

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFL

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	128MHz
Connectivity	CANbus, EBI/EMI, FlexRay, I ² C, LINbus, SPI, UART/USART
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	118
Program Memory Size	832KB (832K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	98K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2387e104f128laakfuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

2.1 Pin Configuration and Definition

The pins of the XC238xA are described in detail in **Table 6**, which includes all alternate functions. For further explanations please refer to the footnotes at the end of the table. The following figure summarizes all pins, showing their locations on the four sides of the package.

Table	able 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
12	P7.4	O0 / I	St/B	Bit 4 of Port 7, General Purpose Input/Output				
	EMUX2	01	St/B	External Analog MUX Control Output 2 (ADC1)				
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output				
	U0C1_SCLK OUT	O3	St/B	USIC0 Channel 1 Shift Clock Output				
	CCU62_CCP OS2A	I	St/B	CCU62 Position Input 2				
	тск_с	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.				
	U0C0_DX0D	I	St/B	USIC0 Channel 0 Shift Data Input				
	U0C1_DX1E	I	St/B	USIC0 Channel 1 Shift Clock Input				
13	P8.1	O0 / I	St/B	Bit 1 of Port 8, General Purpose Input/Output				
	CCU60_CC6 1	01	St/B	CCU60 Channel 1 Output				
	CCU60_CC6 1INB	I	St/B	CCU60 Channel 1 Input				
	RxDC1F	I	St/B	CAN Node 1 Receive Data Input				
14	P8.0	O0 / I	St/B	Bit 0 of Port 8, General Purpose Input/Output				
	CCU60_CC6 0	01	St/B	CCU60 Channel 0 Output				
	CCU60_CC6 0INB	I	St/B	CCU60 Channel 0 Input				
16	P6.0	O0 / I	DA/A	Bit 0 of Port 6, General Purpose Input/Output				
	EMUX0	01	DA/A	External Analog MUX Control Output 0 (ADC0)				
	TxDC2	O2	DA/A	CAN Node 2 Transmit Data Output				
	BRKOUT	O3	DA/A	OCDS Break Signal Output				
	ADCx_REQG TyG	I	DA/A	External Request Gate Input for ADC0/1				
	U1C1_DX0E	I	DA/A	USIC1 Channel 1 Shift Data Input				

Table	able 6Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
56	P2.1	O0 / I	St/B	Bit 1 of Port 2, General Purpose Input/Output				
	TxDC0	01	St/B	CAN Node 0 Transmit Data Output				
	CCU63_CC6 1	O2	St/B	CCU63 Channel 1 Output				
	AD14	OH / IH	St/B	External Bus Interface Address/Data Line 14				
	CCU63_CC6 1INB	1	St/B	CCU63 Channel 1 Input				
	T5EUDB	1	St/B	GPT12E Timer T5 External Up/Down Control Input				
	ESR1_5	I	St/B	ESR1 Trigger Input 5				
57	P11.4	O0 / I	St/B	Bit 4 of Port 11, General Purpose Input/Output				
	CCU61_CC6 2	O1	St/B	CCU61 Channel 2 Output				
	CCU61_CC6 2INB	1	St/B	CCU61 Channel 2 Input				
58	P2.2	O0 / I	St/B	Bit 2 of Port 2, General Purpose Input/Output				
	TxDC1	01	St/B	CAN Node 1 Transmit Data Output				
	CCU63_CC6 2	02	St/B	CCU63 Channel 2 Output				
	AD15	OH / IH	St/B	External Bus Interface Address/Data Line 15				
	CCU63_CC6 2INB	I	St/B	CCU63 Channel 2 Input				
_	ESR2_5	I	St/B	ESR2 Trigger Input 5				
59	P11.3	O0 / I	St/B	Bit 3 of Port 11, General Purpose Input/Output				
	CCU61_COU T63	01	St/B	CCU61 Channel 3 Output				
	CCU61_COU T62	02	St/B	CCU61 Channel 2 Output				
	CCU61_T13 HRF	I	St/B	External Run Control Input for T13 of CCU61				

Table	able 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
82	P2.9	O0 / I	St/B	Bit 9 of Port 2, General Purpose Input/Output				
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output				
	TxDC1	O2	St/B	CAN Node 1 Transmit Data Output				
	CC2_CC22	O3 / I	St/B	CAPCOM2 CC22IO Capture Inp./ Compare Out.				
	A22	OH	St/B	External Bus Interface Address Line 22				
	CLKIN1	I	St/B	Clock Signal Input 1				
	TCK_A	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. A is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 0 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.				
83	P0.2	O0 / I	St/B	Bit 2 of Port 0, General Purpose Input/Output				
	U1C0_SCLK OUT	01	St/B	USIC1 Channel 0 Shift Clock Output				
	TxDC0	O2	St/B	CAN Node 0 Transmit Data Output				
	CCU61_CC6 2	O3	St/B	CCU61 Channel 2 Output				
	A2	ОН	St/B	External Bus Interface Address Line 2				
	U1C0_DX1B	I	St/B	USIC1 Channel 0 Shift Clock Input				
	CCU61_CC6 2INA	I	St/B	CCU61 Channel 2 Input				

Table	able 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
84	P10.0	O0 / I	St/B	Bit 0 of Port 10, General Purpose Input/Output			
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output			
	CCU60_CC6 0	O2	St/B	CCU60 Channel 0 Output			
	AD0	OH / IH	St/B	External Bus Interface Address/Data Line 0			
	CCU60_CC6 0INA	I	St/B	CCU60 Channel 0 Input			
	ESR1_2	Ι	St/B	ESR1 Trigger Input 2			
	U0C0_DX0A	I	St/B	USIC0 Channel 0 Shift Data Input			
	U0C1_DX0A	I	St/B	USIC0 Channel 1 Shift Data Input			
85	P3.0	O0 / I	St/B	Bit 0 of Port 3, General Purpose Input/Output			
	U2C0_DOUT	01	St/B	USIC2 Channel 0 Shift Data Output			
	BREQ	OH	St/B	External Bus Request Output			
	ESR1_1	I	St/B	ESR1 Trigger Input 1			
	U2C0_DX0A	I	St/B	USIC2 Channel 0 Shift Data Input			
	U2C0_DX1A	I	St/B	USIC2 Channel 0 Shift Clock Input			
86	P10.1	O0 / I	St/B	Bit 1 of Port 10, General Purpose Input/Output			
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output			
	CCU60_CC6 1	O2	St/B	CCU60 Channel 1 Output			
	AD1	OH / IH	St/B	External Bus Interface Address/Data Line 1			
	CCU60_CC6 1INA	I	St/B	CCU60 Channel 1 Input			
	U0C0_DX1A	I	St/B	USIC0 Channel 0 Shift Clock Input			
	U0C0_DX0B	I	St/B	USIC0 Channel 0 Shift Data Input			

Table	Table 0 Tim Demittions and Functions (conta)								
Pin	Symbol	Ctrl.	Туре	Function					
99	P3.4	O0 / I	St/B	Bit 4 of Port 3, General Purpose Input/Output					
	U2C1_SELO 0	01	St/B	USIC2 Channel 1 Select/Control 0 Output					
	U2C0_SELO 1	02	St/B	USIC2 Channel 0 Select/Control 1 Output					
	U0C0_SELO 4	O3	St/B	USIC0 Channel 0 Select/Control 4 Output					
	U2C1_DX2A	I	St/B	USIC2 Channel 1 Shift Control Input					
100	P10.5	O0 / I	St/B	Bit 5 of Port 10, General Purpose Input/Output					
	U0C1_SCLK OUT	01	St/B	USIC0 Channel 1 Shift Clock Output					
	CCU60_COU T62	02	St/B	CCU60 Channel 2 Output					
	U2C0_DOUT	O3	St/B	USIC2 Channel 0 Shift Data Output					
	AD5	OH / IH	St/B	External Bus Interface Address/Data Line 5					
	U0C1_DX1B	I	St/B	USIC0 Channel 1 Shift Clock Input					
101	P3.5	O0 / I	St/B	Bit 5 of Port 3, General Purpose Input/Output					
	U2C1_SCLK OUT	01	St/B	USIC2 Channel 1 Shift Clock Output					
	U2C0_SELO 2	02	St/B	USIC2 Channel 0 Select/Control 2 Output					
	U0C0_SELO 5	O3	St/B	USIC0 Channel 0 Select/Control 5 Output					
	U2C1_DX1A	I	St/B	USIC2 Channel 1 Shift Clock Input					

Table	Fable 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
105	P10.7	O0 / I	St/B	Bit 7 of Port 10, General Purpose Input/Output				
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output				
	CCU60_COU T63	O2	St/B	CCU60 Channel 3 Output				
	AD7	OH / IH	St/B	External Bus Interface Address/Data Line 7				
	U0C1_DX0B	I	St/B	USIC0 Channel 1 Shift Data Input				
	CCU60_CCP OS0A	I	St/B	CCU60 Position Input 0				
	T4INB	I	St/B	GPT12E Timer T4 Count/Gate Input				
106	P0.7	O0 / I	St/B	Bit 7 of Port 0, General Purpose Input/Output				
	U1C1_DOUT	01	St/B	USIC1 Channel 1 Shift Data Output				
	U1C0_SELO 3	O2	St/B	USIC1 Channel 0 Select/Control 3 Output				
	A7	OH	St/B	External Bus Interface Address Line 7				
	U1C1_DX0B	I	St/B	USIC1 Channel 1 Shift Data Input				
	CCU61_CTR APB	I	St/B	CCU61 Emergency Trap Input				
107	P3.7	O0 / I	St/B	Bit 7 of Port 3, General Purpose Input/Output				
	U2C1_DOUT	01	St/B	USIC2 Channel 1 Shift Data Output				
	U2C0_SELO 3	O2	St/B	USIC2 Channel 0 Select/Control 3 Output				
	U0C0_SELO 7	O3	St/B	USIC0 Channel 0 Select/Control 7 Output				
	U2C1_DX0B	I	St/B	USIC2 Channel 1 Shift Data Input				

Table	e 6 Pin De	finitior	ns and	Functions (cont'd)			
Pin	Symbol	Ctrl.	Туре	Function			
141	ESR0	00 / I	St/B	External Service Request 0 After power-up, ESR0 operates as open-drain bidirectional reset with a weak pull-up.			
	U1C0_DX0E	I	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX2B	I	St/B	USIC1 Channel 0 Shift Control Input			
142	P8.6	O0 / I	St/B	Bit 6 of Port 8, General Purpose Input/Output			
	CCU60_COU T63	01	St/B	CCU60 Channel 3 Output			
	MCHK_MAT CH	O3	St/B	Memory Checker Match Output			
	CCU60_CTR APB	I	St/B	CCU60 Emergency Trap Input			
	BRKIN_D	I	St/B	OCDS Break Signal Input			
	CCU62_CTR APD	I	St/B	CCU62 Emergency Trap Input			
143	P8.5	O0 / I	St/B	Bit 5 of Port 8, General Purpose Input/Output			
	CCU60_COU T62	01	St/B	CCU60 Channel 2 Output			
	CCU62_CC6 2	O2	St/B	CCU62 Channel 2 Output			
	TCK_D	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. D is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.			
	CCU62_CC6 2INB	I	St/B	CCU62 Channel 2 Input			
15	V _{DDIM}	-	PS/M	Digital Core Supply Voltage for Domain M Decouple with a ceramic capacitor, see Data Sheet for details.			
54, 91, 127	V _{DDI1}	-	PS/1	Digital Core Supply Voltage for Domain 1 Decouple with a ceramic capacitor, see Data Sheet for details. All V_{DD11} pins must be connected to each other.			

XC2385A, XC2387A XC2000 Family / Base Line

General Device Information

Table 6 Pin Definitions a			nition	s and	Functions (cont'd)
Pin	Symbo	l C	trl.	Туре	Function
20	V _{DDPA}	-	- PS/A		Digital Pad Supply Voltage for Domain A Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins.
					Note: The A/D_Converters and ports P5, P6 and P15 are fed from supply voltage V_{DDPA} .
2, 36, 38, 72, 74, 108, 110, 144	V _{DDPB}	-		PS/B	Digital Pad Supply Voltage for Domain B Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins. Note: The on-chip voltage regulators and all ports except P5, P6 and P15 are fed from supply voltage V_{DDPB} .
1, 37, 73, 109	V _{SS}	-		PS/	Digital Ground All V_{SS} pins must be connected to the ground-line or ground-plane. Note: Also the exposed pad is connected internally to V_{SS} . To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note.

 To generate the reference clock output for bus timing measurement, f_{SYS} must be selected as source for EXTCLK and P2.8 must be selected as output pin. Also the high-speed clock pad must be enabled. This configuration is referred to as reference clock output signal CLKOUT.

Functional Description

3.1 Memory Subsystem and Organization

The memory space of the XC238xA is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space.

	-	-		
Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes
IMB register space	FF'FF00 _H	FF'FFFF _H	256 Bytes	-
Reserved (Access trap)	F0'0000 _H	FF'FEFF _H	<1 Mbyte	Minus IMB registers
Reserved for EPSRAM	E8'8000 _H	EF'FFFF _H	480 Kbytes	Mirrors EPSRAM
Emulated PSRAM	E8'0000 _H	E8'7FFF _H	32 Kbytes	With Flash timing
Reserved for PSRAM	E0'8000 _H	E7'FFFF _H	480 Kbytes	Mirrors PSRAM
Program SRAM	E0'0000 _H	E0'7FFF _H	32 Kbytes	Maximum speed
Reserved for Flash	CD'0000 _H	DF'FFFF _H	<1.25 Mbytes	-
Program Flash 3	CC'0000 _H	CC'FFFF _H	64 Kbytes	-
Program Flash 2	C8'0000 _H	CB'FFFF _H	256 Kbytes	-
Program Flash 1	C4'0000 _H	C7'FFFF _H	256 Kbytes	-
Program Flash 0	C0'0000 _H	C3'FFFF _H	256 Kbytes	3)
External memory area	40'0000 _H	BF'FFFF _H	8 Mbytes	-
Available Ext. IO area ⁴⁾	21'0000 _H	3F'FFFF _H	< 2 Mbytes	Minus USIC/CAN
Reserved	20'BC00 _H	20'FFFF _H	17 Kbytes	-
USIC alternate regs.	20'B000 _H	20'BFFF _H	4 Kbytes	Accessed via EBC
MultiCAN alternate regs.	20'8000 _H	20'AFFF _H	12 Kbytes	Accessed via EBC
Reserved	20'6000 _H	20'7FFF _H	8 Kbytes	-
USIC registers	20'4000 _H	20'5FFF _H	8 Kbytes	Accessed via EBC
MultiCAN registers	20'0000 _H	20'3FFF _H	16 Kbytes	Accessed via EBC
External memory area	01'0000 _H	1F'FFFF _H	< 2 Mbytes	Minus segment 0
SFR area	00'FE00 _H	00'FFFF _H	0.5 Kbyte	-
Dual-Port RAM	00'F600 _H	00'FDFF _H	2 Kbytes	-
Reserved for DPRAM	00'F200 _H	00'F5FF _H	1 Kbyte	-
ESFR area	00'F000 _H	00'F1FF _H	0.5 Kbyte	-
XSFR area	00'E000 _H	00'EFFF _H	4 Kbytes	-

Table 8 XC238xA Memory Map ¹⁾

Functional Description

to a dedicated vector table location). The occurrence of a hardware trap is also indicated by a single bit in the trap flag register (TFR). Unless another higher-priority trap service is in progress, a hardware trap will interrupt any ongoing program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

Depending on the package option up to 3 External Service Request (ESR) pins are provided. The ESR unit processes their input values and allows to implement user controlled trap functions (System Requests SR0 and SR1). In this way reset, wakeup and power control can be efficiently realized.

Software interrupts are supported by the 'TRAP' instruction in combination with an individual trap (interrupt) number. Alternatively to emulate an interrupt by software a program can trigger interrupt requests by writing the Interrupt Request (IR) bit of an interrupt control register.

3.7 On-Chip Debug Support (OCDS)

The On-Chip Debug Support system built into the XC238xA provides a broad range of debug and emulation features. User software running on the XC238xA can be debugged within the target system environment.

The OCDS is controlled by an external debugging device via the debug interface. This either consists of the 2-pin Device Access Port (DAP) or of the JTAG port conforming to IEEE-1149. The debug interface can be completed with an optional break interface.

The debugger controls the OCDS with a set of dedicated registers accessible via the debug interface (DAP or JTAG). In addition the OCDS system can be controlled by the CPU, e.g. by a monitor program. An injection interface allows the execution of OCDS-generated instructions by the CPU.

Multiple breakpoints can be triggered by on-chip hardware, by software, or by an external trigger input. Single stepping is supported, as is the injection of arbitrary instructions and read/write access to the complete internal address space. A breakpoint trigger can be answered with a CPU halt, a monitor call, a data transfer, or/and the activation of an external signal.

Tracing data can be obtained via the debug interface, or via the external bus interface for increased performance.

Tracing of program execution is supported by the XC2000 Family emulation device.

The DAP interface uses two interface signals, the JTAG interface uses four interface signals, to communicate with external circuitry. The debug interface can be amended with two optional break lines.

Functional Description

3.10 General Purpose Timer (GPT12E) Unit

The GPT12E unit is a very flexible multifunctional timer/counter structure which can be used for many different timing tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT12E unit incorporates five 16-bit timers organized in two separate modules, GPT1 and GPT2. Each timer in each module may either operate independently in a number of different modes or be concatenated with another timer of the same module.

Each of the three timers T2, T3, T4 of **module GPT1** can be configured individually for one of four basic modes of operation: Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the system clock and divided by a programmable prescaler. Counter Mode allows timer clocking in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes each timer has one associated port pin (TxIN) which serves as a gate or clock input. The maximum resolution of the timers in module GPT1 is 4 system clock cycles.

The counting direction (up/down) for each timer can be programmed by software or altered dynamically by an external signal on a port pin (TxEUD), e.g. to facilitate position tracking.

In Incremental Interface Mode the GPT1 timers can be directly connected to the incremental position sensor signals A and B through their respective inputs TxIN and TxEUD. Direction and counting signals are internally derived from these two input signals, so that the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out monitoring of external hardware components. It may also be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to the basic operating modes, T2 and T4 may be configured as reload or capture register for timer T3. A timer used as capture or reload register is stopped. The contents of timer T3 is captured into T2 or T4 in response to a signal at the associated input pin (TxIN). Timer T3 is reloaded with the contents of T2 or T4, triggered either by an external signal or a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be continuously generated without software intervention.

4.2.1 DC Parameters

Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current $I_{\rm OV}$.

Note: Operating Conditions apply.

 Table 14 is valid under the following conditions:

 $V_{\text{DDP}} \ge 4.5 \text{ V}; V_{\text{DDPtyp}} = 5 \text{ V}; V_{\text{DDP}} \le 5.5 \text{ V}$

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Pin capacitance (digital inputs/outputs). To be doubled for double bond pins. ¹⁾	C _{IO} CC	_	-	10	pF	not subject to production test
Input Hysteresis ²⁾	HYS CC	0.11 x V _{DDP}	-	-	V	<i>R</i> _S = 0 Ohm
Absolute input leakage current on pins of analog ports ³⁾	I _{oz1} CC	_	10	200	nA	$V_{\rm IN}$ > 0 V; $V_{\rm IN}$ < $V_{\rm DDP}$
Absolute input leakage current for all other pins. To be doubled for double	I _{OZ2} CC	-	0.2	5	μA	$\begin{array}{l} T_{\rm J} \leq 110 ~^{\circ}{\rm C}; \\ V_{\rm IN} < V_{\rm DDP}; \\ V_{\rm IN} > V_{\rm SS} \end{array}$
bond pins. ³⁾¹⁾⁴⁾		_	0.2	15	μA	$T_{J} \leq 150 \text{ °C};$ $V_{IN} < V_{DDP};$ $V_{IN} > V_{SS}$
Pull Level Force Current ⁵⁾	$ I_{PLF} $ SR	250	-	-	μA	6)
Pull Level Keep Current ⁷⁾	$ I_{PLK} $ SR	-	-	30	μA	6)
Input high voltage (all except XTAL1)	$V_{\rm IH}{ m SR}$	0.7 х V _{DDP}	-	V _{DDP} + 0.3	V	
Input low voltage (all except XTAL1)	$V_{\rm IL}$ SR	-0.3	-	0.3 x V _{DDP}	V	
Output High voltage ⁸⁾	V _{OH} CC	V _{DDP} - 1.0	-	-	V	$I_{\rm OH} \ge I_{\rm OHmax}$
		V _{DDP} - 0.4	_	-	V	$I_{\rm OH} \ge I_{\rm OHnom}^{(9)}$

Table 14 DC Characteristics for Upper Voltage Range

4.2.3 Power Consumption

The power consumed by the XC238xA depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current $I_{\rm LK}$ depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ and leakage current $I_{\rm LK}$ must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for $V_{\rm DDIM}$ and $V_{\rm DDI1}$ are charged with the maximum possible current.

For additional information, please refer to Section 5.2, Thermal Considerations.

Note: Operating Conditions apply.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Power supply current (active) with all peripherals active and EVVRs on	I _{SACT} CC	-	10 + 0.6 x $f_{SYS}^{1)}$	10 + 1.0 x $f_{SYS}^{1)}$	mA	2)3)
Power supply current in stopover mode, EVVRs on	$I_{\rm SSO}$ CC	-	0.7	2.0	mA	

Table 16 Switching Power Consumption

1) $f_{\rm SYS}$ in MHz.

Electrical Parameters

Figure 14Supply Current in Active Mode as a Function of FrequencyNote: Operating Conditions apply.

Table 17 Leakage Power Consumption

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Leakage supply current (DMP_1 powered) ¹⁾	I _{LK1} CC	-	0.03	0.05	mA	<i>T</i> _J = 25 °C ¹⁾
		-	0.5	1.3	mA	<i>T</i> _J = 85 °C ¹⁾
		_	2.1	6.2	mA	<i>T</i> _J = 125 °C ¹⁾
		-	4.4	13.7	mA	$T_{\rm J}$ = 150 °C ¹⁾

 All inputs (including pins configured as inputs) are set at 0 V to 0.1 V or at V_{DDP} - 0.1 V to V_{DDP} and all outputs (including pins configured as outputs) are disconnected.

Note: A fraction of the leakage current flows through domain DMP_A (pin V_{DDPA}). This current can be calculated as 7 000 × e^{- α}, with α = 5 000 / (273 + 1.3× T_J). For T_J = 150°C, this results in a current of 160 μ A.

The leakage power consumption can be calculated according to the following formulas: I_{LK0} = 500 000 × e^{- α}, with α = 3 000 / (273 + B× T_J)

Parameter B must be replaced by

- 1.0 for typical values
- 1.6 for maximum values

 $I_{LK1} = 600\ 000 \times e^{-\alpha}$, with $\alpha = 5\ 000\ /\ (273 + B \times T_J)$

Parameter B must be replaced by

- 1.0 for typical values
- 1.3 for maximum values

Table 21	Coding of bit fields LEVxV in Register SWDCON0 (c	cont'd)
----------	---	---------

Code	Default Voltage Level	Notes ¹⁾
1001 _B	4.5 V	LEV2V: no request
1010 _B	4.6 V	
1011 _B	4.7 V	
1100 _B	4.8 V	
1101 _B	4.9 V	
1110 _B	5.0 V	
1111 _B	5.5 V	

1) The indicated default levels are selected automatically after a power reset.

Table 22 Coding of Bitfields LEVxV in Registers PVCyCONz

Code	Default Voltage Level	Notes ¹⁾
000 _B	0.95 V	
001 _B	1.05 V	
010 _B	1.15 V	
011 _B	1.25 V	
100 _B	1.35 V	LEV1V: reset request
101 _B	1.45 V	LEV2V: interrupt request ²⁾
110 _B	1.55 V	
111 _B	1.65 V	

1) The indicated default levels are selected automatically after a power reset.

2) Due to variations of the tolerance of both the Embedded Voltage Regulators (EVR) and the PVC levels, this interrupt can be triggered inadvertently, even though the core voltage is within the normal range. It is, therefore, recommended not to use the this warning level.

The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the minimum TCS possible under the given circumstances.

The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or oscillator), the accumulated jitter is limited. This means that the relative deviation for periods of more than one TCS is lower than for a single TCS (see formulas and **Figure 20**).

This is especially important for bus cycles using waitstates and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible.

The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler K2 to generate the system clock signal f_{SYS} . The number of VCO cycles is K2 × **T**, where **T** is the number of consecutive f_{SYS} cycles (TCS).

The maximum accumulated jitter (long-term jitter) D_{Tmax} is defined by:

 D_{Tmax} [ns] = ±(220 / (K2 × f_{SYS}) + 4.3)

This maximum value is applicable, if either the number of clock cycles T > (f_{SYS} / 1.2) or the prescaler value K2 > 17.

In all other cases for a timeframe of $\mathbf{T} \times TCS$ the accumulated jitter D_T is determined by:

 D_{T} [ns] = $D_{Tmax} \times [(1 - 0.058 \times K2) \times (T - 1) / (0.83 \times f_{SYS} - 1) + 0.058 \times K2]$

 f_{SYS} in [MHz] in all formulas.

Example, for a period of 3 TCSs @ 33 MHz and K2 = 4:

 $D_{max} = \pm (220 / (4 \times 33) + 4.3) = 5.97$ ns (Not applicable directly in this case!)

 $\mathsf{D_3} = 5.97 \times [(1 - 0.058 \times 4) \times (3 - 1) / (0.83 \times 33 - 1) + 0.058 \times 4]$

= 5.97 × [0.768 × 2 / 26.39 + 0.232]

Example, for a period of 3 TCSs @ 33 MHz and K2 = 2:

 $D_{max} = \pm (220 / (2 \times 33) + 4.3) = 7.63$ ns (Not applicable directly in this case!)

 $D_3 = 7.63 \times [(1 - 0.058 \times 2) \times (3 - 1) / (0.83 \times 33 - 1) + 0.058 \times 2]$ = 7.63 \le [0.884 \le 2 / 26.39 + 0.116]

$$= 7.63 \times [0.884 \times 2/26.39 \pm 0.116]$$

Electrical Parameters

Figure 27 External Bus Arbitration, Regaining the Bus

Notes

- This is the last chance for BREQ to trigger the indicated regain sequence. Even if BREQ is activated earlier, the regain sequence is initiated by HOLD going high. Please note that HOLD may also be deactivated without the XC238xA requesting the bus.
- 2. The control outputs will be resistive high (pull-up) before being driven inactive (ALE will be low).
- 3. The next XC238xA-driven bus cycle may start here.

4.6.6 Synchronous Serial Interface Timing

The following parameters are applicable for a USIC channel operated in SSC mode.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply; $C_L = 20 \text{ pF}$.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	t _{SYS} - 8 ¹⁾	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	t _{SYS} - 6 ¹⁾	-	-	ns	
Data output DOUT valid time	t ₃ CC	-6	-	9	ns	
Receive data input setup time to SCLKOUT receive edge	t ₄ SR	31	-	-	ns	
Data input DX0 hold time from SCLKOUT receive edge	t ₅ SR	-4	-	-	ns	

Table 34 USIC SSC Master Mode Timing for Upper Voltage Range

1) $t_{SYS} = 1 / f_{SYS}$

Table 35 USIC SSC Master Mode Timing for Lower Voltage Range

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	<i>t</i> _{SYS} - 10 ¹⁾	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	t _{SYS} - 9 ¹⁾	-	-	ns	
Data output DOUT valid time	t ₃ CC	-7	-	11	ns	