

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k20t-i-ml

FIGURE 2-1: 28-PIN SDIP, SSOP AND SOIC PIN DIAGRAMS

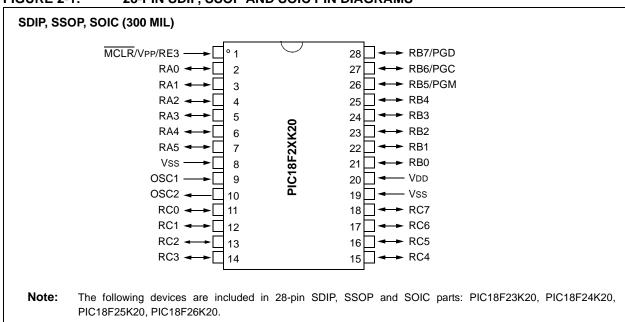
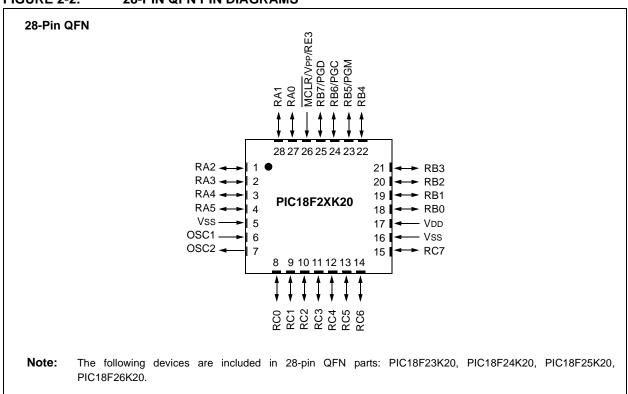
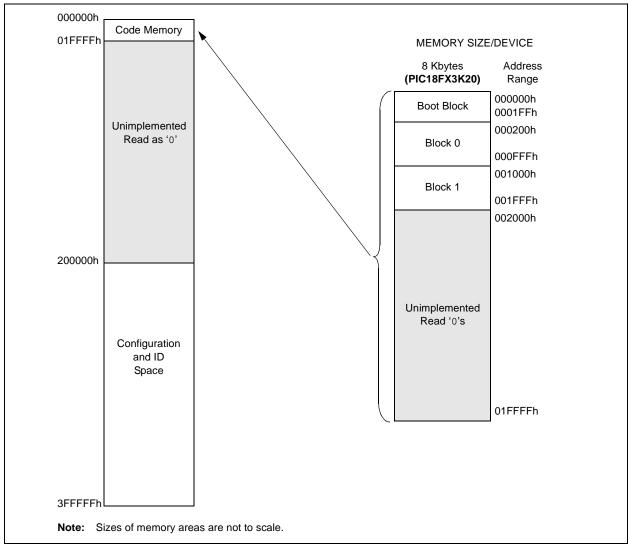



FIGURE 2-2: 28-PIN QFN PIN DIAGRAMS


2.3 Memory Maps

For the PIC18FX3K20 devices, the code memory space extends from 0000h to 01FFFh (8 Kbytes) in two 4-Kbyte blocks. Addresses 0000h through 01FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-2: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F23K20	000000h 001EEEh (9K)
PIC18F43K20	000000h-001FFFh (8K)

FIGURE 2-6: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX3K20 DEVICES

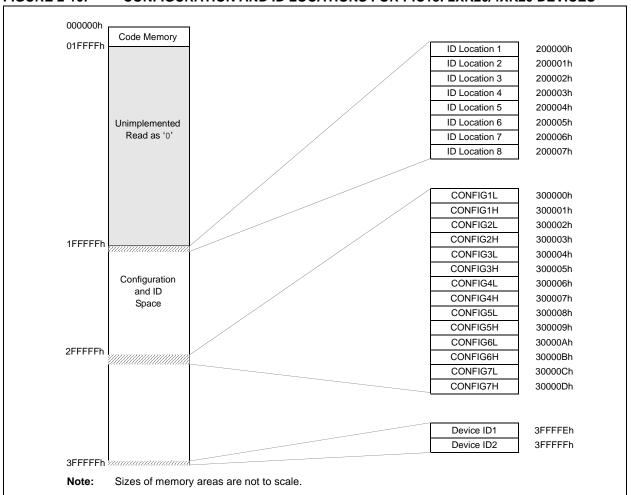
In addition to the code memory space, there are three blocks in the configuration and ID space that are accessible to the user through table reads and table writes. Their locations in the memory map are shown in Figure 2-10.

Users may store identification information (ID) in eight ID registers. These ID registers are mapped in addresses 200000h through 200007h. The ID locations read out normally, even after code protection is applied.

Locations 300000h through 30000Dh are reserved for the Configuration bits. These bits select various device options and are described in **Section 5.0 "Configuration Word"**. These Configuration bits read out normally, even after code protection.

Locations 3FFFFEh and 3FFFFFh are reserved for the device ID bits. These bits may be used by the programmer to identify what device type is being programmed and are described in **Section 5.0 "Configuration Word"**. These device ID bits read out normally, even after code protection.

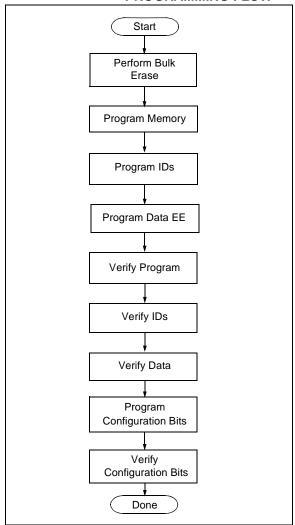
2.3.1 MEMORY ADDRESS POINTER


Memory in the address space, 0000000h to 3FFFFFh, is addressed via the Table Pointer register, which is comprised of three Pointer registers:

- · TBLPTRU, at RAM address 0FF8h
- · TBLPTRH, at RAM address 0FF7h
- · TBLPTRL, at RAM address 0FF6h

TBLPTRU	TBLPTRH	TBLPTRL		
Addr[21:16]	Addr[15:8]	Addr[7:0]		

The 4-bit command, '0000' (core instruction), is used to load the Table Pointer prior to using any read or write operations.


FIGURE 2-10: CONFIGURATION AND ID LOCATIONS FOR PIC18F2XK20/4XK20 DEVICES

2.4 High-Level Overview of the Programming Process

Figure 2-11 shows the high-level overview of the programming process. First, a Bulk Erase is performed. Next, the code memory, ID locations and data EEPROM are programmed. These memories are then verified to ensure that programming was successful. If no errors are detected, the Configuration bits are then programmed and verified.

FIGURE 2-11: HIGH-LEVEL PROGRAMMING FLOW

2.5 Entering and Exiting High-Voltage ICSP Program/Verify Mode

As shown in Figure 2-12, the High-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low and then raising MCLR/VPP/RE3 to VIHH (high voltage). Once in this mode, the code memory, data EEPROM, ID locations and Configuration bits can be accessed and programmed in serial fashion. Figure 2-13 shows the exit sequence.

The sequence that enters the device into the Program/ Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-12: ENTERING HIGH-VOLTAGE PROGRAM/VERIFY MODE

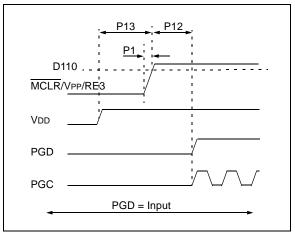
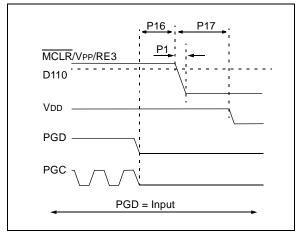



FIGURE 2-13: EXITING HIGH-VOLTAGE PROGRAM/VERIFY MODE

2.6 Entering and Exiting Low-Voltage ICSP Program/Verify Mode

When the LVP Configuration bit is '1' (see **Section 5.3** "**Single-Supply ICSP Programming**"), the Low-Voltage ICSP mode is enabled. As shown in Figure 2-14, Low-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low, placing a logic high on PGM and then raising MCLR/VPP/RE3 to VIH. In this mode, the RB5/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. Figure 2-15 shows the exit sequence.

The sequence that enters the device into the Program/ Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-14: ENTERING LOW-VOLTAGE PROGRAM/VERIFY MODE

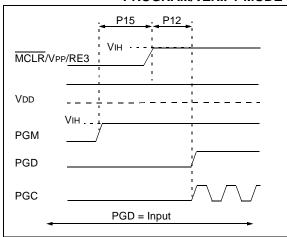
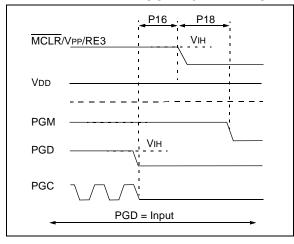



FIGURE 2-15: EXITING LOW-VOLTAGE PROGRAM/VERIFY MODE

2.7 Serial Program/Verify Operation

The PGC pin is used as a clock input pin and the PGD pin is used for entering command bits and data input/output during serial operation. Commands and data are transmitted on the rising edge of PGC, latched on the falling edge of PGC and are Least Significant bit (LSb) first.

2.7.1 4-BIT COMMANDS

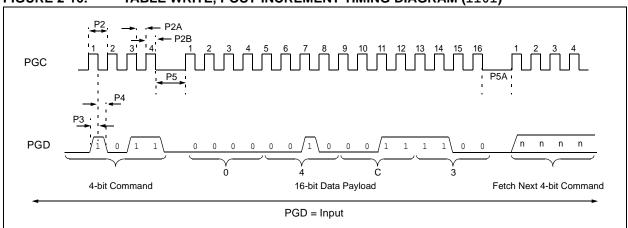
All instructions are 20 bits, consisting of a leading 4-bit command followed by a 16-bit operand, which depends on the type of command being executed. To input a command, PGC is cycled four times. The commands needed for programming and verification are shown in Table 2-6.

Depending on the 4-bit command, the 16-bit operand represents 16 bits of input data or 8 bits of input data and 8 bits of output data.

Throughout this specification, commands and data are presented as illustrated in Table 2-7. The 4-bit command is shown Most Significant bit (MSb) first. The command operand, or "Data Payload", is shown <MSB><LSB>. Figure 2-16 demonstrates how to serially present a 20-bit command/operand to the device.

2.7.2 CORE INSTRUCTION

The core instruction passes a 16-bit instruction to the CPU core for execution. This is needed to set up registers as appropriate for use with other commands.


TABLE 2-6: COMMANDS FOR PROGRAMMING

Description	4-Bit Command		
Core Instruction (Shift in16-bit instruction)	0000		
Shift out TABLAT register	0010		
Table Read	1000		
Table Read, post-increment	1001		
Table Read, post-decrement	1010		
Table Read, pre-increment	1011		
Table Write	1100		
Table Write, post-increment by 2	1101		
Table Write, start programming, post-increment by 2	1110		
Table Write, start programming	1111		

TABLE 2-7: SAMPLE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
1101	3C 40	Table Write, post-increment by 2

FIGURE 2-16: TABLE WRITE, POST-INCREMENT TIMING DIAGRAM (1101)

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the EECON1 register must be configured in order to operate on a particular memory region.

When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7>=1) and the CFGS bit must be cleared (EECON1<6>=0). The WREN bit must be set (EECON1<2>=1) to enable writes of any sort (e.g., erases) and this must be done prior to initiating a write sequence. The FREE bit must be set (EECON1<4>=1) in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit (EECON1<1>=1). It is strongly recommended that the WREN bit only be set immediately prior to a program or erase.

3.1 ICSP Erase

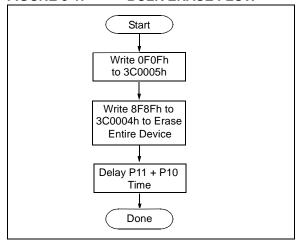
3.1.1 HIGH-VOLTAGE ICSP BULK ERASE

Erasing code or data EEPROM is accomplished by configuring two Bulk Erase Control registers located at 3C0004h and 3C0005h. Code memory may be erased portions at a time, or the user may erase the entire device in one action. Bulk Erase operations will also clear any code-protect settings associated with the memory block erased. Erase options are detailed in Table 3-1. If data EEPROM is code-protected (CPD = 0), the user must request an erase of data EEPROM (e.g., 0084h as shown in Table 3-1).

TABLE 3-1: BULK ERASE OPTIONS

TABLE O II. BOLK LIGHT	2 01 110110			
Description	Data (3C0005h:3C0004h)			
Chip Erase	0F8Fh			
Erase User ID	0088h			
Erase Data EEPROM	0084h			
Erase Boot Block	0081h			
Erase Config Bits	0082h			
Erase Code EEPROM Block 0	0180h			
Erase Code EEPROM Block 1	0280h			
Erase Code EEPROM Block 2	0480h			
Erase Code EEPROM Block 3	0880h			

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (parameter P11). During this time, PGC may continue to toggle but PGD must be held low.


The code sequence to erase the entire device is shown in Table 3-2 and the flowchart is shown in Figure 3-1.

A Bulk Erase is the only way to reprogram code-protect bits from an "on" state to an "off" state.

TABLE 3-2: BULK ERASE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 05	MOVLW 05h
0000	6E F6	MOVWF TBLPTRL
1100	0F 0F	Write OFh to 3C0005h
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 04	MOVLW 04h
0000	6E F6	MOVWF TBLPTRL
1100	8F 8F	Write 8F8Fh TO 3C0004h to erase entire device.
0000	00 00	NOP
0000	00 00	Hold PGD low until erase completes.

FIGURE 3-1: BULK ERASE FLOW

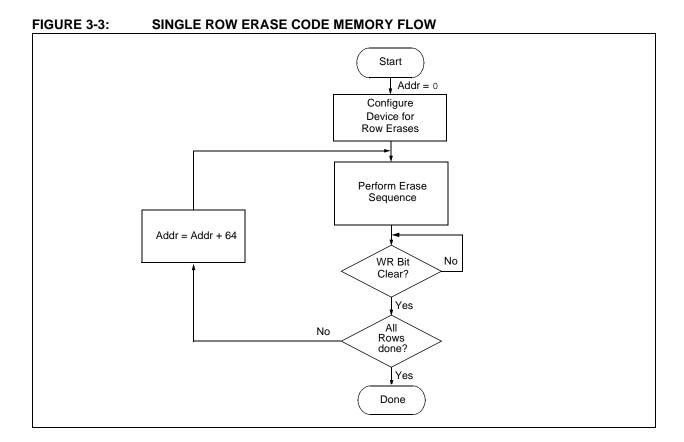


TABLE 3-7: PROGRAMMING DATA MEMORY

4-bit Command	Data Payload	Core Instruction					
Step 1: Direct access to data EEPROM.							
0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS					
Step 2: Set the	data EEPROM Address F	Pointer.					
0000 0000 0000 0000	0E <addr> 6E A9 OE <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>					
Step 3: Load the	e data to be written.						
0000	0E <data> 6E A8</data>	MOVLW <data> MOVWF EEDATA</data>					
Step 4: Enable r	memory writes.						
0000	84 A6	BSF EECON1, WREN					
Step 5: Initiate v	vrite.						
0000 0000 0000	82 A6 00 00 00 00	BSF EECON1, WR NOP NOP; write starts on 4th clock of this instruction					
Step 6: Poll WR	bit, repeat until the bit is	clear.					
0000 50 A6 MOVF EECON1, W, 0 0000 6E F5 MOVWF TABLAT 0000 00 00 NOP 0010 <msb><lsb> Shift out data⁽¹⁾</lsb></msb>							
Step 7: Hold PG	C low for time P10.						
Step 8: Disable	writes.						
0000	94 A6	BCF EECON1, WREN					
Repeat steps 2	Repeat steps 2 through 8 to write more data.						

Note 1: See Figure 4-4 for details on shift out data timing.

3.5 Boot Block Programming

The code sequence detailed in Table 3-5 should be used, except that the address used in "Step 2" will be in the range of 000000h to 0007FFh.

3.6 Configuration Bits Programming

Unlike code memory, the Configuration bits are programmed a byte at a time. The Table Write, Begin Programming 4-bit command ('1111') is used, but only 8 bits of the following 16-bit payload will be written. The LSB of the payload will be written to even addresses and the MSB will be written to odd addresses. The code sequence to program two consecutive configuration locations is shown in Table 3-9. See Figure 3-5 for the timing diagram.

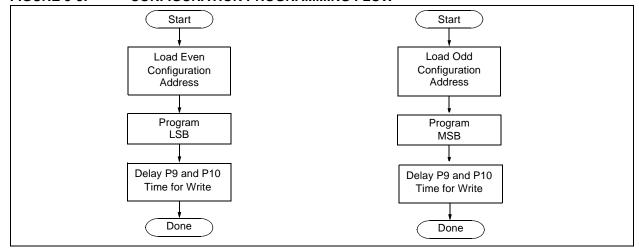

Note: The address must be explicitly written for each byte programmed. The addresses can not be incremented in this mode.

TABLE 3-9: SET ADDRESS POINTER TO CONFIGURATION LOCATION

IADLE 3-3.	SET ADDICESS FOR	NIER TO CONFIGURATION LOCATION					
4-bit Command	Data Payload	Core Instruction					
Step 1: Direct a	ccess to config memory.						
0000	8E A6	BSF EECON1, EEPGD					
0000	8C A6	BSF EECON1, CFGS					
0000	84 A6	BSF EECON1, WREN					
Step 2 ⁽¹⁾ : Set Ta	able Pointer for config by	te to be written. Write even/odd addresses.					
0000	0E 30	MOVLW 30h					
0000	6E F8	MOVWF TBLPTRU					
0000	0E 00	MOVLW 00h					
0000	6E F7	MOVWF TBLPRTH					
0000	0E 00	MOVLW 00h					
0000	6E F6	MOVWF TBLPTRL					
1111	<msb ignored=""><lsb></lsb></msb>	Load 2 bytes and start programming.					
0000	00 00	NOP - hold PGC high for time P9 and low for time P10.					
0000	0E 01	MOVLW 01h					
0000	6E F6	MOVWF TBLPTRL					
1111	<msb><lsb ignored=""></lsb></msb>	Load 2 bytes and start programming.					
0000	00 00	NOP - hold PGC high for time P9A and low for time P10.					

Note 1: Enabling the write protection of Configuration bits (WRTC = 0 in CONFIG6H) will prevent further writing of Configuration bits. Always write all the Configuration bits before enabling the write protection for Configuration bits.

FIGURE 3-8: CONFIGURATION PROGRAMMING FLOW

4.0 READING THE DEVICE

4.1 Read Code Memory, ID Locations and Configuration Bits

Code memory is accessed one byte at a time via the 4-bit command, '1001' (table read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH:TBLPTRL) are serially output on PGD.

The 4-bit command is shifted in LSb first. The read is executed during the next 8 clocks, then shifted out on PGD during the last 8 clocks, LSb to MSb. A delay of P6 must be introduced after the falling edge of the 8th

PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to the reading of the ID and Configuration registers.

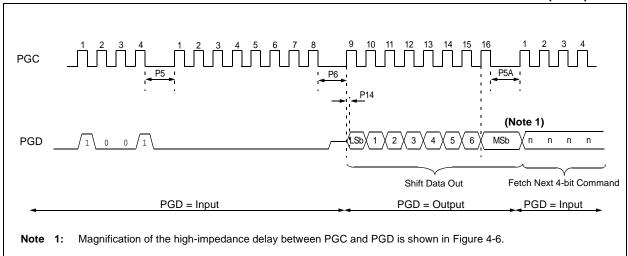
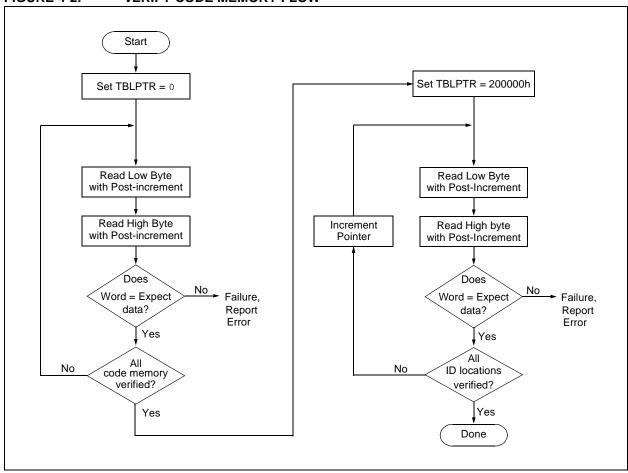

When table read protection is enabled, the first read access to a protected block should be discarded and the read repeated to retrieve valid data. Subsequent reads of the same block can be performed normally.

TABLE 4-1: READ CODE MEMORY SEQUENCE

4-bit Command	Data Payload	Core Instruction				
Step 1: Set Tabl	e Pointer					
0000	0E <addr[21:16]></addr[21:16]>	MOVLW Addr[21:16]				
0000	6E F8	MOVWF TBLPTRU				
0000	0E <addr[15:8]></addr[15:8]>	MOVLW <addr[15:8]></addr[15:8]>				
0000	6E F7	MOVWF TBLPTRH				
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>				
0000	6E F6	MOVWF TBLPTRL				
Step 2: Read m	Step 2: Read memory and then shift out on PGD, LSb to MSb					
1001	00 00	TBLRD *+				

Note:

FIGURE 4-1: TABLE READ POST-INCREMENT INSTRUCTION TIMING DIAGRAM (1001)



4.2 Verify Code Memory and ID Locations

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading code memory.

The Table Pointer must be manually set to 200000h (base address of the ID locations) once the code memory has been verified. The post-increment feature of the table read 4-bit command can not be used to increment the Table Pointer beyond the code memory space. In a 64-Kbyte device, for example, a post-increment read of address FFFFh will wrap the Table Pointer back to 000000h, rather than point to unimplemented address 010000h.

FIGURE 4-2: VERIFY CODE MEMORY FLOW

4.3 Verify Configuration Bits

A configuration address may be read and output on PGD via the 4-bit command, '1001'. Configuration data is read and written in a byte-wise fashion, so it is not necessary to merge two bytes into a word prior to a compare. The result may then be immediately compared to the appropriate configuration data in the programmer's memory for verification. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading configuration data.

4.4 Read Data EEPROM Memory

Data EEPROM is accessed one byte at a time via an Address Pointer (register pair EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is read by loading EEADRH:EEADR with the desired memory location and initiating a memory read by appropriately configuring the EECON1 register. The data will be loaded into EEDATA, where it may be serially output on PGD via the 4-bit command, '0010' (Shift Out Data Holding register). A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-4).

The command sequence to read a single byte of data is shown in Table 4-2.

FIGURE 4-3: READ DATA EEPROM FLOW

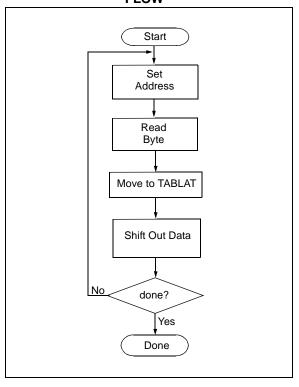


TABLE 4-2: READ DATA EEPROM MEMORY

4-bit Command	Data Payload	Core Instruction
Step 1: Direct acc	ess to data EEPROM.	
0000	9E A6	BCF EECON1, EEPGD
0000	9C A6	BCF EECON1, CFGS
Step 2: Set the da	ta EEPROM Address Point	er.
0000	0E <addr></addr>	MOVLW <addr></addr>
0000	6E A9	MOVWF EEADR
0000	OE <addrh></addrh>	MOVLW <addrh></addrh>
0000	6E AA	MOVWF EEADRH
Step 3: Initiate a n	nemory read.	
0000 80 A6		BSF EECON1, RD
Step 4: Load data	into the Serial Data Holding	g register.
0000	50 A8	MOVF EEDATA, W, O
0000	6E F5	MOVWF TABLAT
0000	00 00	NOP
0010	<msb><lsb></lsb></msb>	Shift Out Data ⁽¹⁾

Note 1: The <LSB> is undefined. The <MSB> is the data.

5.0 CONFIGURATION WORD

The PIC18F2XK20/4XK20 devices have several Configuration Words. These bits can be set or cleared to select various device configurations. All other memory areas should be programmed and verified prior to setting Configuration Words. These bits may be read out normally, even after read or code protection. See Table 5-1 for a list of Configuration bits and device IDs and Table 5-3 for the Configuration bit descriptions.

5.1 User ID Locations

A user may store identification information (ID) in eight ID locations mapped in 200000h:200007h. It is recommended that the Most Significant nibble of each ID be Fh. In doing so, if the user code inadvertently tries to execute from the ID space, the ID data will execute as a NOP.

5.2 Device ID Word

The device ID word for the PIC18F2XK20/4XK20 devices is located at 3FFFFEh:3FFFFh. These bits may be used by the programmer to identify what device type is being programmed and read out normally, even after code or read protection. See Table 5-2 for a complete list of device ID values.

FIGURE 5-1: READ DEVICE ID WORD FLOW

TABLE 5-1: CONFIGURATION BITS AND DEVICE IDs

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed
	1									Value
300001h	CONFIG1H	IESO	FCMEN	_	_	FOSC3	FOSC2	FOSC1	FOSC0	00 0111
300002h	CONFIG2L	_	_	_	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111
300003h	CONFIG2H	_	_		WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111
300005h	CONFIG3H	MCLRE	_	_	_	HFOFST	LPT1OSC	PBADEN	CCP2MX	1 1011
300006h	CONFIG4L	DEBUG	XINST	_	_	_	LVP	_	STVREN	101-1
300008h	CONFIG5L	_	_	_	_	CP3 ⁽¹⁾	CP2 ⁽¹⁾	CP1	CP0	1111
300009h	CONFIG5H	CPD	СРВ	_	_	_	_	_	_	11
30000Ah	CONFIG6L	_	_	_	_	WRT3 ⁽¹⁾	WRT2 ⁽¹⁾	WRT1	WRT0	1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	_	_	_	_	_	111
30000Ch	CONFIG7L	_	_	_	_	EBTR3 ⁽¹⁾	EBTR2 ⁽¹⁾	EBTR1	EBTR0	1111
30000Dh	CONFIG7H	_	EBTRB	_	_	_	_	_	_	-1
3FFFFEh	DEVID1 ⁽²⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table 5-2
3FFFFFh	DEVID2 ⁽²⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table 5-2

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: These bits are only implemented on specific devices. Refer to Section 2.3 "Memory Maps" to determine which bits apply based on available memory.

2: DEVID registers are read-only and cannot be programmed by the user.

TABLE 5-2: DEVICE ID VALUE

Device	Device ID Value		
Device	DEVID2	DEVID1	
PIC18F23K20	20h	111x xxxx	
PIC18F24K20	20h	101x xxxx	
PIC18F25K20	20h	011x xxxx	
PIC18F26K20	20h	001x xxxx	
PIC18F43K20	20h	110x xxxx	
PIC18F44K20	20h	100x xxxx	
PIC18F45K20	20h	010x xxxx	
PIC18F46K20	20h	000x xxxx	

Note: The 'x's in DEVID1 contain the device revision code.

TABLE 5-3: PIC18F2XK20/4XK20 BIT DESCRIPTIONS

Bit Name	Configuration Words	Description	
IESO	CONFIG1H	Internal External Switchover bit 1 = Internal External Switchover mode enabled 0 = Internal External Switchover mode disabled	
FCMEN	CONFIG1H	Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled	
FOSC<3:0>	CONFIG1H	Oscillator Selection bits 11xx = External RC oscillator, CLKOUT function on RA6 101x = External RC oscillator, CLKOUT function on RA6 1001 = HFINTOSC, CLKOUT function on RA6, port function on RA7 1000 = HFINTOSC, port function on RA6, port function on RA7 0111 = External RC oscillator, port function on RA6 0110 = HS oscillator, PLL enabled (clock frequency = 4 x FOSC1) 0101 = EC oscillator, port function on RA6 0100 = EC oscillator, CLKOUT function on RA6 0011 = External RC oscillator, CLKOUT function on RA6 0010 = HS oscillator 0001 = XT oscillator 0000 = LP oscillator	
BORV<1:0>	CONFIG2L	Brown-out Reset Voltage bits 11 = VBOR set to 1.8V 10 = VBOR set to 2.2V 01 = VBOR set to 2.7V 00 = VBOR set to 3.0V	
BOREN<1:0>	CONFIG2L	Brown-out Reset Enable bits 11 = Brown-out Reset enabled in hardware only (SBOREN is disabled) 10 = Brown-out Reset enabled in hardware only and disabled in Sleep mode (SBOREN is disabled) 01 = Brown-out Reset enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset disabled in hardware and software	
PWRTEN	CONFIG2L	Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled	
WDPS<3:0>	CONFIG2H	Watchdog Timer Postscaler Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1	

.

TABLE 5-3: PIC18F2XK20/4XK20 BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description	
WDTEN	CONFIG2H	Watchdog Timer Enable bit	
		1 = WDT enabled	
		0 = WDT disabled (control is placed on SWDTEN bit)	
MCLRE	CONFIG3H	MCLR Pin Enable bit	
		1 = MCLR pin enabled, RE3 input pin disabled 0 = RE3 input pin enabled, MCLR pin disabled	
LIFOTOT	0001510011	HFINTOSC Fast Start	
HFOFST	CONFIG3H	1 = HFINTOSC output is not delayed	
		0 = HFINTOSC output is not delayed 0 = HFINTOSC output is delayed until oscillator is stable (IOFS = 1)	
LPT1OSC	CONFIG3H	Low-Power Timer1 Oscillator Enable bit	
		1 = Timer1 configured for low-power operation	
		0 = Timer1 configured for higher power operation	
PBADEN	CONFIG3H	PORTB A/D Enable bit	
		1 = PORTB A/D<4:0> pins are configured as analog input channels on Reset 0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset	
CCP2MX	CONFIG3H	CCP2 MUX bit	
		1 = CCP2 input/output is multiplexed with RC1	
		0 = CCP2 input/output is multiplexed with RB3	
DEBUG	CONFIG4L	Background Debugger Enable bit	
		1 = Background debugger disabled, RB6 and RB7 configured as general	
		purpose I/O pins 0 = Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit	
		Debug	
XINST	CONFIG4L	Extended Instruction Set Enable bit	
		1 = Instruction set extension and Indexed Addressing mode enabled	
		0 = Instruction set extension and Indexed Addressing mode disabled	
		(Legacy mode)	
LVP	CONFIG4L	Low-Voltage Programming Enable bit	
		1 = Low-Voltage Programming enabled, RB5 is the PGM pin 0 = Low-Voltage Programming disabled, RB5 is an I/O pin	
STVREN	CONFIG4L	Stack Overflow/Underflow Reset Enable bit	
OT VIXLIN	CONTIG4L	1 = Reset on stack overflow/underflow enabled	
		0 = Reset on stack overflow/underflow disabled	

TABLE 5-4: CHECKSUM COMPUTATION (CONTINUED)

Device	Code- Protect	Checksum	Blank Value	0xAA at 0 and Max Address
	None	SUM[0000:07FF]+SUM[0800:1FFF]+SUM[2000:3FFF]+ SUM[4000:5FFF]+SUM[6000:7FFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 0Fh)+(CONFIG5H & C0h)+ (CONFIG6L & 0Fh)+(CONFIG6H & E0h)+(CONFIG7L & 0Fh)+ (CONFIG7H & 40h)	8362h	82B8h
PIC18FX5K20	Boot Block	SUM[0800:1FFF]+SUM[2000:3FFF]+SUM[4000:5FFF]+SUM[6000:7FFF]+SUM[0800:1FFF]+SUM[6000:7FFF]+SUM[0800:1FFF]+SUM[0800:3FFF]+SUM[4000:5FFF]+SUM[6000:7FFF]+SUM[0800:1FFF]+SUM[08	8B35h	8AEAh
	Boot/ Block 0/ Block 1	SUM[4000:5FFF]+SUM[6000:7FFF]+(CONFIG1L & 00h)+ (CONFIG1H & CFh)+(CONFIG2L & 1Fh)+(CONFIG2H & 1F)+ (CONFIG3L & 00h)+(CONFIG3H & 8Fh)+(CONFIG4L & C5h)+ (CONFIG4H & 00h)+(CONFIG5L & 0Fh)+(CONFIG5H & C0h)+ (CONFIG6L & 0Fh)+(CONFIG6H & E0h)+(CONFIG7L & 0Fh)+ (CONFIG7H & 40h)+SUM_ID	C332h	C2E7h
	All	(CONFIG1L & 00h)+(CONFIG1H & CFh)+(CONFIG2L & 1Fh)+ (CONFIG2H & 1F)+(CONFIG3L & 00h)+(CONFIG3H & 8Fh)+ (CONFIG4L & C5h)+(CONFIG4H & 00h)+(CONFIG5L & 0Fh)+ (CONFIG5H & C0h)+(CONFIG6L & 0Fh)+(CONFIG6H & E0h)+ (CONFIG7L & 0Fh)+(CONFIG7H & 40h)+SUM_ID	0326h	0330h

 Legend:
 Item
 Description

CONFIGx = Configuration Word

SUM[a:b] = Sum of locations, a to b inclusive

SUM_ID = Byte-wise sum of lower four bits of all customer ID locations

+ = Addition & = Bit-wise AND

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/ VERIFY TEST MODE (CONTINUED)

Standard Operating Conditions

Operating Temperature: 25°C is recommended

•						
Param No.	Sym.	Characteristic	Min.	Max.	Units	Conditions
P12	THLD2	Input Data Hold Time from MCLR/VPP/RE3↑	2	_	μS	
P13	TSET2	VDD ↑ Setup Time to MCLR/VPP/RE3 ↑	100	_	ns	
P14	TVALID	Data Out Valid from PGC ↑	10	_	ns	
P15	TSET3	PGM ↑ Setup Time to MCLR/VPP/RE3 ↑	2	_	μS	
P16	TDLY8	Delay between Last PGC \downarrow and $\overline{\text{MCLR}}/\text{VPP/RE3} \downarrow$	0	_	s	
P17	THLD3	MCLR/VPP/RE3 ↓ to VDD ↓	_	100	ns	
P18	THLD4	MCLR/VPP/RE3 ↓ to PGM ↓	0	_	s	
P19	THIZ	Delay from PGC ↑ to PGD High-Z	3	10	nS	
P20	TPPDP	Hold time after VPP changes	5	_	μS	

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH; this can cause spurious program executions to occur. The maximum transition time is:

¹ TCY + TPWRT (if enabled) + 1024 ToSC (for LP, HS, HS/PLL and XT modes only) + 2 ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only) where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and ToSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

NOTES: