
Microchip Technology - PIC18F46K20-I/ML Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, HLVD, POR, PWM, WDT

Number of I/O 35

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 3.8K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 14x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 44-VQFN Exposed Pad

Supplier Device Package 44-QFN (8x8)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k20-i-ml

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f46k20-i-ml-4385651
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18F2XK20/4XK20

FIGURE 2-1: 28-PIN SDIP, SSOP AND SOIC PIN DIAGRAMS

FIGURE 2-2: 28-PIN QFN PIN DIAGRAMS

10
11

2
3
4
5
6

1

8
7

9

12
13
14 15

16
17
18
19
20

23
24
25
26
27
28

22
21

MCLR/VPP/RE3
RA0
RA1
RA2
RA3
RA4
RA5
VSS

OSC1
OSC2

RC0
RC1
RC2
RC3

RB7/PGD
RB6/PGC
RB5/PGM
RB4
RB3
RB2
RB1
RB0
VDD

VSS

RC7
RC6
RC5
RC4

PI
C

18
F2

XK
20

SDIP, SSOP, SOIC (300 MIL)

Note: The following devices are included in 28-pin SDIP, SSOP and SOIC parts: PIC18F23K20, PIC18F24K20,
PIC18F25K20, PIC18F26K20.

10 11

2
3

6

1

18
19
20
21

22

12 13 14
15

8
7

16
17

232425262728

9

R
C

0

5
4

R
B

7/
P

G
D

R
B

6/
P

G
C

R
B

5/
P

G
M

R
B

4

RB3
RB2
RB1
RB0
VDD
VSS
RC7

R
C

6
R

C
5

R
C

4

M
C

LR
/V

PP
/R

E
3

R
A

0
R

A
1

RA2
RA3
RA4
RA5
VSS

OSC1
OSC2

R
C

1
R

C
2

R
C

3

PIC18F2XK20

Note: The following devices are included in 28-pin QFN parts: PIC18F23K20, PIC18F24K20, PIC18F25K20,
PIC18F26K20.

28-Pin QFN
DS41297F-page 2 Advance Information © 2009 Microchip Technology Inc.

PIC18F2XK20/4XK20

2.3 Memory Maps
For the PIC18FX3K20 devices, the code memory
space extends from 0000h to 01FFFh (8 Kbytes) in two
4-Kbyte blocks. Addresses 0000h through 01FFh,
however, define a “Boot Block” region that is treated
separately from Block 0. All of these blocks define code
protection boundaries within the code memory space.

TABLE 2-2: IMPLEMENTATION OF CODE
MEMORY

FIGURE 2-6: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX3K20 DEVICES

Device Code Memory Size (Bytes)

PIC18F23K20
000000h-001FFFh (8K)

PIC18F43K20

000000h

200000h

3FFFFFh

01FFFFh

Note: Sizes of memory areas are not to scale.

Code Memory

Unimplemented
Read as ‘0’

Configuration
and ID
Space

MEMORY SIZE/DEVICE

8 Kbytes
(PIC18FX3K20)

Address
Range

Boot Block 000000h
0001FFh

Block 0
000200h

000FFFh

Block 1
001000h

001FFFh

Unimplemented
Read ‘0’s

002000h

01FFFFh
© 2009 Microchip Technology Inc. Advance Information DS41297F-page 5

PIC18F2XK20/4XK20

For PIC18FX5K20 devices, the code memory space
extends from 000000h to 007FFFh (32 Kbytes) in four
8-Kbyte blocks. Addresses 000000h through 0007FFh,
however, define a “Boot Block” region that is treated
separately from Block 0. All of these blocks define code
protection boundaries within the code memory space.

TABLE 2-4: IMPLEMENTATION OF CODE
MEMORY

FIGURE 2-8: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX5K20 DEVICES

Device Code Memory Size (Bytes)

PIC18F25K20
000000h-007FFFh (32K)

PIC18F45K20

000000h

200000h

3FFFFFh

01FFFFh

Note: Sizes of memory areas not to scale.

Code Memory

Unimplemented
Read as ‘0’

Configuration
and ID
Space

MEMORY SIZE/DEVICE

32 Kbytes
(PIC18FX5K20)

Address
Range

Boot Block 000000h
0007FFh

Block 0
000800h

001FFFh

Block 1
002000h

003FFFh

Block 2
004000h

005FFFh

Block 3
006000h

007FFFh

Unimplemented
Read ‘0’s

01FFFFh
© 2009 Microchip Technology Inc. Advance Information DS41297F-page 7

PIC18F2XK20/4XK20

In addition to the code memory space, there are three
blocks in the configuration and ID space that are
accessible to the user through table reads and table
writes. Their locations in the memory map are shown in
Figure 2-10.

Users may store identification information (ID) in eight
ID registers. These ID registers are mapped in
addresses 200000h through 200007h. The ID locations
read out normally, even after code protection is applied.

Locations 300000h through 30000Dh are reserved for
the Configuration bits. These bits select various device
options and are described in Section 5.0 “Configura-
tion Word”. These Configuration bits read out
normally, even after code protection.

Locations 3FFFFEh and 3FFFFFh are reserved for the
device ID bits. These bits may be used by the program-
mer to identify what device type is being programmed
and are described in Section 5.0 “Configuration
Word”. These device ID bits read out normally, even
after code protection.

2.3.1 MEMORY ADDRESS POINTER
Memory in the address space, 0000000h to 3FFFFFh,
is addressed via the Table Pointer register, which is
comprised of three Pointer registers:

• TBLPTRU, at RAM address 0FF8h
• TBLPTRH, at RAM address 0FF7h
• TBLPTRL, at RAM address 0FF6h

The 4-bit command, ‘0000’ (core instruction), is used to
load the Table Pointer prior to using any read or write
operations.

FIGURE 2-10: CONFIGURATION AND ID LOCATIONS FOR PIC18F2XK20/4XK20 DEVICES

TBLPTRU TBLPTRH TBLPTRL

Addr[21:16] Addr[15:8] Addr[7:0]

ID Location 1 200000h
ID Location 2 200001h
ID Location 3 200002h
ID Location 4 200003h
ID Location 5 200004h
ID Location 6 200005h
ID Location 7 200006h
ID Location 8 200007h

CONFIG1L 300000h
CONFIG1H 300001h
CONFIG2L 300002h
CONFIG2H 300003h
CONFIG3L 300004h
CONFIG3H 300005h
CONFIG4L 300006h
CONFIG4H 300007h
CONFIG5L 300008h
CONFIG5H 300009h
CONFIG6L 30000Ah
CONFIG6H 30000Bh
CONFIG7L 30000Ch
CONFIG7H 30000Dh

Device ID1 3FFFFEh
Device ID2 3FFFFFh

Note: Sizes of memory areas are not to scale.

000000h

1FFFFFh

3FFFFFh

01FFFFh
Code Memory

Unimplemented
Read as ‘0’

Configuration
and ID
Space

2FFFFFh
© 2009 Microchip Technology Inc. Advance Information DS41297F-page 9

PIC18F2XK20/4XK20
3.0 DEVICE PROGRAMMING
Programming includes the ability to erase or write the
various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the
EECON1 register must be configured in order to
operate on a particular memory region.

When using the EECON1 register to act on code
memory, the EEPGD bit must be set (EECON1<7> = 1)
and the CFGS bit must be cleared (EECON1<6> = 0).
The WREN bit must be set (EECON1<2> = 1) to
enable writes of any sort (e.g., erases) and this must be
done prior to initiating a write sequence. The FREE bit
must be set (EECON1<4> = 1) in order to erase the
program space being pointed to by the Table Pointer.
The erase or write sequence is initiated by setting the
WR bit (EECON1<1> = 1). It is strongly recommended
that the WREN bit only be set immediately prior to a
program or erase.

3.1 ICSP Erase

3.1.1 HIGH-VOLTAGE ICSP BULK ERASE
Erasing code or data EEPROM is accomplished by
configuring two Bulk Erase Control registers located at
3C0004h and 3C0005h. Code memory may be erased
portions at a time, or the user may erase the entire
device in one action. Bulk Erase operations will also
clear any code-protect settings associated with the
memory block erased. Erase options are detailed in
Table 3-1. If data EEPROM is code-protected
(CPD = 0), the user must request an erase of data
EEPROM (e.g., 0084h as shown in Table 3-1).

TABLE 3-1: BULK ERASE OPTIONS

The actual Bulk Erase function is a self-timed
operation. Once the erase has started (falling edge of
the 4th PGC after the NOP command), serial execution
will cease until the erase completes (parameter P11).
During this time, PGC may continue to toggle but PGD
must be held low.

The code sequence to erase the entire device is shown
in Table 3-2 and the flowchart is shown in Figure 3-1.

TABLE 3-2: BULK ERASE COMMAND
SEQUENCE

FIGURE 3-1: BULK ERASE FLOW
Description Data

(3C0005h:3C0004h)

Chip Erase 0F8Fh
Erase User ID 0088h
Erase Data EEPROM 0084h
Erase Boot Block 0081h
Erase Config Bits 0082h
Erase Code EEPROM Block 0 0180h
Erase Code EEPROM Block 1 0280h
Erase Code EEPROM Block 2 0480h
Erase Code EEPROM Block 3 0880h

Note: A Bulk Erase is the only way to reprogram
code-protect bits from an “on” state to an
“off” state.

4-Bit
Command

Data
Payload Core Instruction

0000 0E 3C MOVLW 3Ch

0000 6E F8 MOVWF TBLPTRU

0000 0E 00 MOVLW 00h

0000 6E F7 MOVWF TBLPTRH

0000 0E 05 MOVLW 05h

0000 6E F6 MOVWF TBLPTRL

1100 0F 0F Write 0Fh to 3C0005h

0000 0E 3C MOVLW 3Ch

0000 6E F8 MOVWF TBLPTRU

0000 0E 00 MOVLW 00h

0000 6E F7 MOVWF TBLPTRH

0000 0E 04 MOVLW 04h

0000 6E F6 MOVWF TBLPTRL

1100 8F 8F Write 8F8Fh TO 3C0004h
to erase entire device.

0000 00 00 NOP

0000 00 00 Hold PGD low until erase
completes.

Start

Done

Write 8F8Fh to
3C0004h to Erase

Entire Device

Write 0F0Fh

Delay P11 + P10
Time

to 3C0005h
© 2009 Microchip Technology Inc. Advance Information DS41297F-page 13

PIC18F2XK20/4XK20

FIGURE 3-2: BULK ERASE TIMING DIAGRAM

3.1.2 LOW-VOLTAGE ICSP BULK ERASE
When using low-voltage ICSP, the part must be
supplied by the voltage specified in parameter D111 if a
Bulk Erase is to be executed. All other Bulk Erase
details as described above apply.

If it is determined that a program memory erase must
be performed at a supply voltage below the Bulk Erase
limit, refer to the erase methodology described in
Section 3.1.3 “ICSP Row Erase” and Section 3.2.1
“Modifying Code Memory”.

If it is determined that a data EEPROM erase must be
performed at a supply voltage below the Bulk Erase
limit, follow the methodology described in Section 3.3
“Data EEPROM Programming” and write ‘1’s to the
array.

3.1.3 ICSP ROW ERASE
Regardless of whether high or low-voltage ICSP is
used, it is possible to erase one row (64 bytes of data),
provided the block is not code or write-protected. Rows
are located at static boundaries beginning at program
memory address 000000h, extending to the internal
program memory limit (see Section 2.3 “Memory
Maps”).

The Row Erase duration is self-timed. After the WR bit
in EECON1 is set, two NOPs are issued. Erase starts
upon the 4th PGC of the second NOP. It ends when the
WR bit is cleared by hardware.

The code sequence to Row Erase a PIC18F2XK20/
4XK20 device is shown in Table 3-3. The flowchart
shown in Figure 3-3 depicts the logic necessary to com-
pletely erase a PIC18F2XK20/4XK20 device. The timing
diagram for Row Erase is identical to the data EEPROM
write timing shown in Figure 3-7.

n

1 2 3 4 1 2 15 16 1 2 3
PGC

P5 P5A

PGD

PGD = Input

00 0 1 1

P11

P10

Erase Time

0 0 0 0 0 0

1 2

0 0

4

0

1 2 15 16

P5

1 2 3

P5A

4

0 0 0 0 n

4-bit Command 4-bit Command 4-bit Command16-bit
Data Payload

16-bit
Data Payload

16-bit
Data Payload

1 1

Note: The TBLPTR register can point at any byte
within the row intended for erase.
DS41297F-page 14 Advance Information © 2009 Microchip Technology Inc.

PIC18F2XK20/4XK20

TABLE 3-3: ERASE CODE MEMORY CODE SEQUENCE

4-bit
Command Data Payload Core Instruction

Step 1: Direct access to code memory and enable writes.

0000
0000
0000

8E A6
9C A6
84 A6

BSF EECON1, EEPGD
BCF EECON1, CFGS
BSF EECON1, WREN

Step 2: Point to first row in code memory.

0000
0000
0000

6A F8
6A F7
6A F6

CLRF TBLPTRU
CLRF TBLPTRH
CLRF TBLPTRL

Step 3: Enable erase and erase single row.

0000
0000
0000
0000

88 A6
82 A6
00 00
00 00

BSF EECON1, FREE
BSF EECON1, WR
NOP
NOP Erase starts on the 4th clock of this instruction

Step 4: Poll WR bit. Repeat until bit is clear.

0000
0000
0000
0010

50 A6
6E F5
00 00

<MSB><LSB>

MOVF EECON1, W, 0
MOVWF TABLAT
NOP
Shift out data(1)

Step 5: Hold PGC low for time P10.

Step 6: Repeat step 3 with Address Pointer incremented by 64 until all rows are erased.

Step 7: Disable writes.

0000 94 A6 BCF EECON1, WREN

Note 1: See Figure 4-4 for details on shift out data timing.
© 2009 Microchip Technology Inc. Advance Information DS41297F-page 15

PIC18F2XK20/4XK20

FIGURE 3-3: SINGLE ROW ERASE CODE MEMORY FLOW

Done

Start

All
Rows
done?

No

Yes

Addr = 0

Configure
Device for

Row Erases

Addr = Addr + 64

Perform Erase
Sequence

WR Bit
Clear?

No

Yes
DS41297F-page 16 Advance Information © 2009 Microchip Technology Inc.

PIC18F2XK20/4XK20

3.2 Code Memory Programming
Programming code memory is accomplished by first
loading data into the write buffer and then initiating a
programming sequence. The write and erase buffer
sizes shown in Table 3-4 can be mapped to any loca-
tion of the same size beginning at 000000h. The actual
memory write sequence takes the contents of this buf-
fer and programs the proper amount of code memory
that contains the Table Pointer.

The programming duration is externally timed and is
controlled by PGC. After a Start Programming
command is issued (4-bit command, ‘1111’), a NOP is
issued, where the 4th PGC is held high for the duration
of the programming time, P9.

After PGC is brought low, the programming sequence
is terminated. PGC must be held low for the time
specified by parameter P10 to allow high-voltage
discharge of the memory array.

The code sequence to program a PIC18F2XK20/
4XK20 device is shown in Table 3-5. The flowchart
shown in Figure 3-4 depicts the logic necessary to
completely write a PIC18F2XK20/4XK20 device. The
timing diagram that details the Start Programming
command and parameters P9 and P10 is shown in
Figure 3-5.

TABLE 3-4: WRITE AND ERASE BUFFER SIZES

TABLE 3-5: WRITE CODE MEMORY CODE SEQUENCE

Note: The TBLPTR register must point to the
same region when initiating the program-
ming sequence as it did when the write
buffers were loaded.

Devices (Arranged by Family) Write Buffer Size
(bytes) Erase Size (bytes)

PIC18F26K20, PIC18F46K20 64 64
PIC18F24K20, PIC18F25K20, PIC18F44K20, PIC18F45K20 32 64
PIC18F23K20, PIC18F43K20 16 64

4-bit
Command Data Payload Core Instruction

Step 1: Direct access to code memory.

0000
0000
0000

8E A6
9C A6
84 A6

BSF EECON1, EEPGD
BCF EECON1, CFGS
BSF EECON1, WREN

Step 2: Point to row to write.

0000
0000
0000
0000
0000
0000

0E <Addr[21:16]>
6E F8

0E <Addr[15:8]>
6E F7

0E <Addr[7:0]>
6E F6

MOVLW <Addr[21:16]>
MOVWF TBLPTRU
MOVLW <Addr[15:8]>
MOVWF TBLPTRH
MOVLW <Addr[7:0]>
MOVWF TBLPTRL

Step 3: Load write buffer. Repeat for all but the last two bytes.

1101 <MSB><LSB> Write 2 bytes and post-increment address by 2.

Step 4: Load write buffer for last two bytes and start programming.

1111
0000

<MSB><LSB>
00 00

Write 2 bytes and start programming.
NOP - hold PGC high for time P9 and low for time P10.

To continue writing data, repeat steps 2 through 4, where the Address Pointer is incremented by 2 at each iteration of
the loop.
© 2009 Microchip Technology Inc. Advance Information DS41297F-page 17

PIC18F2XK20/4XK20

3.2.1 MODIFYING CODE MEMORY
The previous programming example assumed that the
device has been Bulk Erased prior to programming
(see Section 3.1.1 “High-Voltage ICSP Bulk Erase”).
It may be the case, however, that the user wishes to
modify only a section of an already programmed
device.

The appropriate number of bytes required for the erase
buffer must be read out of code memory (as described
in Section 4.2 “Verify Code Memory and ID Loca-
tions”) and buffered. Modifications can be made on
this buffer. Then, the block of code memory that was
read out must be erased and rewritten with the
modified data.

The WREN bit must be set if the WR bit in EECON1 is
used to initiate a write sequence.

TABLE 3-6: MODIFYING CODE MEMORY
4-bit

Command Data Payload Core Instruction

Step 1: Direct access to code memory.
0000
0000

8E A6
9C A6

BSF EECON1, EEPGD
BCF EECON1, CFGS

Step 2: Read code memory into buffer (Section 4.1 “Read Code Memory, ID Locations and Configuration Bits”).

Step 3: Set the Table Pointer for the block to be erased.
0000
0000
0000
0000
0000
0000

0E <Addr[21:16]>
6E F8

0E <Addr[8:15]>
6E F7

0E <Addr[7:0]>
6E F6

MOVLW <Addr[21:16]>
MOVWF TBLPTRU
MOVLW <Addr[8:15]>
MOVWF TBLPTRH
MOVLW <Addr[7:0]>
MOVWF TBLPTRL

Step 4: Enable memory writes and setup an erase.
0000
0000

84 A6
88 A6

BSF EECON1, WREN
BSF EECON1, FREE

Step 5: Initiate erase.
0000
0000
0000
0000

88 A6
82 A6
00 00
00 00

BSF EECON1, FREE
BSF EECON1, WR
NOP
NOP Erase starts on the 4th clock of this instruction

Step 6: Poll WR bit. Repeat until bit is clear.
0000
0000
0000
0000

50 A6
6E F5
00 00

<MSB><LSB>

MOVF EECON1, W, 0
MOVWF TABLAT
NOP
Shift out data(1)

Step 7: Load write buffer. The correct bytes will be selected based on the Table Pointer.
0000
0000
0000
0000
0000
0000
1101
•
•
•

1111
0000

0E <Addr[21:16]>
6E F8

0E <Addr[8:15]>
6E F7

0E <Addr[7:0]>
6E F6

<MSB><LSB>
•
•
•

<MSB><LSB>
00 00

MOVLW <Addr[21:16]>
MOVWF TBLPTRU
MOVLW <Addr[8:15]>
MOVWF TBLPTRH
MOVLW <Addr[7:0]>
MOVWF TBLPTRL
Write 2 bytes and post-increment address by 2.

Repeat as many times as necessary to fill the write buffer
Write 2 bytes and start programming.
NOP - hold PGC high for time P9 and low for time P10.

To continue modifying data, repeat Steps 2 through 6, where the Address Pointer is incremented by the appropriate number of bytes
(see Table 3-4) at each iteration of the loop. The write cycle must be repeated enough times to completely rewrite the contents of the
erase buffer.
Step 8: Disable writes.

0000 94 A6 BCF EECON1, WREN
© 2009 Microchip Technology Inc. Advance Information DS41297F-page 19

PIC18F2XK20/4XK20

TABLE 3-7: PROGRAMMING DATA MEMORY

4-bit
Command Data Payload Core Instruction

Step 1: Direct access to data EEPROM.

0000
0000

9E A6
9C A6

BCF EECON1, EEPGD
BCF EECON1, CFGS

Step 2: Set the data EEPROM Address Pointer.

0000
0000
0000
0000

0E <Addr>
6E A9

OE <AddrH>
6E AA

MOVLW <Addr>
MOVWF EEADR
MOVLW <AddrH>
MOVWF EEADRH

Step 3: Load the data to be written.

0000
0000

0E <Data>
6E A8

MOVLW <Data>
MOVWF EEDATA

Step 4: Enable memory writes.

0000 84 A6 BSF EECON1, WREN

Step 5: Initiate write.

0000
0000
0000

82 A6
00 00
00 00

BSF EECON1, WR
NOP
NOP ;write starts on 4th clock of this instruction

Step 6: Poll WR bit, repeat until the bit is clear.

0000
0000
0000
0010

50 A6
6E F5
00 00

<MSB><LSB>

MOVF EECON1, W, 0
MOVWF TABLAT
NOP
Shift out data(1)

Step 7: Hold PGC low for time P10.

Step 8: Disable writes.

0000 94 A6 BCF EECON1, WREN

Repeat steps 2 through 8 to write more data.

Note 1: See Figure 4-4 for details on shift out data timing.
© 2009 Microchip Technology Inc. Advance Information DS41297F-page 21

PIC18F2XK20/4XK20

3.5 Boot Block Programming
The code sequence detailed in Table 3-5 should be
used, except that the address used in “Step 2” will be in
the range of 000000h to 0007FFh.

3.6 Configuration Bits Programming
Unlike code memory, the Configuration bits are
programmed a byte at a time. The Table Write, Begin
Programming 4-bit command (‘1111’) is used, but only
8 bits of the following 16-bit payload will be written. The
LSB of the payload will be written to even addresses
and the MSB will be written to odd addresses. The
code sequence to program two consecutive configura-
tion locations is shown in Table 3-9. See Figure 3-5 for
the timing diagram.

TABLE 3-9: SET ADDRESS POINTER TO CONFIGURATION LOCATION

FIGURE 3-8: CONFIGURATION PROGRAMMING FLOW

Note: The address must be explicitly written for
each byte programmed. The addresses
can not be incremented in this mode.

4-bit
Command Data Payload Core Instruction

Step 1: Direct access to config memory.
0000
0000
0000

8E A6
8C A6
84 A6

BSF EECON1, EEPGD
BSF EECON1, CFGS
BSF EECON1, WREN

Step 2(1): Set Table Pointer for config byte to be written. Write even/odd addresses.
0000
0000
0000
0000
0000
0000
1111
0000
0000
0000
1111
0000

0E 30
6E F8
0E 00
6E F7
0E 00
6E F6

<MSB ignored><LSB>
00 00
0E 01
6E F6

<MSB><LSB ignored>
00 00

MOVLW 30h
MOVWF TBLPTRU
MOVLW 00h
MOVWF TBLPRTH
MOVLW 00h
MOVWF TBLPTRL
Load 2 bytes and start programming.
NOP - hold PGC high for time P9 and low for time P10.
MOVLW 01h
MOVWF TBLPTRL
Load 2 bytes and start programming.
NOP - hold PGC high for time P9A and low for time P10.

Note 1: Enabling the write protection of Configuration bits (WRTC = 0 in CONFIG6H) will prevent further writing of
Configuration bits. Always write all the Configuration bits before enabling the write protection for
Configuration bits.

Load Even
Configuration

Start

Program Program
MSB

Delay P9 and P10
Time for Write

LSB

Load Odd
Configuration

Address Address

Done

Start

Delay P9 and P10
Time for Write

Done
© 2009 Microchip Technology Inc. Advance Information DS41297F-page 23

PIC18F2XK20/4XK20

4.2 Verify Code Memory and ID

Locations
The verify step involves reading back the code memory
space and comparing it against the copy held in the
programmer’s buffer. Memory reads occur a single byte
at a time, so two bytes must be read to compare
against the word in the programmer’s buffer. Refer to
Section 4.1 “Read Code Memory, ID Locations and
Configuration Bits” for implementation details of
reading code memory.

The Table Pointer must be manually set to 200000h
(base address of the ID locations) once the code
memory has been verified. The post-increment feature
of the table read 4-bit command can not be used to
increment the Table Pointer beyond the code memory
space. In a 64-Kbyte device, for example, a post-incre-
ment read of address FFFFh will wrap the Table Pointer
back to 000000h, rather than point to unimplemented
address 010000h.

FIGURE 4-2: VERIFY CODE MEMORY FLOW

Read Low Byte

Read High Byte

Does
Word = Expect

data?
Failure,
Report
Error

All
code memory

verified?
No

Yes

No

Set TBLPTR = 0

Start

Set TBLPTR = 200000h

Yes

Read Low Byte

Read High byte

Does
Word = Expect

data?
Failure,
Report
Error

All
ID locations

verified?
No

Yes

Done

Yes

No

with Post-increment

with Post-increment
Increment

Pointer

with Post-Increment

with Post-Increment
© 2009 Microchip Technology Inc. Advance Information DS41297F-page 25

PIC18F2XK20/4XK20

4.3 Verify Configuration Bits
A configuration address may be read and output on
PGD via the 4-bit command, ‘1001’. Configuration data
is read and written in a byte-wise fashion, so it is not
necessary to merge two bytes into a word prior to a
compare. The result may then be immediately
compared to the appropriate configuration data in the
programmer’s memory for verification. Refer to
Section 4.1 “Read Code Memory, ID Locations and
Configuration Bits” for implementation details of
reading configuration data.

4.4 Read Data EEPROM Memory
Data EEPROM is accessed one byte at a time via an
Address Pointer (register pair EEADRH:EEADR) and a
data latch (EEDATA). Data EEPROM is read by loading
EEADRH:EEADR with the desired memory location
and initiating a memory read by appropriately configur-
ing the EECON1 register. The data will be loaded into
EEDATA, where it may be serially output on PGD via
the 4-bit command, ‘0010’ (Shift Out Data Holding
register). A delay of P6 must be introduced after the
falling edge of the 8th PGC of the operand to allow
PGD to transition from an input to an output. During this
time, PGC must be held low (see Figure 4-4).

The command sequence to read a single byte of data
is shown in Table 4-2.

FIGURE 4-3: READ DATA EEPROM
FLOW

TABLE 4-2: READ DATA EEPROM MEMORY

Start

Set
Address

Read
Byte

Done

No

Yes

done?

Move to TABLAT

Shift Out Data

4-bit
Command Data Payload Core Instruction

Step 1: Direct access to data EEPROM.
0000
0000

9E A6
9C A6

BCF EECON1, EEPGD
BCF EECON1, CFGS

Step 2: Set the data EEPROM Address Pointer.
0000
0000
0000
0000

0E <Addr>
6E A9

OE <AddrH>
6E AA

MOVLW <Addr>
MOVWF EEADR
MOVLW <AddrH>
MOVWF EEADRH

Step 3: Initiate a memory read.
0000 80 A6 BSF EECON1, RD

Step 4: Load data into the Serial Data Holding register.
0000
0000
0000
0010

50 A8
6E F5
00 00

<MSB><LSB>

MOVF EEDATA, W, 0
MOVWF TABLAT
NOP
Shift Out Data(1)

Note 1: The <LSB> is undefined. The <MSB> is the data.
DS41297F-page 26 Advance Information © 2009 Microchip Technology Inc.

PIC18F2XK20/4XK20

TABLE 5-3: PIC18F2XK20/4XK20 BIT DESCRIPTIONS

Bit Name Configuration
Words Description

IESO CONFIG1H Internal External Switchover bit
1 = Internal External Switchover mode enabled
0 = Internal External Switchover mode disabled

FCMEN CONFIG1H Fail-Safe Clock Monitor Enable bit
1 = Fail-Safe Clock Monitor enabled
0 = Fail-Safe Clock Monitor disabled

FOSC<3:0> CONFIG1H Oscillator Selection bits
11xx = External RC oscillator, CLKOUT function on RA6
101x = External RC oscillator, CLKOUT function on RA6
1001 = HFINTOSC, CLKOUT function on RA6, port function on RA7
1000 = HFINTOSC, port function on RA6, port function on RA7
0111 = External RC oscillator, port function on RA6
0110 = HS oscillator, PLL enabled (clock frequency = 4 x FOSC1)
0101 = EC oscillator, port function on RA6
0100 = EC oscillator, CLKOUT function on RA6
0011 = External RC oscillator, CLKOUT function on RA6
0010 = HS oscillator
0001 = XT oscillator
0000 = LP oscillator

BORV<1:0> CONFIG2L Brown-out Reset Voltage bits
11 = VBOR set to 1.8V
10 = VBOR set to 2.2V
01 = VBOR set to 2.7V
00 = VBOR set to 3.0V

BOREN<1:0> CONFIG2L Brown-out Reset Enable bits
11 = Brown-out Reset enabled in hardware only (SBOREN is disabled)
10 = Brown-out Reset enabled in hardware only and disabled in Sleep mode

(SBOREN is disabled)
01 = Brown-out Reset enabled and controlled by software (SBOREN is enabled)
00 = Brown-out Reset disabled in hardware and software

PWRTEN CONFIG2L Power-up Timer Enable bit
1 = PWRT disabled
0 = PWRT enabled

WDPS<3:0> CONFIG2H Watchdog Timer Postscaler Select bits
1111 = 1:32,768
1110 = 1:16,384
1101 = 1:8,192
1100 = 1:4,096
1011 = 1:2,048
1010 = 1:1,024
1001 = 1:512
1000 = 1:256
0111 = 1:128
0110 = 1:64
0101 = 1:32
0100 = 1:16
0011 = 1:8
0010 = 1:4
0001 = 1:2
0000 = 1:1

.

DS41297F-page 30 Advance Information © 2009 Microchip Technology Inc.

PIC18F2XK20/4XK20
WDTEN CONFIG2H Watchdog Timer Enable bit
1 = WDT enabled
0 = WDT disabled (control is placed on SWDTEN bit)

MCLRE CONFIG3H MCLR Pin Enable bit
1 = MCLR pin enabled, RE3 input pin disabled
0 = RE3 input pin enabled, MCLR pin disabled

HFOFST CONFIG3H HFINTOSC Fast Start
1 = HFINTOSC output is not delayed
0 = HFINTOSC output is delayed until oscillator is stable (IOFS = 1)

LPT1OSC CONFIG3H Low-Power Timer1 Oscillator Enable bit
1 = Timer1 configured for low-power operation
0 = Timer1 configured for higher power operation

PBADEN CONFIG3H PORTB A/D Enable bit
1 = PORTB A/D<4:0> pins are configured as analog input channels on Reset
0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset

CCP2MX CONFIG3H CCP2 MUX bit
1 = CCP2 input/output is multiplexed with RC1
0 = CCP2 input/output is multiplexed with RB3

DEBUG CONFIG4L Background Debugger Enable bit
1 = Background debugger disabled, RB6 and RB7 configured as general

purpose I/O pins
0 = Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit

Debug
XINST CONFIG4L Extended Instruction Set Enable bit

1 = Instruction set extension and Indexed Addressing mode enabled
0 = Instruction set extension and Indexed Addressing mode disabled

(Legacy mode)
LVP CONFIG4L Low-Voltage Programming Enable bit

1 = Low-Voltage Programming enabled, RB5 is the PGM pin
0 = Low-Voltage Programming disabled, RB5 is an I/O pin

STVREN CONFIG4L Stack Overflow/Underflow Reset Enable bit
1 = Reset on stack overflow/underflow enabled
0 = Reset on stack overflow/underflow disabled

TABLE 5-3: PIC18F2XK20/4XK20 BIT DESCRIPTIONS (CONTINUED)

Bit Name Configuration
Words Description

.

© 2009 Microchip Technology Inc. Advance Information DS41297F-page 31

PIC18F2XK20/4XK20

5.3 Single-Supply ICSP Programming
The LVP bit in Configuration register, CONFIG4L,
enables Single-Supply (Low-Voltage) ICSP Program-
ming. The LVP bit defaults to a ‘1’ (enabled) from the
factory.

If Single-Supply Programming mode is not used, the
LVP bit can be programmed to a ‘0’ and RB5/PGM
becomes a digital I/O pin. However, the LVP bit may
only be programmed by entering the High-Voltage
ICSP mode, where MCLR/VPP/RE3 is raised to VIHH.
Once the LVP bit is programmed to a ‘0’, only the
High-Voltage ICSP mode is available and only the
High-Voltage ICSP mode can be used to program the
device.

5.4 Embedding Configuration Word
Information in the HEX File

To allow portability of code, a PIC18F2XK20/4XK20
programmer is required to read the Configuration Word
locations from the hex file. If Configuration Word infor-
mation is not present in the hex file, then a simple warn-
ing message should be issued. Similarly, while saving
a hex file, all Configuration Word information must be
included. An option to not include the Configuration
Word information may be provided. When embedding
Configuration Word information in the hex file, it should
start at address 300000h.

Microchip Technology Inc. feels strongly that this
feature is important for the benefit of the end customer.

5.5 Embedding Data EEPROM
Information In the HEX File

To allow portability of code, a PIC18F2XK20/4XK20
programmer is required to read the data EEPROM
information from the hex file. If data EEPROM informa-
tion is not present, a simple warning message should
be issued. Similarly, when saving a hex file, all data
EEPROM information must be included. An option to
not include the data EEPROM information may be pro-
vided. When embedding data EEPROM information in
the hex file, it should start at address F00000h.

Microchip Technology Inc. believes that this feature is
important for the benefit of the end customer.

5.6 Checksum Computation
The checksum is calculated by summing the following:

• The contents of all code memory locations
• The Configuration Word, appropriately masked
• ID locations (Only if any portion of program

memory is code-protected)

The Least Significant 16 bits of this sum are the
checksum.

Code protection limits access to program memory by
both external programmer (code-protect) and code
execution (table read protect). The ID locations, when
included in a code protected checksum, contain the
checksum of an unprotected part. The unprotected
checksum is distributed: one nibble per ID location.
Each nibble is right justified.

Table 5-4 describes how to calculate the checksum for
each device.

Note 1: The High-Voltage ICSP mode is always
available, regardless of the state of the
LVP bit, by applying VIHH to the MCLR/
VPP/RE3 pin.

2: While in Low-Voltage ICSP mode, the
RB5 pin can no longer be used as a
general purpose I/O.

Note: The checksum calculation differs depend-
ing on the code-protect setting. Since the
code memory locations read out differently
depending on the code-protect setting, the
table describes how to manipulate the
actual code memory values to simulate
the values that would be read from a
protected device. When calculating a
checksum by reading a device, the entire
code memory can simply be read and
summed. The Configuration Word and ID
locations can always be read.
DS41297F-page 34 Advance Information © 2009 Microchip Technology Inc.

PIC18F2XK20/4XK20

TABLE 5-4: CHECKSUM COMPUTATION

Device Code-
Protect Checksum Blank

Value

0xAA at 0
and Max
Address

PIC18FX3K20

None SUM[0000:01FF]+SUM[0200:0FFF]+SUM[1000:1FFF]+
(CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+
(CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+
(CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 03h)+
(CONFIG5H & C0h)+(CONFIG6L & 03h)+(CONFIG6H & E0h)+
(CONFIG7L & 03h)+(CONFIG7H & 40h)

E33Eh E294h

Boot
Block

SUM[0200:0FFF]+SUM[1000:1FFF]+(CONFIG1L & 00h)+
(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+
(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+
(CONFIG4H & 00h)+(CONFIG5L & 03h)+(CONFIG5H & C0h)+
(CONFIG6L & 03h)+(CONFIG6H & E0h)+(CONFIG7L & 03h)+
(CONFIG7H & 40h)+SUM_ID

E520h E4C6h

Boot/
Block 0

SUM[1000:1FFF]+(CONFIG1L & 00h)+(CONFIG1H & CFh)+
(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+(CONFIG3L & 00h)+
(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+(CONFIG4H & 00h)+
(CONFIG5L & 03h)+(CONFIG5H & C0h)+(CONFIG6L & 03h)+
(CONFIG6H & E0h)+(CONFIG7L & 03h)+(CONFIG7H & 40h)+SUM_ID

F31Fh F2C5h

All (CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+
(CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+
(CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 03h)+
(CONFIG5H & C0h)+(CONFIG6L & 03h)+(CONFIG6H & E0h)+
(CONFIG7L & 03h)+(CONFIG7H & 40h)+SUM_ID

031Dh 0318h

PIC18FX4K20

None SUM[0000:07FF]+SUM[0800:1FFF]+SUM[2000:3FFF]+
(CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+
(CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+
(CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 03h)+
(CONFIG5H & C0h)+(CONFIG6L & 03h)+(CONFIG6H & E0h)+
(CONFIG7L & 03h)+(CONFIG7H & 40h)

C33Eh C294h

Boot
Block

SUM[0800:1FFF]+SUM[2000:3FFF]+(CONFIG1L & 00h)+
(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+
(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+
(CONFIG4H & 00h)+(CONFIG5L & 03h)+(CONFIG5H & C0h)+
(CONFIG6L & 03h)+(CONFIG6H & E0h)+(CONFIG7L & 03h)+
(CONFIG7H & 40h)+SUM_ID

CB1Eh CAC4h

Boot/
Block 0

SUM[2000:3FFF]+(CONFIG1L & 00h)+(CONFIG1H & CFh)+
(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+(CONFIG3L & 00h)+
(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+(CONFIG4H & 00h)+
(CONFIG5L & 03h)+(CONFIG5H & C0h)+(CONFIG6L & 03h)+
(CONFIG6H & E0h)+(CONFIG7L & 03h)+(CONFIG7H & 40h)+SUM_ID

E31Dh E2C3h

All (CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+
(CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+
(CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 03h)+
(CONFIG5H & C0h)+(CONFIG6L & 03h)+(CONFIG6H & E0h)+
(CONFIG7L & 03h)+(CONFIG7H & 40h)+SUM_ID

031Bh 0316h

Legend: Item Description
CONFIGx = Configuration Word
SUM[a:b] = Sum of locations, a to b inclusive
SUM_ID = Byte-wise sum of lower four bits of all customer ID locations
+ = Addition
& = Bit-wise AND
© 2009 Microchip Technology Inc. Advance Information DS41297F-page 35

PIC18F2XK20/4XK20
PIC18FX6K20

None SUM[0000:07FF]+SUM[0800:3FFF]+SUM[4000:7FFF]+
SUM[8000:BFFF]+SUM[C000:FFFF]+(CONFIG1L & 00h)+
(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+
(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+
(CONFIG4H & 00h)+(CONFIG5L & 0Fh)+(CONFIG5H & C0h)+
(CONFIG6L & 0Fh)+(CONFIG6H & E0h)+(CONFIG7L & 0Fh)+
(CONFIG7H & 40h)

0362h 02B8h

Boot
Block

SUM[0800:3FFF]+SUM[4000:7FFF]+SUM[8000:BFFF]+SUM[C000:FFF
F]+
(CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+
(CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+
(CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 0Fh)+
(CONFIG5H & C0h)+(CONFIG6L & 0Fh)+(CONFIG6H & E0h)+
(CONFIG7L & 0Fh)+(CONFIG7H & 40h)+SUM_ID

0B2Dh 0AE2h

Boot/
Block 0/
Block 1

SUM[3000:BFFF]+SUM[C000:FFFF]+(CONFIG1L & 00h)+
(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+
(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+
(CONFIG4H & 00h)+(CONFIG5L & 0Fh)+(CONFIG5H & C0h)+
(CONFIG6L & 0Fh)+(CONFIG6H & E0h)+(CONFIG7L & 0Fh)+
(CONFIG7H & 40h)+SUM_ID

832Ah 82DFh

All (CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+
(CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+
(CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 0Fh)+
(CONFIG5H & C0h)+(CONFIG6L & 0Fh)+(CONFIG6H & E0h)+
(CONFIG7L & 0Fh)+(CONFIG7H & 40h)+SUM_ID

031Eh 0328h

TABLE 5-4: CHECKSUM COMPUTATION (CONTINUED)

Device Code-
Protect Checksum Blank

Value

0xAA at 0
and Max
Address

Legend: Item Description
CONFIGx = Configuration Word
SUM[a:b] = Sum of locations, a to b inclusive
SUM_ID = Byte-wise sum of lower four bits of all customer ID locations
+ = Addition
& = Bit-wise AND
© 2009 Microchip Technology Inc. Advance Information DS41297F-page 37

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2009 Microchip Technology Inc. Advance Info
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
rfPIC and UNI/O are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA
are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
rmation DS41297F-page 41

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

