 0/ Block 1	SUM[3000:BFFF]+SUM[C000:FFFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 0Fh)+(CONFIG5H & C0h)+ (CONFIG6L & 0Fh)+(CONFIG6H & E0h)+(CONFIG7L & 0Fh)+ (CONFIG7H & 40h)+SUM_ID	832Ah	82DFh
	All	(CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 0Fh)+ (CONFIG5H & C0h)+(CONFIG6L & 0Fh)+(CONFIG6H & E0h)+ (CONFIG7L & 0Fh)+(CONFIG7H & 40h)+SUM_ID	031Eh	0328h
C SI SI	ONFIGx = UM[a:b] = UM_ID =	Description Configuration Word Sum of locations, a to b inclusive Byte-wise sum of lower four bits of all customer ID locations	<u>.</u>	
+				

& = Bit-wise AND

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/ VERIFY TEST MODE

Derem						
Param No.	Sym.	Characteristic	Min.	Max.	Units	Conditions
D110	Vінн	High-Voltage Programming Voltage on MCLR/VPP/RE3	Vdd + 4.5	9	V	
D110A	VIHL	Low-Voltage Programming Voltage on MCLR/Vpp/RE3	1.80	3.60	V	
D111	Vdd	Supply Voltage During Programming	1.80	3.60	V	Row Erase/Write
			2.7	3.60	V	Bulk Erase operations
D112	IPP	Programming Current on MCLR/VPP/RE3	—	300	μΑ	
D113	IDDP	Supply Current During Programming	_	10	mA	
D031	VIL	Input Low Voltage	Vss	0.2 Vdd	V	
D041	Vih	Input High Voltage	0.8 Vdd	Vdd	V	
D080	Vol	Output Low Voltage	—	0.6	V	IOL = X.X mA @ 2.7V
D090	Vон	Output High Voltage	Vdd - 0.7	_	V	IOH = -Y.Y mA @ 2.7V
D012	Сю	Capacitive Loading on I/O pin (PGD)	—	50	pF	To meet AC specifications
		I 				
P1	Tr	MCLR/VPP/RE3 Rise Time to enter Program/Verify mode	_	1.0	μS	(Note 1)
P2	TPGC	Serial Clock (PGC) Period	100	—	ns	VDD = 3.6V
			1	—	μS	VDD = 1.8V
P2A	TPGCL	Serial Clock (PGC) Low Time	40	—	ns	VDD = 3.6V
			400	—	ns	VDD = 1.8V
P2B	TPGCH	Serial Clock (PGC) High Time	40	—	ns	VDD = 3.6V
			400	—	ns	VDD = 1.8V
P3	TSET1	Input Data Setup Time to Serial Clock \downarrow	15	—	ns	
P4	THLD1	Input Data Hold Time from PGC \downarrow	15	—	ns	
P5	TDLY1	Delay between 4-bit Command and Command Operand	40	_	ns	
P5A	TDLY1A	Delay between 4-bit Command Operand and next 4-bit Command	40	—	ns	
P6	TDLY2	Delay between Last PGC \downarrow of Command Byte to First PGC \uparrow of Read of Data Word	20	—	ns	
P9	TDLY5	PGC High Time (minimum programming time)	1	—	ms	Externally Timed
P9A	TDLY5A	PGC High Time	5		ms	Configuration Word programming time
P10	Tdly6	PGC Low Time after Programming (high-voltage discharge time)	200	—	μS	
P11	Tdly7	Delay to allow Self-Timed Data Write or Bulk Erase to occur	5	—	ms	
P11A	TDRWT	Data Write Polling Time	4	_	ms	

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH; this can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) + 2 ms (for HS/PLL mode only) + 1.5 μs (for EC mode only) where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and Tosc is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/ VERIFY TEST MODE (CONTINUED)

	Standard Operating Conditions Operating Temperature: 25°C is recommended									
Param No.	Sym.	Characteristic	Min.	Max.	Units	Conditions				
P12	THLD2	Input Data Hold Time from MCLR/VPP/RE3 ↑	2	—	μS					
P13	TSET2	VDD ↑ Setup Time to MCLR/VPP/RE3 ↑	100	—	ns					
P14	TVALID	Data Out Valid from PGC \uparrow	10	—	ns					
P15	TSET3	PGM [↑] Setup Time to MCLR/VPP/RE3 [↑]	2	—	μS					
P16	TDLY8	Delay between Last PGC \downarrow and $\overline{MCLR}/VPP/RE3\downarrow$	0	—	S					
P17	Thld3	MCLR/VPP/RE3 ↓ to VDD ↓	—	100	ns					
P18	THLD4	MCLR/VPP/RE3 ↓ to PGM ↓	0	_	S					
P19	Thiz	Delay from PGC ↑ to PGD High-Z	3	10	nS					
P20	TPPDP	Hold time after VPP changes	5	_	μS					

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH; this can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) + 2 ms (for HS/PLL mode only) + 1.5 μs (for EC mode only) where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and Tosc is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.