

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

·XF

Detalls	
Product Status	Obsolete
Applications	Intelligent LED Driver
Core Processor	M8C
Program Memory Type	FLASH (16KB)
Controller Series	CY8CLED
RAM Size	1K x 8
Interface	DALI, DMX512, I²C, IrDA, SPI, UART/USART
Number of I/O	14
Voltage - Supply	4.75V ~ 5.25V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	56-VFQFN Exposed Pad
Supplier Device Package	56-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8cled02d01-56ltxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Contents

Logic Block Diagrams	. 3
PowerPSoC Functional Overview	. 9
Power Peripherals	. 9
Hysteretic Controllers	
Low Side N-Channel FETs	10
External Gate Drivers	10
Dimming Modulation Schemes	10
Current Sense Amplifier	10
Voltage Comparators	11
Reference DACs	11
Built-in Switching Regulator	11 11
Analog Multiplexer Digital Multiplexer	12
Function Pins (FN0[0:3])	12
	. –
PSoC Core Digital System	13 13
Analog System	13 13
Analog Multiplexer System	13
Additional System Resources	14
Applications	
PowerPSoC Device Characteristics	
	18
Application Notes	18
Development Kits Training	18 18
CYPros Consultants	10 18
Technical Support	18
	-
	18
PSoC Designer Software Subsystems In-Circuit Emulator	18 19
	19
Pin Information CY8CLED04D0x 56-Pin Part Pinout (without OCD) CY8CLED04G01 56-Pin Part Pinout (without OCD) CY8CLED04DOCD1 56-Pin Part Pinout (with OCD) CY8CLED03D0x 56-Pin Part Pinout (without OCD) CY8CLED03G01 56-Pin Part Pinout (without OCD) CY8CLED02D01 56-Pin Part Pinout (without OCD)	20 21 22 23 24
CY8CLED01D01 56-Pin Part Pinout (without OCD)	
Register General Conventions Abbreviations Used Register Naming Conventions Register Mapping Tables	27 27

Register Map Bank 0 Table	
Register Map Bank 1 Table: User Space	
Electrical Specifications	
Operating Temperature	
Electrical Characteristics	
System Level	
Chip Level	
Power Peripheral Low Side N-Channel FET	
Power Peripheral External Power FET Driver	
Power Peripheral Hysteretic Controller	
Power Peripheral Comparator	
Power Peripheral Current Sense Amplifier Power Peripheral PWM/PrISM/DMM Specification	37
Table	38
Power Peripheral Reference DAC Specification	39
Power Peripheral Built-in Switching Regulator	39
General Purpose I/O / Function Pin I/O	
PSoC Core Operational Amplifier Specifications	
PSoC Core Low Power Comparator	
PSoC Core Analog Output Buffer	
PSoC Core Analog Reference	
PSoC Core Analog Block	
PSoC Core POR and LVD PSoC Core Programming Specifications	
PSoC Core Digital Block Specifications	
PSoC Core I2C Specifications	
Ordering Information	
Ordering Code Definitions	
Packaging Information	
Packaging Dimensions	
Thermal Impedance	
Solder Reflow Peak Temperature	
Acronyms	53
Document Conventions	53
Units of Measure	53
Document History Page	55
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community Technical Support	
	00

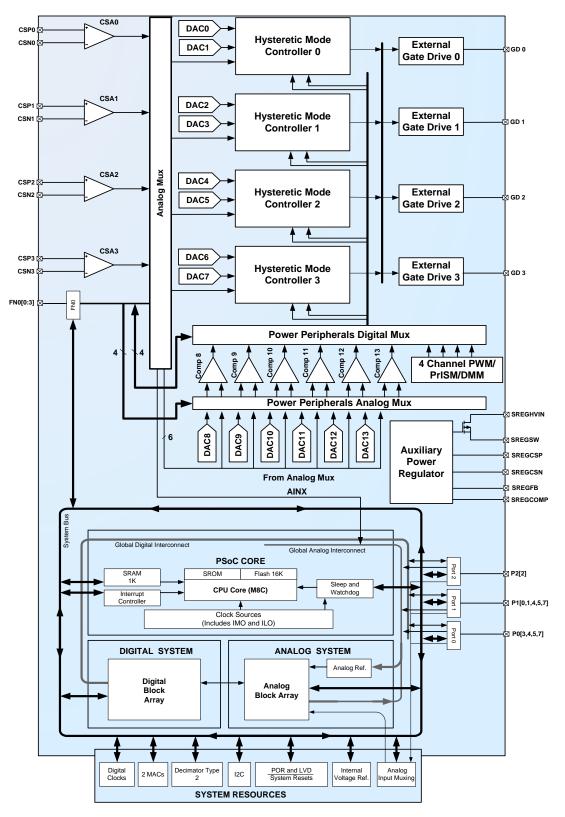


Figure 3-2. CY8CLED04G01 Logic Block Diagram

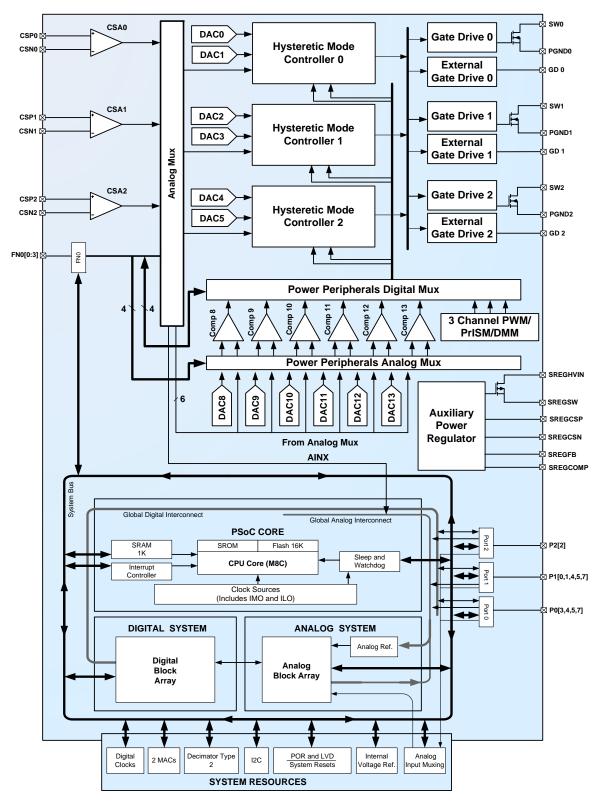


Figure 3-3. CY8CLED03D0x Logic Block Diagram

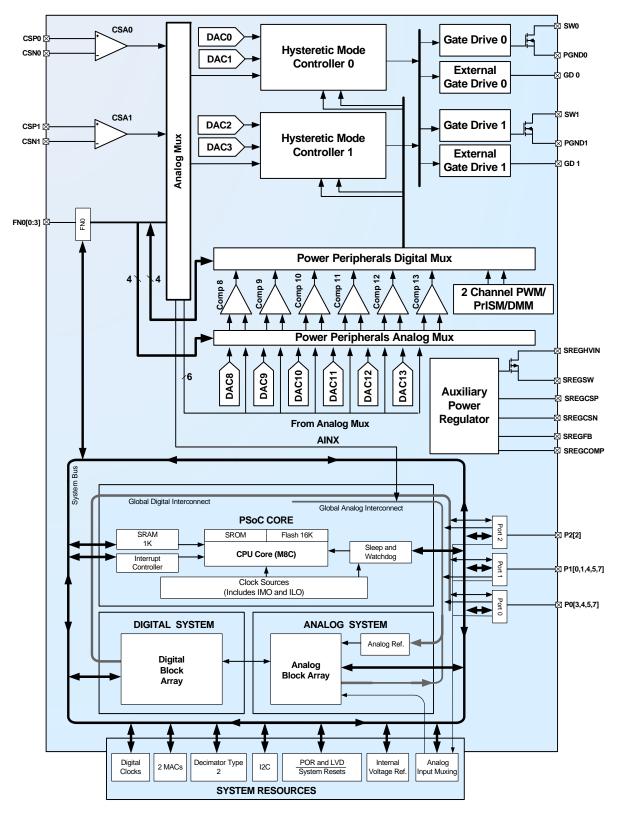
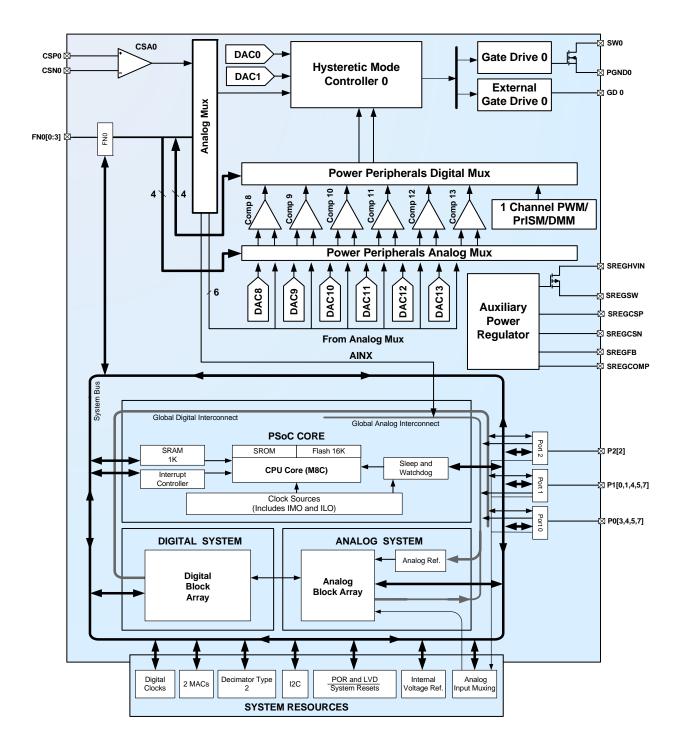
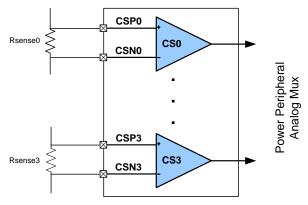



Figure 3-5. CY8CLED02D01 Logic Block Diagram

Figure 3-6. CY8CLED01D01 Logic Block Diagram


the routing is done. Table 5-1 illustrates example values of R_{sense} for different currents.

The method to calculate the $\mathsf{R}_{\mathsf{sense}}$ value for a desired average current is explained in the application note CY8CLED0xx0x: Topology and Design Guide for Circuits using PowerPSoC - AN52699

Table 5-1. R_{sense} Values for Different Currents

Max Load Current (mA)	Typical R _{sense} (mΩ)
1000	100
750	130
500	200
350	300

5.6 Voltage Comparators

There are six comparators that provide high speed comparator operation for over voltage, over current, and various other system event detections. For example, the comparators may be used for zero crossing detection for an AC input line or monitoring total DC bus current. Programmable internal analog routing enables these comparators to monitor various analog signals. These comparators include the following key features:

- High speed comparator operation: 100 ns response time
- Programmable interrupt generation
- Low input offset voltage and input bias currents

Six precision voltage comparators are available. The differential positive and negative inputs of the comparators are routed from the analog multiplexer and the output goes to the digital multiplexer. A programmable inverter is used to select the output polarity. User-selectable hysteresis can be enabled or disabled to trade-off noise immunity versus comparator sensitivity.

5.7 Reference DACs

The reference DACs are used to generate set points for various analog modules such as Hysteretic controllers and comparators. The reference DACs include the following key features:

- 8-bit resolution
- Guaranteed monotonic operation

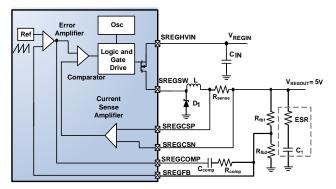
- Low gain errors
- 10 us settling time

These DACs are available to provide programmable references for the various analog and comparator functions and are controlled by memory mapped registers.

DAC[0:7] are embedded in the hysteretic controllers and are required to set the upper and lower thresholds for channel 0 to 3.

DAC [8:13] are connected to the Power Peripherals Analog Multiplexer and provide programmable references to the comparator bank. These are used to set trip points which enable over voltage, over current, and other system event detection.

5.8 Built-in Switching Regulator


The switching regulator is used to power the low voltage (5 V portion of the PowerPSoC) from the input line. This regulator is based upon a peak current control loop which can support up to 250 mA of output current. The current not being consumed by PowerPSoC is used to power additional system peripherals. The key features of the built-in switching regulator include:

- Ability to self power device from input line
- Small filter component sizes
- Fast response to transients

Refer to Table 15-20 for component values.

The 'Ref' signal that forms the reference to the Error Amplifier is internally generated and there is no user control over it.

Figure 5-4. Built-in Switching Regulator

5.9 Analog Multiplexer

The PowerPSoC family's analog MUX is designed to route signals from the CSA output, function I/O pins and the DACs to comparator inputs and the current sense inputs of the hysteretic controllers. Additionally, CSA outputs can be routed to the AINX block using this MUX.

For a full matrix representation of all possible routing using this MUX, refer to the PowerPSoC Technical Reference Manual.

The CPU configures the Power Peripherals Analog Multiplexer connections using memory mapped registers. The analog multiplexer includes the following key features:

Signal integrity for minimum signal corruption

5.10 Digital Multiplexer

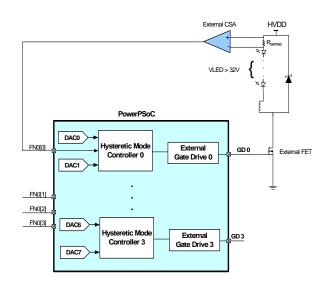
The PowerPSoC family's digital MUX is a configurable switching matrix that connects the power peripheral digital resources.

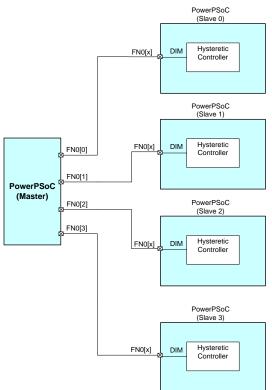
For a full matrix representation of all possible routing using this MUX, refer to the PowerPSoC Technical Reference Manual.

This power peripheral digital multiplexer is independent of the main PSoC digital buses or global interconnect of the PSoC core. The digital multiplexer includes the following key features:

Connect signals to ensure needed flexibility

5.11 Function Pins (FN0[0:3])


The function I/O pins are a set of dedicated control pins used to perform system level functions with the power peripheral blocks of the PowerPSoC. These pins are dynamically configurable, enabling them to perform a multitude of input and output functions. These I/Os have direct access to the input and output of the voltage comparators, input of the hysteretic controller, and output of the digital PWM blocks for the device. The function I/O pins are register mapped. The microcontroller can control and read the state of these pins and the interrupt function.


Some of the key system benefits of the function I/O are:

- Enabling an external higher voltage current-sense amplifier as shown in Figure 5-5.
- Synchronizing dimming of multiple PowerPSoC controllers as shown in Figure 5-6.
- Programmable fail-safe monitor and dedicated shutdown of hysteretic controller as shown in Figure 5-7.

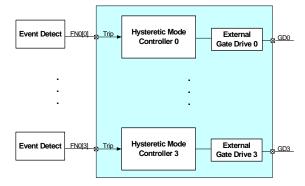

Along with the these functions, these I/Os also provide interrupt functionality, enabling intelligent system responses to power control lighting system status.

Figure 5-5. External CSA and FET Application

Figure 5-7. Event Detection

Figure 5-6. PowerPSoC in Master/Slave Configuration

7. Applications

The PowerPSoC family of devices can be used to add hysteretic current control capability to power applications. The devices can be used to control current in devices such as LEDs, heating elements, and solenoids. For LED applications, all high-brightness LEDs (HBLEDs) can be controlled using the PowerPSoC. The following figures show examples of applications in which the PowerPSoC family of devices adds intelligent power control for power applications.

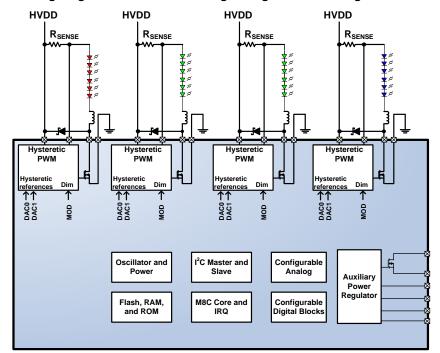


Figure 7-1. LED Lighting with RGGB Color Mixing Configured as Floating Load Buck Converter

8. PowerPSoC Device Characteristics

There are two major groups of devices in the PowerPSoC family. One group is a 4-channel 56-pin QFN and the other is a 3-channel 56-pin QFN. These are summarized in the following table.

Table 8-1. Po	owerPSoC Device	Characteristics
---------------	-----------------	-----------------

Device Group	Internal Power FETs	External Gate Drivers	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Col- umns	Analog Blocks	SRAM Size	Flash Size
CY8CLED04D01-56LTXI	4X1.0 A	4	14	2	8	14	2	2	6	1 K	16 K
CY8CLED04D02-56LTXI	4X0.5 A	4	14	2	8	14	2	2	6	1 K	16 K
CY8CLED04G01-56LTXI	0	4	14	2	8	14	2	2	6	1 K	16 K
CY8CLED03D01-56LTXI	3X1.0 A	3	14	2	8	14	2	2	6	1 K	16 K
CY8CLED03D02-56LTXI	3X0.5 A	3	14	2	8	14	2	2	6	1 K	16 K
CY8CLED03G01-56LTXI	0	3	14	2	8	14	2	2	6	1 K	16 K
CY8CLED02D01-56LTXI	2X1.0 A	2	14	2	8	14	2	2	6	1 K	16 K
CY8CLED01D01-56LTXI	1X1.0 A	1	14	2	8	14	2	2	6	1 K	16 K
CY8CLED01D01-56LTXQ	1X1.0 A	1	14	2	8	14	2	2	6	1 K	16 K

9. Getting Started

The quickest way to understand the PowerPSoC device is to read this datasheet and then use the PSoC Designer integrated development environment (IDE). This datasheet is an overview of the PowerPSoC integrated circuit and presents specific pin, register, and electrical specifications. For in depth information, along with detailed programming information, refer to the *PowerPSoC Technical Reference Manual.*

For up-to-date ordering, packaging, and electrical specification information, see the latest PowerPSoC device datasheets on the web at www.cypress.com.

9.1 Application Notes

Application notes are an excellent introduction to a wide variety of possible PowerPSoC designs. Layout guidelines, thermal management and firmware design guidelines are some of the topics covered. To view the PowerPSoC application notes, go to http://www.cypress.com/powerpsoc and click on the Application Notes link.

9.2 Development Kits

Development Kits are available from the following distributors: Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store contains development kits, C compilers, and all accessories for PowerPSoC development. For more information on the kits or to purchase a kit from the Cypress web site, go to http://www.cypress.com/powerpsoc and click on the Development Kits link.

9.3 Training

Free PowerPSoC technical training (on demand, webinars, and workshops) is available online at www.cypress.com/training. The training covers a wide variety of topics and skill levels to assist you in your designs.

9.4 CYPros Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PowerPSoC designs. To contact or become a PSoC Consultant go to www.cypress.com/cypros.

9.5 Technical Support

PowerPSoC application engineers take pride in fast and accurate response. They can be reached with a 24-hour guaranteed response at http://www.cypress.com/support/. If you cannot find an answer to your question, call technical support at 1-800-541-4736.

10. Development Tools

PSoC Designer is a Microsoft[®] Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE runs on Windows XP, Windows Vista, or Windows 7.

This system provides design database management by project, an integrated debugger with In-Circuit Emulator, in-system programming support, and built-in support for third-party assemblers and C compilers. PSoC Designer also supports C language compilers developed specifically for the devices in the PowerPSoC family.

10.1 PSoC Designer Software Subsystems

10.1.1 Chip-Level View

The chip-level view is a more traditional integrated development environment (IDE) based on PSoC Designer. Choose a base device to work with and then select different onboard analog and digital components called user modules that use the PowerPSoC blocks. Examples of user modules are current sense amplifiers, PrISM, PWM, DMM, Floating Load Buck, and Boost. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The device editor also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic configuration allows for changing configurations at run time.

10.1.2 Code Generation Tools

PSoC Designer supports multiple third party C compilers and assemblers. The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. The choice is yours.

Assemblers. The assemblers allow assembly code to merge seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PowerPSoC family of devices. The products allow you to create complete C programs for the PowerPSoC family of devices.

The optimizing C compilers provide all the features of C tailored to the PowerPSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

10.1.3 Debugger

The PSoC Designer Debugger subsystem provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PowerPSoC device. Debugger commands allow the designer to read and program and read and write data memory, read and write I/O registers, read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows the designer to create a trace buffer of registers and memory locations of interest.

10.1.4 Online Help System

The online help system displays online, context-sensitive help for you. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to faqs and an Online Support Forum to aid the designer in getting started.

12.2 CY8CLED04G01 56-Pin Part Pinout (without OCD)

The CY8CLED04G01 PowerPSoC device is available with the following pinout information. Every port pin (labeled with a "P" and "FN0") is capable of Digital I/O.

Pin	Туре						Figure 12-2. CY8CLED04G01 56-Pin PowerPSoC Device						
No.	Digital Rows	Analog Columns	Power Peripherals	Name	Description								
1	I/O	I		P1[0]	GPIO/I ² C SDA (Secondary)/ ISSP SDATA								
2	I/O	I		P2[2]	GPIO/Direct Switch Cap connection				QF	N Top	View		
3	I/O	I/O		P0[3]	GPIO/Analog Input (Column 0)/ Analog Output (Column 0)					-			
4	I/O	I/O		P0[5]	GPIO/Analog Input (Column 0)/ Analog Output (Column 1)/ Capsense Ref Cap			_	P1[4] VSS VDD P0[4] CSN1				
5	I/O	I		P0[7]	GPIO/Analog Input (Column 0)/ Capsense Ref Cap			P1[0] = 1	56 55 54 53 53	511 50 49 48	42 PGND0		
5	I/O	I		P1[1]	GPIO/I ² C SCL (Secondary)/ ISSP SCLK			P2[2] = 2 P0[3] = 3 P0[5] = 4			41= GD0 40= DNC 39= PGND1		
7	I/O	I		P1[5]	GPIO/I ² C SDA (Primary)			P0[7] 5		111	39 = PGND1 38 = GD1		
3	I/O	I		P1[7]	GPIO/I ² C SCL (Primary)			P1[1] = 6	(/) f	Indea	37 DNC		
)				V _{SS}	Digital Ground			P1[5] 9 7 P1[7] 9 8	1/7	644	36= DNC		
0				NC	No Connect			VSS 9	111		35 = GD2 34 = PGND2		
1				NC	No Connect	1		NC = 10		111	33= DNC		
2				NC	No Connect			NC = 11 NC = 12		111	32= GD3		
3				NC	No Connect	1				111	31 PGND3 30 GDVSS		
4				XRES	External Reset	1		XRES 14	L .	0 - 0 -	29 GDVDD		
5				V _{DD}	Digital Power Supply	1							
6				V _{SS}	Digital Ground				VDD VS S VSS VDD SN 2	P2 P3 N3	SREGEB SREGCSP SREGCSP SREGCSP SREGLVIN		
7				AV _{SS}	Analog Ground				CSI AC	CONCON	BHA 2000		
8				AV _{DD}	Analog Power Supply					Ű.	SRE SRE SRE SRE SRE		
9				CSN2	Current Sense Negative Input 2					RS	0,0,0,0		
20				CSP2	Current Sense Positive Input and Power Supply - CSA2								
21				CSP3	Current Sense Positive Input and Power Supply - CSA3			* C	Connect E	Exposed	l Pad to PGNDx		
22			I	CSN3	Current Sense Negative Input 3								
23				SREGCOMP	Voltage Regulator Error Amp Comp								
24			1	SREGFB	Regulator Voltage Mode Feedback Node								
25			I	SREGCSN	Current Mode Feedback Negative								
26				SREGCSP	Current Mode Feedback Positive								
27			0	SREGSW	Switch Mode Regulator OUT								
8				SREGHVIN	Switch Mode Regulator IN			-					
29				GDV _{DD}	Gate Driver Power Supply	Pin	District	Туре		Name	Description		
80				GDV _{SS}	Gate Driver Ground	No.	Digital Rows	Analog Columns	Power Peripherals		2000101011		
1				PGND3 ^[3]	Power FET Ground 3	44				GDV _{DD}	Gate Driver Power Supply		
2			0	GD3	External Low Side Gate Driver 3	45			I/O	FN0[0]	Function I/O		
3				DNC ^[2]	Do Not Connect	46			I/O	FN0[1]	Function I/O		
4				PGND2 ^[3]	Power FET Ground 2	47			I/O	FN0[2]	Function I/O		
5			0	GD2	External Low Side Gate Driver 2	48			I/O	FN0[3]	Function I/O		
6				DNC ^[2]	Do Not Connect	49			I	CSN0	Current Sense Negative Input 0		
37				DNC ^[2]	Do Not Connect	50				CSP0	Current Sense Positive Input and Power Supply - CSA0		
38			0	GD1	External Low Side Gate Driver 1	51				CSP1	Current Sense Positive Input and Power Supply - CSA1		
39				PGND1 ^[3]	Power FET Ground 1	52			I	CSN1	Current Sense Negative Input 1		
40				DNC ^[2]	Do Not Connect	53	I/O	I		P0[4]	GPIO/Analog Input (Column 1) / Bandgap Output		
1			0	GD0	External Low Side Gate Driver 0	54				V _{DD}	Digital Power Supply		
2				PGND0 ^[3]	Power FET Ground 0	55				V _{SS}	Digital Ground		
3				GDV _{SS}	Gate Driver Ground	56	I/O	I		P1[4]	GPIO / External Clock Input		

Table 12-2. CY8CLED04G01 56-Pin Part Pinout (QFN)

Notes

Do Not Connect (DNC) pins must be left unconnected, or floating. Connecting these pins to power or ground may cause improper operation or failure of the device.
 All PGNDx pins must be connected to the ground plane on the PCB irrespective of whether the corresponding PowerPSoC channel is used or not.

12.5 CY8CLED03G01 56-Pin Part Pinout (without OCD)

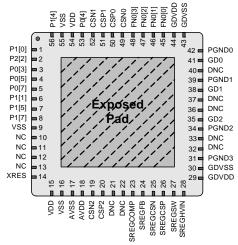

The CY8CLED03G01 PowerPSoC device is available with the following pinout information. Every port pin (labeled with a "P" and "FN0") is capable of Digital I/O.

Table 12-5. CY8CLED03G01 56-Pin Part Pinout (QFN)

Pin		Туре	•			Fig	ure 1	2-5
No. Digital Analog Rows Columns		Power Peripherals	Name	Description				
1	I/O	I		P1[0]	GPIO/I ² C SDA (Secondary)/ ISSP SDATA			
2	I/O	I		P2[2]	GPIO/Direct Switch Cap connection			
3	I/O	I/O		P0[3]	GPIO/Analog Input (Column 0)/ Analog Output (Column 0)			
4	I/O	I/O		P0[5]	GPIO/Analog Input (Column 0)/ Analog Output (Column 1)/ Capsense Ref Cap			
5	I/O	I		P0[7]	GPIO/Analog Input (Column 0)/ Capsense Ref Cap			
6	I/O	I		P1[1]	GPIO/I ² C SCL (Secondary)/ ISSP SCLK			P P
7	I/O	I		P1[5]	GPIO/I ² C SDA (Primary)			P P
8	I/O	I		P1[7]	GPIO/I ² C SCL (Primary)			P
9				V _{SS}	Digital Ground			Ρ
10				NC	No Connect			P P
11				NC	No Connect			۲ ۱
12				NC	No Connect			
13				NC	No Connect			
14				XRES	External Reset			
15				V _{DD}	Digital Power Supply			XF
16				V _{SS}	Digital Ground			
17				AV _{SS}	Analog Ground			
18				AV _{DD}	Analog Power Supply			
19			I	CSN2	Current Sense Negative Input 2			
20				CSP2	Current Sense Positive Input and Power Supply - CSA2			
21				DNC ^[7]	Do Not Connect			
22				DNC ^[7]	Do Not Connect			
23				SREGCOMP	Voltage Regulator Error Amp Comp			
24			I	SREGFB	Regulator Voltage Mode Feedback Node			
25			I	SREGCSN	Current Mode Feedback Negative			
26			I	SREGCSP	Current Mode Feedback Positive			
27			0	SREGSW	Switch Mode Regulator OUT			
28				SREGHVIN	Switch Mode Regulator IN			
29				GDV _{DD}	Gate Driver Power Supply	Pin		
30				GDV _{SS}	Gate Driver Ground	No.	Digital Rows	An Col
31				PGND3 ^[8]	Power FET Ground 3	44		
32				DNC ^[7]	Do Not Connect	45		
33				DNC ^[7]	Do Not Connect	46		
34				PGND2 ^[8]	Power FET Ground 2	47		
35			0	GD2	External Low Side Gate Driver 2	48		
36				DNC ^[7]	Do Not Connect	49		
37				DNC ^[7]	Do Not Connect	50		
38			0	GD1	External Low Side Gate Driver 1	51		
39				PGND1 ^[8]	Power FET Ground 1	52		
40				DNC ^[7]	Do Not Connect	53	I/O	
41			0	GD0	External Low Side Gate Driver 0	54		
42				PGND0 ^[8]	Power FET Ground 0	55		
43				GDVaa	Gate Driver Ground	56	1/0	

5. CY8CLED03G01 56-Pin PowerPSoC Device

QFN Top View

* Connect Exposed Pad to PGNDx

28		SREGHVIN	Switch Mode Regulator IN						
29		GDV _{DD}	Gate Driver Power Supply	Pin		Туре)	Name	
30		GDV _{SS}	Gate Driver Ground	No.	No Digital Analog		nalog Power olumns Peripherals		Description
31		PGND3 ^[8]	Power FET Ground 3	44				GDV _{DD}	Gate Driver Power Supply
32		DNC ^[7]	Do Not Connect	45			I/O	FN0[0]	Function I/O
33		DNC ^[7]	Do Not Connect	46			I/O	FN0[1]	Function I/O
34		PGND2 ^[8]	Power FET Ground 2	47			I/O	FN0[2]	Function I/O
35	0	GD2	External Low Side Gate Driver 2	48			I/O	FN0[3]	Function I/O
36		DNC ^[7]	Do Not Connect	49			I	CSN0	Current Sense Negative Input 0
37		DNC ^[7]	Do Not Connect	50				CSP0	Current Sense Positive Input and Power Supply - CSA0
38	0	GD1	External Low Side Gate Driver 1	51				CSP1	Current Sense Positive Input and Power Supply - CSA1
39		PGND1 ^[8]	Power FET Ground 1	52			I	CSN1	Current Sense Negative Input 1
40		DNC ^[7]	Do Not Connect	53	I/O	I		P0[4]	GPIO/Analog Input (Column 1) / Bandgap Output
41	0	GD0	External Low Side Gate Driver 0	54				V _{DD}	Digital Power Supply
42		PGND0 ^[8]	Power FET Ground 0	55				V _{SS}	Digital Ground
43		GDV _{SS}	Gate Driver Ground	56	I/O			P1[4]	GPIO / External Clock Input

Notes

- Do Not Connect (DNC) pins must be left unconnected, or floating. Connecting these pins to power or ground may cause improper operation or failure of the device. 7.
- 8. All PGNDx pins must be connected to the ground plane on the PCB irrespective of whether the corresponding PowerPSoC channel is used or not.

14. Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8CLED04D0X, CY8CLED04G01, CY8CLED03D0X, CY8CLED03G01, CY8CLED02D01, and CY8CLED01D01 of the PowerPSoC device family. For the most up to date electrical specifications, confirm that you have the most recent datasheet by going to the web at http://www.cypress.com/powerpsoc. Specifications for Industrial rated devices are valid for -40 °C $\leq T_A \leq 85$ °C, $T_J \leq 115$ °C and for Extended Temperature rated devices for -40 °C $\leq T_A \leq 105$ °C, $T_J \leq 125$ °C, except where noted.

14.1 Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. Not all user guidelines are production tested.

Table 14-1. Absolute Maximum Ratings

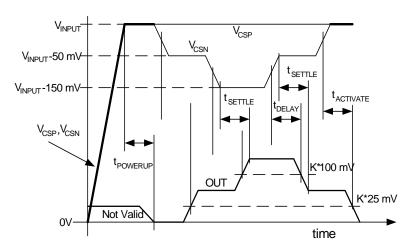
Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage temperature	-55	_	+115	°C	Higher storage temperatures reduces data retention time. Recommended storage temperature is 0 °C to 50 °C.
T _A	Ambient temperature with power applied	-40 -40	-	+85 +105	° C	$T_J \le 115 \text{ °C}$ (industrial rated) $T_J \le 125 \text{ °C}$ (extended temperature rated)
V _{DD} , AV _{DD} , GDV _{DD}	Supply voltage on V_{DD},AV_{DD},and GDV_{DD}	-0.5	-	+6.0	V	Relative to $V_{SS}, AV_{SS},$ and GDV_{SS} respectively
V _{IO}	DC input voltage	V _{SS} -0.5	-	V _{DD} + 0.5	V	Applies only to GPIO and FN0 pins
V _{IO2}	DC voltage applied to tristate	$V_{SS} - 0.5$	_	V _{DD} + 0.5	V	
V _{FET}	Maximum voltage from power Switch (SWx) to Power FET Ground (PGNDx)	-	_	36 ^[13]	V	PGNDx is connected to GDV_SS
V _{REGIN}	Maximum voltage on SREGHVIN Pin relative to V _{SS}	-	-	36 ^[13]	V	
V _{CSP} ,V _{CSN}	Maximum voltage applied to CSA pins relative to V_{SS}	-0.5	-	36 ^[13]	V	
V _{SENSE}	Maximum input differential voltage across CSA input	-1.0	_	1.0	V	
I _{MAIO}	Maximum current into any port pin configured as analog driver	-50	-	+50	mA	
I _{MIO}	Maximum current into any port and function pin	-25	-	+50	mA	
LU	Latch up current	200	_	_	mA	JESD78A Conformal
ESD	Electrostatic discharge voltage	2000	-	-	V	Human Body Model ESD.
SR _{REGIN}	Ramp rate for the SREGHVIN pin	-	_	32	V/µs	
SR _{CSP}	Ramp rate for the CSPx pins	-	_	3.2	V/µs	
SR _H V _{DD-FLB}	High voltage supply ramp rate for floating load buck configuration	_	-	15	V/ms	For other topologies, to enable operation with faster ramp rates, or if the LED string voltage is < 6.5 V, see the <i>PowerPSoC</i> <i>Technical Reference Manual</i> .
SRV _{DD-EXT}	External V_{DD} supply ramp rate (V_{DD} , AV_{DD} , and GDV_{DD} pins)	-	-	0.2	V/μs	Applies only when powered by a source other than the Built-in Switching Regulator

Note

^{13.} Stresses beyond the "Absolute Maximum Ratings" on page 30 may cause permanent damage to the device. You must ensure that the absolute maximum ratings are NEVER exceeded. Functional operation is not implied under any conditions beyond the "Electrical Characteristics" on page 31 onwards. Extended exposure to "Absolute Maximum Ratings" on page 30 may affect reliability of the device.

15.7 Power Peripheral Current Sense Amplifier

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V, $T_J \leq 115$ °C for Industrial rated devices and 4.75 V to 5.25 V, $T_J \leq 125$ °C for Extended Temperature rated devices. Typical parameters apply to V_{DD} of 5 V and HV_{DD} of 32 V at 25 °C. These are for design guidance only.


Table 15-12.	Current Sense	Amplifier	DC Specifications
--------------	---------------	-----------	--------------------------

Symbol	Description	Min	Тур	Max	Units	Notes
V _{ICM}	Input common mode voltage operating range	7	_	32	V	Either terminal of the amplifier must not exceed this range for functionality
V _{ICM} (Tolerant)	Non functional operating range	0	_	32		Absolute maximum rating for V _{SENSE} should never be exceeded. See Absolute Maximum Ratings on page 30
V _{SENSE}	Input differential voltage range	0	_	150	mV	
I _{S,CSA}	Supply current - CSA	-	-	1	mA	Enabling CSA causes an incremental draw of 1 mA on the AV _{DD} rail.
I _{BIASP}	Input bias current (+)	-	-	600	μA	
I _{BIASN}	Input bias current (-)	-	-	1	μA	
PSR _{HV}	Power supply rejection (CSP pin)	-	-	-25	dB	f _{SW} < 2 MHz
к	Gain	19.7	20	20.3	V/V	V _{SENSE} = 50 mV to 130 mV (Industrial rated)
		19.4	20	20.6	V/V	V _{SENSE} = 50 mV to 130 mV (Extended Temperature rated)
V _{IOS}	Input offset	-	2	4	mV	V _{SENSE} = 50 mV to 130 mV
C _{IN_CSP}	CSP input capacitance	-	-	5	pF	
C _{IN_CSN}	CSN input capacitance	-	_	2	pF	

Table 15-13. Current Sense Amplifier AC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{SETTLE}	Output settling time to 1% of final value	-	-	5	μS	
t _{POWERUP}	Power up time to 1% of final value	-	-	5	μS	

Figure 15-4. Current Sense Amplifier Timing Diagram

15.12 PSoC Core Operational Amplifier Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V, $T_J \le 115$ °C for Industrial rated devices and 4.75 V to 5.25 V, $T_J \le 125$ °C for Extended Temperature rated devices. Typical parameters apply to 5 V at 25 °C. These are for design guidance only.

The Operational Amplifier is a component of both the Analog Continuous Time PSoC blocks and the Analog Switched Capacitor PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block.

Table 15-23. Operational Amplifier DC Specifications
--

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value) Power = low, opamp bias = high Power = medium, opamp bias = high Power = high, opamp bias = high	- - - - -	1.6 1.6 1.3 1.3 1.2 1.2	10 15 8 13 7.5 12	mV mV mV mV mV	Industrial rated Extended temperature rated Industrial rated Extended temperature rated Industrial rated Extended temperature rated
TCV _{OSOA}	Average input offset voltage drift	_	7.0	35.0	μV / °C	
I _{EBOA}	Input leakage current (Port 0 analog pins)	_	20	-	pA	Gross tested to 1 µA.
C _{INOA}	Input capacitance (Port 0 analog pins)	-	4.5	9.5	pF	Т _Ј = 25 °С.
V _{CMOA}	Common mode voltage range Common mode voltage range (high power or high opamp bias)	0.0 0.5	_	V _{DD} V _{DD} – 0.5	> >	The common-mode input voltage range is measured through an analog output buffer. The specifi- cation includes the limitations imposed by the characteristics of the analog output buffer.
G _{OLOA}	Open loop gain Power = low, opamp bias = high Power = medium, opamp bias = high Power = high, opamp bias = high	60 60 80		_ _ _	dB dB dB	_
V _{OHIGHOA}	High output voltage swing (internal signals) Power = low, opamp bias = high Power = medium, opamp bias = high Power = high, opamp bias = high	V _{DD} - 0.2 V _{DD} - 0.2 V _{DD} - 0.5		- - -	V V V	_
V _{OLOWOA}	Low output voltage swing (internal signals) Power = low, opamp bias = high Power = medium, opamp bias = high Power = high, opamp bias = high	- - -		0.2 0.2 0.5	V V V	-
I _{SOA} PSRR _{OA}	Supply current (including associated analog output buffer) Power = low, opamp bias = low Power = low, opamp bias = high Power = medium, opamp bias = low Power = medium, opamp bias = high Power = high, opamp bias = low Power = high, opamp bias = high Supply voltage rejection ratio	- - - - - 52	400 500 800 1200 2400 4600 80	800 900 1000 1600 3200 6400	μΑ μΑ μΑ μΑ μΑ βΒ	- $V_{SS} \le V_{IN} \le (V_{DD} - 2.25) \text{ or } (V_{DD} - 2.25)$
rskkoa	Supply voltage rejection ratio	52	80	_	uВ	$V_{SS} \le V_{IN} \le (V_{DD} - 2.25) \text{ of } (V_{DD} - 1.25 \text{ V}) \le V_{IN} \le V_{DD}.$

Table 15-28. Analog Output Buffer AC Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
SR _{ROB}	Rising slew rate (20% to 80%), 1 V step, 100 pF load					-
	Power = low	0.65	_	_	V/μs	
	Power = high	0.65	-	_	V/µs	
SR _{FOB}	Falling slew rate (80% to 20%), 1 V step, 100 pF load					-
	Power = low	0.65	-	_	V/μs	
	Power = high	0.65	_	-	V/µs	
BW _{OBSS}	Small signal bandwidth, 20 mV _{pp} , 3 dB BW, 100 pF load					-
	Power = low	0.8	_	_	MHz	
	Power = high	0.8	_	-	MHz	
BW _{OBLS}	Large signal bandwidth, 1 V _{pp} , 3 dB BW, 100 pF load					-
	Power = low	300	-	_	kHz	
	Power = high	300	—	—	kHz	

15.17 PSoC Core POR and LVD

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V, $T_J \le 115$ °C for Industrial rated devices and 4.75 V to 5.25 V, $T_J \le 125$ °C for Extended Temperature rated devices. Typical parameters apply to 5 V at 25 °C. These are for design guidance only.

Note The bits PORLEV and VM in the following table refer to bits in the VLT_CR register. See the *PowerPSoC Technical Reference Manual* for more information on the VLT_CR register.

Table 15-31. POR and LVD DC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR2}	V _{DD} Value for PPOR Trip PORLEV[1:0] = 10b	_	4.55	4.70	V	_
V _{LVD6} V _{LVD7}	V _{DD} Value for LVD Trip VM[2:0] = 110b VM[2:0] = 111b	4.62 4.71	4.73 4.81	4.83 4.95	V V	_

15.18 PSoC Core Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V, $T_J \le 115$ °C for Industrial rated devices and 4.75 V to 5.25 V, $T_J \le 125$ °C for Extended Temperature rated devices. Typical parameters apply to 5 V at 25 °C. These are for design guidance only.

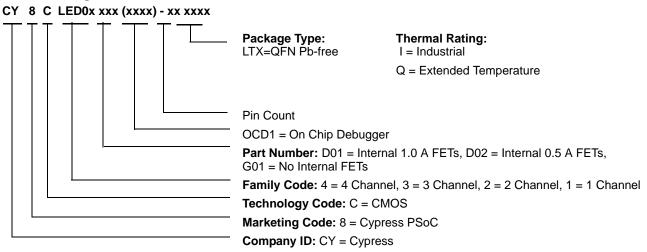
Symbol	Description	Min	Тур	Max	Units	Notes
I _{DDP}	Supply current during programming or verify	-	15	30	mA	-
V _{ILP}	Input low voltage during programming or verify	-	-	0.8	V	-
V _{IHP}	Input high voltage during programming or verify	2.1	-	_	V	_
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	-	_	0.2	mA	Driving internal pull down resistor.
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	-	_	1.5	mA	Driving internal pull down resistor.
V _{OLV}	Output low voltage during programming or verify	-	_	V _{SS} + 0.75	V	_
V _{OHV}	Output high voltage during programming or verify	V _{DD} – 1.0	-	V _{DD}	V	_
Flash _{ENPB}	Flash endurance (per block)	50,000	-	-	_	Erase/write cycles per block.
Flash _{ENT}	Flash endurance (total) ^[17]	1,800,000	-	_	-	Erase/write cycles.
Flash _{DR}	Flash data retention ^[18]	10	_	_	Years	-

Table 15-32. Programming DC Specifications

Notes

^{17.} A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36 x 1 blocks of 50,000 maximum cycles each, 36 x 2 blocks of 25,000 maximum cycles each, or 36 x 4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36 x 50,000 and that no single block ever sees more than 50,000 cycles)

^{18.} Guaranteed for -40 °C \leq T_A \leq 85 °C for Industrial rated devices and -40 °C \leq T_A \leq 105 °C for Extended Temperature rated devices.



16. Ordering Information

 Table 16-1. Device Key Features and Ordering Information

PowerPSoC Part Number	No. of Pins	Package	Channels	Voltage	Internal FETs	Gate Drivers for External Low Side N-FETs
CY8CLED04D01-56LTXI	56 QFN	8 mm × 8 mm	4	32 V	4 × 1.0 A	4
CY8CLED04D02-56LTXI	56 QFN	8 mm × 8 mm	4	32 V	4 × 0.5 A	4
CY8CLED04G01-56LTXI	56 QFN	8 mm × 8 mm	4	32 V	0	4
CY8CLED04DOCD1-56LTXI	56 QFN	8 mm × 8 mm	4	32 V	4 × 1.0 A	4
CY8CLED03D01-56LTXI	56 QFN	8 mm × 8 mm	3	32 V	3 × 1.0 A	3
CY8CLED03D02-56LTXI	56 QFN	8 mm × 8 mm	3	32 V	3 × 0.5 A	3
CY8CLED03G01-56LTXI	56 QFN	8 mm × 8 mm	3	32 V	0	3
CY8CLED02D01-56LTXI	56 QFN	8 mm × 8 mm	2	32 V	2 × 1.0 A	2
CY8CLED01D01-56LTXI	56 QFN	8 mm × 8 mm	1	32 V	1 × 1.0 A	1
CY8CLED01D01-56LTXQ	56 QFN	8 mm × 8 mm	1	32 V	1 × 1.0 A	1

16.1 Ordering Code Definitions

20. Document History Page

		Orig of	Submission	
Revision	ECN No.	Orig. of Change	Date	Description of Change
**	2506500	ANWA/ DSG	05/20/08	New datasheet.
*A	2575708	ANWA/ AESA	10/01/08	 Updated Logic Block Diagram with AINX label and SREGFB pin. Updated Current Sense Amplifier Specification Table. Updated External Gate Driver Specification Table. Updated Register Table.
*В	2662774	KJV	02/19/09	Extensive changes made to content and electrical specifications.
*C	2665155	KJV/PYRS	02/25/09	Updated Notes in electrical specifications.
*D	2671254	KJV/PYRS	03/10/09	Updated sections 8, 9, and 10 on pages 14, 15, and 16.
*E	2683506	VED	04/03/09	Release to the external web site.
*F	2698529	KJV/PYRS	04/27/09	Updated Figure 15-2., and Figure 15-4
*G	2735072	KJV	07/10/09	Added 1 and 2 channel part information.
*H	2765369	KJV	09/17/09	Updated electrical specifications.
*	2870389	FRE/PYRS	02/01/10	Updated Absolute Maximum Ratings, DC GPIO, AC Chip-Level, and AC Programming Specifications as follows: Added V _{REGINMAX} absolute maximum specification. Modified t _{WRITE} specification. Added I _{OH} , I _{OL} , DC _{ILO} , f _{32K_U} , t _{POWERUP} , t _{ERASEALL} , t _{PROGRAM_HOT} , and t _{PROGRAM_COLD} specifications Updated package diagram
*J	2952677	FRE/UKK	06/15/10	Datasheet reviewed and updated with a view to improve clarity, readability an customer-friendliness. This includes language, consistency in terminology to match software and other PowerPSoC documentation, changes to reflect major changes in software such as removal of system level design addition or links to relevant collateral such as kits, technical reference manuals and app cation notes.
*K	3031567	FRE/UKK	09/16/10	Removed DALI in Page 1 and Page 13, and added the DALI note in Page 13 Added a note to Section 15.10 after Table 15-20 on page 38. Updated as per the new Cypress Style and datasheet template.
*L	3073506	KJV	11/08/2010	Updated datasheet to add Extended Temperature rated device CY8CLED01D01-56LTXQ
*M	3178540	KJV	02/28/2011	Updated certain specifications for Extended Temperature rated device
*N	3244595	KJV	05/04/2011	Updated description for Symbol V_{REGIN} and V_{CSP} , V_{CSN} in Table 14-1. Update Figure 15-6.
*0	3355306	KJV	08/29/2011	Replaced Table 16-20 with Table 15-20 in Built-in Switching Regulator
*P	3597060	GULA	04/24/2012	Updated Packaging Information (51-85187 from Rev *E to *F). Completing Sunset Review.
*Q	4374000	SNVN	05/08/2014	Added D1 and updated notes for the other components in Table 15-20. Updated links to reference documents in Current Sense Amplifier, Digital System, and Analog Multiplexer System sections. Added note for F _{IMO24} parameter in Table 15-3. Updated links in Worldwide Sales and Design Support based on the templat
*R	4727870	SNVN	04/16/2015	Updated Electrical Characteristics: Updated Table 15-34 (Updated details in Description column). Updated Packaging Information: spec 51-85187 – Changed revision from *F to *G. Updated Note 23. Completing Sunset Review.

21. Sales, Solutions, and Legal Information

21.1 Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products	
Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2008-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-46319 Rev. *R

Revised April 16, 2015

Page 55 of 55

PSoC Designer™, Programmable System-on-Chip™, and PrISM™ are trademarks and PSoC® and, PowerPSoC® are registered trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations.