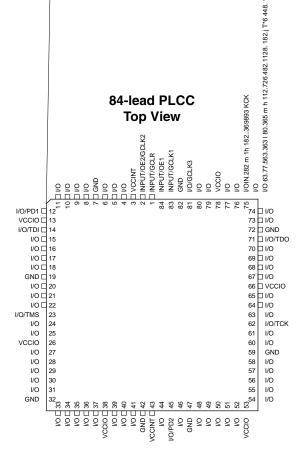


Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.


Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable (min 10K program/erase cycles)
Delay Time tpd(1) Max	25 ns
Voltage Supply - Internal	4.5V ~ 5.5V
Number of Logic Elements/Blocks	-
Number of Macrocells	128
Number of Gates	-
Number of I/O	80
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atf1508asl-25ai100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

100-lead TQFP Top View

Description

The ATF1508AS is a high-performance, high-density complex programmable logic device (CPLD) that utilizes Atmel's proven electrically-erasable technology. With 128 logic macrocells and up to 100 inputs, it easily integrates logic from several TTL, SSI, MSI, LSI and classic PLDs. The ATF1508AS's enhanced routing switch matrices increase usable gate count and increase odds of successful pin-locked design modifications.

The ATF1508AS has up to 96 bi-directional I/O pins and four dedicated input pins, depending on the type of device package selected. Each dedicated pin can also serve as a global control signal, register clock, register reset or output enable. Each of these control signals can be selected for use individually within each macrocell.

Each of the 128 macrocells generates a buried feedback that goes to the global bus. Each input and I/O pin also feeds into the global bus. The switch matrix in each logic block then selects 40 individual signals from the global bus. Each macrocell also generates a foldback logic term that goes to a regional bus. Cascade logic between macrocells in the ATF1508AS allows fast, efficient generation of complex logic functions. The ATF1508AS contains eight such logic chains, each capable of creating sum term logic with a fan-in of up to 40 product terms.

The ATF1508AS macrocell, shown in Figure 1, is flexible enough to support highly-complex logic functions operating at high speed. The macrocell consists of five sections: product terms and product term select multiplexer; OR/XOR/CASCADE logic, a flip-flop, output select and enable, and logic array inputs.

Unused macrocells are automatically disabled by the compiler to decrease power consumption. A security fuse, when programmed, protects the contents of the ATF1508AS. Two bytes (16 bits) of User Signature are accessible to the user for purposes such as storing project name, part number, revision or date. The User Signature is accessible regardless of the state of the security fuse.

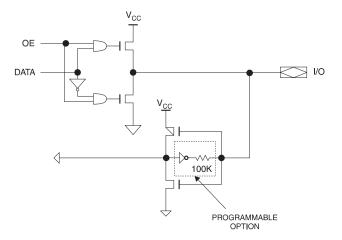
The ATF1508AS device is an in-system programmable (ISP) device. It uses the industry-standard 4-pin JTAG interface (IEEE Std. 1149.1), and is fully compliant with JTAG's Boundary-scan Description Language (BSDL). ISP allows the device to be programmed without removing it from the printed circuit board. In addition to simplifying the manufacturing flow, ISP also allows design modifications to be made in the field via software.

Product Terms and Select Mux

Each ATF1508AS macrocell has five product terms. Each product term receives as its inputs all signals from both the global bus and regional bus.

The product term select multiplexer (PTMUX) allocates the five product terms as needed to the macrocell logic gates and control signals. The PTMUX programming is determined by the design compiler, which selects the optimum macrocell configuration.

OR/XOR/ CASCADE Logic


The ATF1508AS's logic structure is designed to efficiently support all types of logic. Within a single macrocell, all the product terms can be routed to the OR gate, creating a 5-input e opeme(e6c-)e.4.e9hd.6cagicrLogic1.3(o5.)(6cagigic1.3ic1.3.n6c4)n6a0uLu9y3(.3mDEsi2ih.1eiy)1-5

Speed/Power Management

The ATF1508AS has several built-in speed and power management features. The ATF1508AS contains circuitry that automatically puts the device into a low-power stand-by mode when no logic transitions are occurring. This not only reduces power consumption during inactive periods, but also provides proportional power-savings for most applications running at system speeds below 5 MHz.

To further reduce power, each ATF1508AS macrocell has a Reduced-power bit feature. This feature allows individual macrocells to be configured for maximum power savings. This feature may be selected as a design option.

I/O Diagram

All ATF1508 also have an optional power-down mode. In this mode, current drops to below 10 mA. When the power-down option is selected, either PD1 or PD2 pins (or both) can be used to power down the part. The power-down option is selected in the design source file. When enabled, the device goes into power-down when either PD1 or PD2 is high. In the power-down mode, all internal logic signals are latched and held, as are any enabled outputs.

All pin transitions are ignored until the PD pin is brought low. When the power-down feature is enabled, the PD1 or PD2 pin cannot be used as a logic input or output. However, the pin's macrocell may still be used to generate buried foldback and cascade logic signals.

All power-down AC characteristic parameters are computed from external input or I/O pins, with Reduced-power Bit turned on. For macrocells in reduced-power mode (Reduced-power bit turned on), the reduced-power adder, tRPA, must be added to the AC parameters, which include the data paths t_{IAD} , t_{IAC} , t_{IC} , t_{ACI} , and t_{SEXP} .

Each output also has individual slew rate control. This may be used to reduce system noise by slowing down outputs that do not need to operate at maximum speed. Outputs default to slow switching, and may be specified as fast switching in the design file.

Design Software Support

ISP Programming Protection

The ATF1508AS has a special feature that locks the device and prevents the inputs and I/O from driving if the programming process is interrupted for any reason. The inputs and I/O default to high-Z state during such a condition. In addition the pin-keeper option preserves the former state during device programming.

All ATF1508AS devices are initially shipped in the erased state thereby making them ready to use for ISP.

Note: For more information refer to the "Designing for In-System Programmability with Atmel CPLDs" application note.

JTAG-BST Overview

The JTAG boundary-scan testing is controlled by the Test Access Port (TAP) controller in the ATF1508AS. The boundary-scan technique involves the inclusion of a shift-register stage (contained in a boundary-scan cell) adjacent to each component so that signals at component boundaries can be controlled and observed using scan testing principles. Each input pin and I/O pin has its own boundary-scan cell (BSC) in order to support boundary-scan testing. The ATF1508AS does not currently include a Test Reset (TRST) input pin because the TAP controller is automatically reset at power-up. The six JTAG BST modes supported include: SAMPLE/PRELOAD, EXTEST, BYPASS and IDCODE. BST on the ATF1508AS is implemented using the Boundary-scan Definition Language (BSDL) described in the JTAG specification (IEEE Standard 1149.1). Any third-party tool that supports the BSDL format can be used to perform BST on the ATF1508AS.

The ATF1508AS also has the option of using four JTAG-standard I/O pins for In-System programming (ISP). The ATF1508AS is programmable through the four JTAG pins using programming compatible with the IEEE JTAG Standard 1149.1. Programming is performed by using 5V TTL-level programming signals from the JTAG ISP interface. The JTAG feature is a programmable option. If JTAG (BST or ISP) is not needed, then the four JTAG control pins are available as I/O pins.

JTAG Boundary-scan Cell (BSC) Testing

The ATF1508AS contains up to 96 I/O pins and four input pins, depending on the device type and package type selected. Each input pin and I/O pin has its own boundary-scan cell (BSC) in order to support boundary-scan testing as described in detail by IEEE Standard 1149.1. A typical BSC consists of three capture registers or scan registers and up to two update registers. There are two types of BSCs, one for input or I/O pin, and one for the macrocells. The BSCs in the device are chained together through the (BST) capture registers. Input to the capture register chain is fed in from the TDI pin while the output is directed to the TDO pin. Capture registers are used to capture active device data signals, to shift data in and out of the device and to load data into the update registers. Control signals are generated internally by the JTAG TAP controller. The BSC configuration for the input and I/O pins and macrocells are shown below.

BSC Configuration Pins and Macrocells

(Except JTAG

TAP Pins)

Dedic

To Internal

D

TDO

TDI (From Next Register)

Note: The ATF1508AS has a pull-up option on TMS and TDI pins. This feature is selected as a design

option.

BSC Configuration for Macrocell

Boundary Scan Definition Language (BSDL) Models for the ATF1508

These are now available in all package types via the Atmel Web Site. These models can be used for Boundary-scan Test Operation in the ATF1508AS and have been scheduled to conform to the IEEE 1149.1 standard.

Power-down Mode

The ATF1508AS includes two pins for optional pin-controlled power-down feature. When this mode is enabled, the PD pin acts as the power-down pin. When the PD1 and PD2 pin is high, the device supply current is reduced to less than 10 mA. During power-down, all output data and internal logic states are latched and held. Therefore, all registered and combinatorial output data remain valid. Any outputs that were in a high-Z state at the onset will remain at high-Z. During power-down, all input signals except the power-down pin are blocked. Input and I/O hold latches remain active to ensure that pins do not float to indeterminate levels, further reducing system power. The power-down pin feature is enabled in the logic design file. Designs using either power-down pin may not use the PD pin logic array input. However, buried logic resources in this macrocell may still be used.

Power-down AC Characteristics⁽¹⁾⁽²⁾

		-7		-10		-15		-20		-25		
Symbol	Parameter	Min	Max	Units								
t _{IVDH}	Valid I, I/O before PD High	7		10		15		20		25		ns
t _{GVDH}	Valid OE ⁽²⁾ before PD High	7		10		15		20		25		ns
t _{CVDH}	Valid Clock ⁽²⁾ before PD High	7		10		15		20		25		ns
t _{DHIX}	I, I/O Don't Care after PD High		12		15		25		30		35	ns
t _{DHGX}	OE ⁽²⁾ Don't Care after PD High		12		15		25		30		35	ns
t _{DHCX}	Clock ⁽²⁾ Don't Care after PD High		12		15		25		30		35	ns
t _{DLIV}	PD Low to Valid I, I/O		1		1		1		1		1	μs
t _{DLGV}	PD Low to Valid OE (Pin or Term)		1		1		1		1		1	μs
t _{DLCV}	PD Low to Valid Clock (Pin or Term)		1		1		1		1		1	μs
t _{DLOV}	PD Low to Valid Output		1		1		1		1		1	μs

Notes: 1. For slow slew outputs, add t_{SSO}.

2. Pin or product term.

Absolute Maximum Ratings*

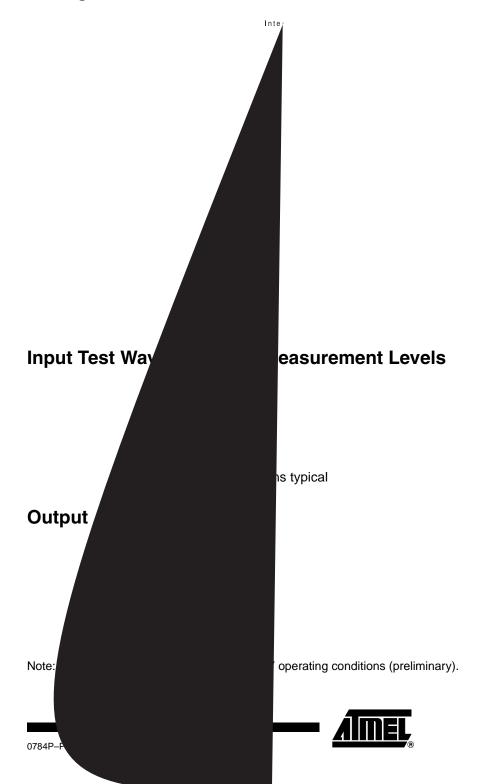
Temperature Under Bias40°C to +8	35°C
Storage Temperature65°C to +15	50°C
Voltage on Any Pin with Respect to Ground2.0V to +7.	0V ⁽¹⁾
Voltage on Input Pins with Respect to Ground During Programming2.0V to +14.	0V ⁽¹⁾
Programming Voltage with Respect to Ground2.0V to +14.	0V ⁽¹⁾

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

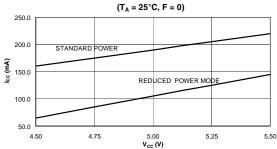
Note:

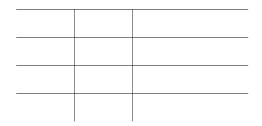
1. Minimum voltage is -0.6V DC, which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is $V_{\rm CC}$ + 0.75V DC, which may overshoot to 7.0V for pulses of less than 20 ns.

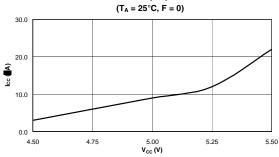


Pin Capacitance⁽¹⁾

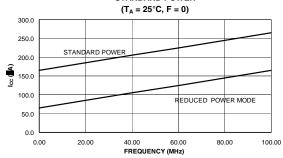
	Тур	Max	Units	Conditions
C _{IN}	8	10	pF	V _{IN} = 0V; f = 1.0 MHz
C _{I/O}	8	10	pF	V _{OUT} = 0V; f = 1.0 MHz

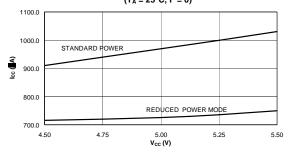

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested. The OGI pin (high-voltage pin during programming) has a maximum capacitance of 12 pF.

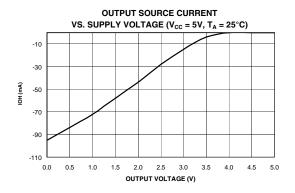

Timing Model

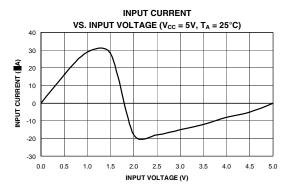


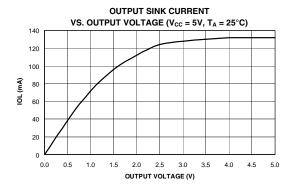
SUPPLY CURRENT VS. SUPPLY VOLTAGE

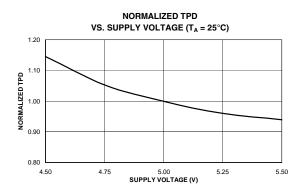


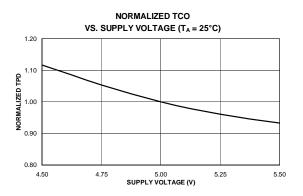

SUPPLY CURRENT VS. SUPPLY VOLTAGE LOW-POWER ("L") VERSION

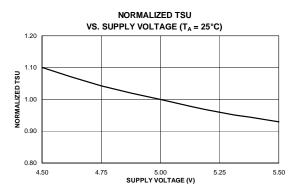


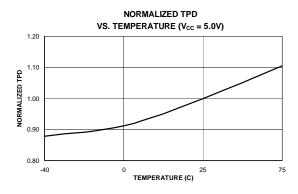

SUPPLY CURRENT VS. FREQUENCY STANDARD POWER

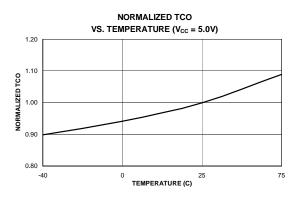



SUPPLY CURRENT VS. SUPPLY VOLTAGE PIN-CONTROLLED POWER-DOWN MODE $(T_A=25^{\circ}C,\,F=0)$









AC Characteristics (1)

		-7	7	-1	10	-1	15	-2	20	-2	25	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units
t _{PD1}	Input or Feedback to Non-registered Output		7.5		10	3	15		20		25	ns
t _{PD2}	I/O Input or Feedback to Non-registered Feedback		7		9	3	12		16		20	ns
t_{SU}	Global Clock Setup Time	6		7		11		16		20		ns
t _H	Global Clock Hold Time	0		0		0		0		0		ns
t _{FSU}	Global Clock Setup Time of Fast Input	3		3		3		3		3		ns
t _{FH}	Global Clock Hold Time of Fast Input	0.5		0.5		1.0		1.5		2		MHz
t_{COP}	Global Clock to Output Delay		4.5		5		8		10		13	ns
t_{CH}	Global Clock High Time	3		4		5		6		7		ns
t_{CL}	Global Clock Low Time	3		4		5		6		7		ns
t _{ASU}	Array Clock Setup Time	3		3		4		4		5		ns
t_{AH}	Array Clock Hold Time	2		3		4		5		6		ns
t_{ACOP}	Array Clock Output Delay		7.5		10		15		20		25	ns
t_{ACH}	Array Clock High Time	3		4		6		8		10		ns
t_{ACL}	Array Clock Low Time	3		4		6		8		10		ns
t_{CNT}	Minimum Clock Global Period		8		10		13		17		22	ns
f _{CNT}	Maximum Internal Global Clock Frequency	125		100		76.9		66		50		MHz
t_{ACNT}	Minimum Array Clock Period		8		10		13		17		22	ns
f _{ACNT}	Maximum Internal Array Clock Frequency	125		100		76.9		66		50		MHz
f_{MAX}	Maximum Clock Frequency	166.7		125		100		41.7		33.3		MHz
t_{IN}	Input Pad and Buffer Delay		0.5		0.5		2		2		2	ns
t_{IO}	I/O Input Pad and Buffer Delay		0.5		0.5		2		2		2	ns
t_{FIN}	Fast Input Delay		1		1		2		2		2	ns
$t_{\sf SEXP}$	Foldback Term Delay		4		5		8		10		12	ns
t_{PEXP}	Cascade Logic Delay		8.0		8.0		1		1		1.2	ns
t_{LAD}	Logic Array Delay		3		5		6		7		8	ns
t_{LAC}	Logic Control Delay		3		5		6		7		8	ns
t_{IOE}	Internal Output Enable Delay		2		2		3		3		4	ns
t _{OD1}	Output Buffer and Pad Delay											

ATF1508AS Dedicated Pinouts

Dedicated Pin	84-lead J-lead	100-lead PQFP	100-lead TQFP	160-lead PQFP
INPUT/OE2/GCLK2	2	92	90	142
INPUT/GCLR	1	91	89	141
INPUT/OE1	84	90	88	140
INPUT/GCLK1	83	89	87	139
I/O /GCLK3	81	87	85	137
I/O / PD (1, 2)	12,45	3,43	1,41	63,159
I/O / TDI(JTAG)	14	6	4	9
I/O / TMS(JTAG)	23	17	15	22
I/O / TCK(JTAG)	62	64	62	99
I/O / TDO(JTAG)	71	75	73	112
GND	7,19,32,42, 47,59,72,82	13,28,40,45, 61,76,88,97	11,26,38,43, 59,74,86,95	17,42,60,66,95, 113,138,148
VCCINT	3,43	41,93	39,91	61,143
VCCIO	13,26,38, 53,66,78	5,20,36,53,68,84	3,18,34,51,66,82	8,26,55,79,104,133
N/C	-	-	-	1,2,3,4,5,6,7,34,35,36, 37,38,39,40,44,45,46, 47,74,75,76,77,81,82, 83,84,85,86,87,114, 115,116,117,118,119, 120,124,125,126,127, 154,155,156,157
# of SIGNAL PINS	68	84	84	100
# USER I/O PINS	64	80	80	96

OE (1, 2) Global OE Pins
GCLR Global Clear Pin
GCLK (1, 2, 3) Global Clock Pins
PD (1, 2) Power-down pins

TDI, TMS, TCK, TDO JTAG pins used for boundary scan testing or in-system programming

GND Ground Pins

VCCINT VCC pins for the device (+5V - Internal)

VCCIO VCC pins for output drivers (for I/O pins) (+5V or 3.3V - I/Os)

ATF1508AS I/O Pinouts (Continued)

МС	PLB	84-lead J-lead	100-lead PQFP	100-lead TQFP	160-lead PQFP	МС	PLB	84-lead J-lead	100-lead PQFP	100-lead TQFP	160-lead PQFP
66	E	_	_	_	_	98	G	-	_	_	_
67	E/ PD2	45	43	41	63	99	G	64	66	64	101
68	Е	_	_	_	64	100	G	_	_	_	102
69	Е	46	44	42	65	101	G	65	67	65	103
70	Е	_	46	44	67	102	G	_	69	67	105
71	Е	_	_	_	_	103	G	_	_	_	_
72	Е	48	47	45	68	104	G	67	70	68	106
73	Е	49	48	46	69	105	G	68	71	69	107
74	Е	_	_	_	_	106	G	_	_	_	_
75	Е	50	49	47	70	107	G	69	72	70	108
76	Е	_	_	_	71	108	G	_	_	_	109
77	Е	51	50	48	72	109	G	70	73	71	110
78	Е	_	51	49	73	110	G	_	74	72	111
79	Е	_	_	_	_	111	G	_	_	_	_
80	Е	52	52	50	78	112	G/ TDO	71	75	73	112
81	F	_	54	52	80	113	Н	_	77	75	121
82	F	_	_	_	_	114	Н	_	_	_	_
83	F	54	55	53	88	115	Н	73	78	76	122
84	F	_	_	_	89	116	Н	_	_	_	123
85	F	55	56	54	90	117	Н	74	79	77	128
86	F	56	57	55	91	118	Н	75	80	78	129
87	F	_	_	_	_	119	Н	_	_	_	_
88	F	57	58	56	92	120	Н	76	81	79	130
89	F	_	59	57	93	121	Н	_	82	80	131
90	F	_	_	_	_	122	Н	_	_	_	_
91	F	58	60	58	94	123	Н	77	83	81	132
92	F	_	_	_	96	124	Н	_	_	_	134
93	F	60	62	60	97	125	Н	79	85	83	135
94	F	61	63	61	98	126	Н	80	86	84	136
95	F	_	_	_	_	127	Н	_	_	_	_
96	F/ TCK	62	64	62	99	128	H/ GCLK3	81	87	85	137

ATF1508ASL Standard Package Options

t _{PD} (ns)	t _{co1} (ns)	f _{MAX} (MHz)	Ordering Code	Package	Operation Range
			ATF1508ASL-20 JC84	84J	
20	12	83.3	ATF1508ASL-20 QC100	100Q1	Commercial
20	12	63.3	ATF1508ASL-20 AC100	100A	(0°C to 70°C)
			ATF1508ASL-20 QC160	160Q1	
			ATF1508ASL-25 JI84	84J	
25	15	70	ATF1508ASL-25 QI100	100Q1	Industrial
25	15	70	ATF1508ASL-25 AI100	100A	(-40°C to +85°C)
			ATF1508ASL-25 QI160	160Q1	

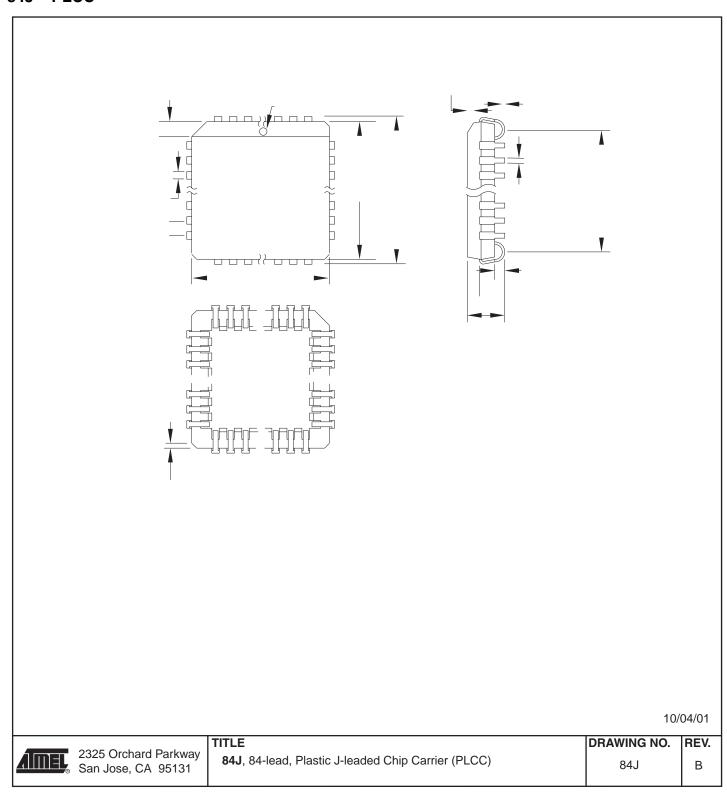
Note: 1. The last time buy is Sept. 30, 2005 for shaded parts.

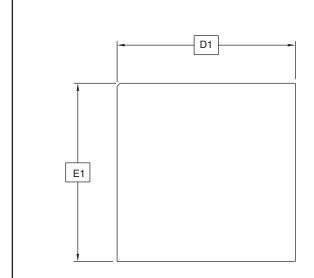
Using "C" Product for Industrial

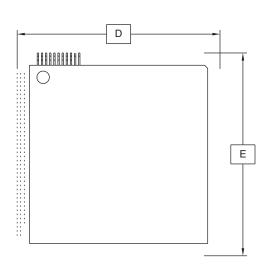
To use commercial product for Industrial temperature ranges, down-grade one speed grade from the "I" to the "C" device (7 ns "C" = 10 ns "I") and de-rate power by 30%.

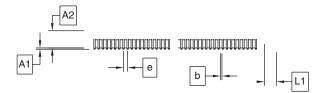
ATF1508ASL Green Package Options (Pb/Halide-free/RoHS Compliant)

t _{PD} (ns)	t _{CO1} (ns)	f _{MAX} (MHz)	Ordering Code	Package	Operation Range
25	15	70	ATF1508ASL-25 JU84 ATF1508ASL-25 AU100	84J 100A	Industrial (-40°C to +85°C)


	Package Type						
84J	84-lead, Plastic J-leaded Chip Carrier (PLCC)						
100Q1	100-lead, Plastic Quad Pin Flat Package (PQFP)						
100A	100-lead, Very Thin Plastic Gull Wing Quad Flat Package (TQFP)						
160Q1	160-lead, Plastic Quad Pin Flat Package (PQFP)						


Package Information


84J - PLCC



160Q1 - PQFP

3/28/02

AMEL

2325 Orchard Parkway San Jose, CA 95131 **TITLE 160Q1,** 160-lead, 28 x 28 mm Body, 3.2 Form Opt., Plastic Quad Flat Pack (PQFP)

DRAWING NO. REV.

Q1 A

Revision History

Revision	Comments
0784P	Green package options added.
07840	The ATF1508ASL-25 commercial speed offering was obsoleted in 2002 and replaced by the ATF1508ASL-20 commercial speed grade.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document