

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	38
Program Memory Size	320KB (320K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	34K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-64-6
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2336b40f80laakxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16/32-Bit

Architecture

XC2336B

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance XC2000 Family / Value Line

Data Sheet V1.5 2014-06

Microcontrollers

Table of Contents

Table of Contents

1 1.1 1.2 1.3	Summary of Features7Basic Device Types9Special Device Types10Definition of Feature Variants11
2 2.1 2.2	General Device Information13Pin Configuration and Definition14Identification Registers26
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18	Functional Description27Memory Subsystem and Organization28Central Processing Unit (CPU)32Memory Protection Unit (MPU)34Memory Checker Module (MCHK)34Interrupt System35On-Chip Debug Support (OCDS)36Capture/Compare Unit (CC2)37Capture/Compare Units CCU6x40General Purpose Timer (GPT12E) Unit42Real Time Clock46A/D Converters48Universal Serial Interface Channel Modules (USIC)49MultiCAN Module51System Timer52Watchdog Timer52Clock Generation53Parallel Ports54Instruction Set Summary55
3.18	Instruction Set Summary
4 4.1 4.2.1 4.2.1 4.3 4.3.1 4.3.2 4.3.3 4.4 4.5	Electrical Parameters 58 General Parameters 58 Operating Conditions 59 Voltage Range definitions 61 Parameter Interpretation 61 DC Parameters 62 DC Parameters for Upper Voltage Area 64 DC Parameters for Lower Voltage Area 66 Power Consumption 68 Analog/Digital Converter Parameters 72 System Parameters 76
4.6 4.7	Flash Memory Parameters 79 AC Parameters 81

Summary of Features

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance

XC2336B (XC2000 Family)

1 Summary of Features

For a quick overview and easy reference, the features of the XC2336B are summarized here.

- · High-performance CPU with five-stage pipeline and MPU
 - 12.5 ns instruction cycle @ 80 MHz CPU clock (single-cycle execution)
 - One-cycle 32-bit addition and subtraction with 40-bit result
 - One-cycle multiplication (16 × 16 bit)
 - Background division (32 / 16 bit) in 21 cycles
 - One-cycle multiply-and-accumulate (MAC) instructions
 - Enhanced Boolean bit manipulation facilities
 - Zero-cycle jump execution
 - Additional instructions to support HLL and operating systems
 - Register-based design with multiple variable register banks
 - Fast context switching support with two additional local register banks
 - 16 Mbytes total linear address space for code and data
 - 1,024 Bytes on-chip special function register area (C166 Family compatible)
 Integrated Memory Protection Unit (MPU)
- Interrupt system with 16 priority levels providing 96 interrupt nodes
 - Selectable external inputs for interrupt generation and wake-up
 - Fastest sample-rate 12.5 ns
- Eight-channel interrupt-driven single-cycle data transfer with Peripheral Event Controller (PEC), 24-bit pointers cover total address space
- Clock generation from internal or external clock sources, using on-chip PLL or prescaler
- Hardware CRC-Checker with Programmable Polynomial to Supervise On-Chip Memory Areas
- On-chip memory modules
 - 8 Kbytes on-chip stand-by RAM (SBRAM)
 - 2 Kbytes on-chip dual-port RAM (DPRAM)
 - Up to 16 Kbytes on-chip data SRAM (DSRAM)
 - Up to 16 Kbytes on-chip program/data SRAM (PSRAM)
 - Up to 320 Kbytes on-chip program memory (Flash memory)
 - Memory content protection through Error Correction Code (ECC)

General Device Information

Table	Fable 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
43	P10.3	O0 / I	St/B	Bit 3 of Port 10, General Purpose Input/Output				
	CCU60_COU T60	O2	St/B	CCU60 Channel 0 Output				
	U0C0_DX2A	I	St/B	USIC0 Channel 0 Shift Control Input				
	U0C1_DX2A	I	St/B	USIC0 Channel 1 Shift Control Input				
44	P10.4	O0 / I	St/B	Bit 4 of Port 10, General Purpose Input/Output				
	U0C0_SELO 3	O1	St/B	USIC0 Channel 0 Select/Control 3 Output				
	CCU60_COU T61	O2	St/B	CCU60 Channel 1 Output				
	U0C0_DX2B	I	St/B	USIC0 Channel 0 Shift Control Input				
	U0C1_DX2B	I	St/B	USIC0 Channel 1 Shift Control Input				
	ESR1_9	I	St/B	ESR1 Trigger Input 9				
45	P10.5	O0 / I	St/B	Bit 5 of Port 10, General Purpose Input/Output				
	U0C1_SCLK OUT	O1	St/B	USIC0 Channel 1 Shift Clock Output				
	CCU60_COU T62	O2	St/B	CCU60 Channel 2 Output				
	U0C1_DX1B	I	St/B	USIC0 Channel 1 Shift Clock Input				
46	P10.6	O0 / I	St/B	Bit 6 of Port 10, General Purpose Input/Output				
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output				
	U1C0_SELO 0	O3	St/B	USIC1 Channel 0 Select/Control 0 Output				
	U0C0_DX0C	I	St/B	USIC0 Channel 0 Shift Data Input				
	U1C0_DX2D	I	St/B	USIC1 Channel 0 Shift Control Input				
	CCU60_CTR APA	I	St/B	CCU60 Emergency Trap Input				

General Device Information

Table	Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
53	P10.10	O0 / I	St/B	Bit 10 of Port 10, General Purpose Input/Output				
	U0C0_SELO 0	01	St/B	USIC0 Channel 0 Select/Control 0 Output				
	CCU60_COU T63	02	St/B	CCU60 Channel 3 Output				
	U0C0_DX2C	I	St/B	USIC0 Channel 0 Shift Control Input				
	U0C1_DX1A	I	St/B	USIC0 Channel 1 Shift Clock Input				
	TDI_B	IH	St/B	JTAG Test Data Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.				
54	P10.11	O0 / I	St/B	Bit 11 of Port 10, General Purpose Input/Output				
	U1C0_SCLK OUT	O1	St/B	USIC1 Channel 0 Shift Clock Output				
	BRKOUT	O2	St/B	OCDS Break Signal Output				
	U1C0_DX1D	I	St/B	USIC1 Channel 0 Shift Clock Input				
	TMS_B	IH	St/B	JTAG Test Mode Selection Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.				
55	P10.12	O0 / I	St/B	Bit 12 of Port 10, General Purpose Input/Output				
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output				
	TDO_B	OH / IH	St/B	JTAG Test Data Output / DAP1 Input/Output If DAP pos. 1 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.				
	U1C0_DX0C	I	St/B	USIC1 Channel 0 Shift Data Input				
	U1C0_DX1E	I	St/B	USIC1 Channel 0 Shift Clock Input				
56	P10.13	O0 / I	St/B	Bit 13 of Port 10, General Purpose Input/Output				
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output				
	U1C0_SELO 3	O3	St/B	USIC1 Channel 0 Select/Control 3 Output				
	U1C0_DX0D	I	St/B	USIC1 Channel 0 Shift Data Input				

General Device Information

Tabl	Table 6 Fin Definitions and Functions (cont d)						
Pin	Symbol	Ctrl.	Туре	Function			
6	V _{DDIM}	-	PS/M	Digital Core Supply Voltage for Domain M Decouple with a ceramic capacitor, see Data Sheet for details.			
24, 41, 57	V _{DDI1}	-	PS/1	Digital Core Supply Voltage for Domain 1 Decouple with a ceramic capacitor, see Data Sheet for details. All V _{DDI1} pins must be connected to each other.			
9	V _{DDPA}	-	PS/A	Digital Pad Supply Voltage for Domain A Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins.			
				Note: The A/D_Converters and ports P5, P6 and P15 are fed from supply voltage V_{DDPA} .			
2, 16, 18, 32,	V _{DDPB}	- PS/B	Digital Pad Supply Voltage for Domain B Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins.				
34, 48, 50, 64				except P5, P6 and P15 are fed from supply voltage V_{DDPB} .			
1, 17, 33,	V _{SS}	-	PS/	Digital Ground All V_{SS} pins must be connected to the ground-line or ground-plane.			
49				Note: Also the exposed pad is connected internally to V_{SS} . To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note.			

3.1 Memory Subsystem and Organization

The memory space of the XC2336B is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space.

Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes
IMB register space	FF'FF00 _H	FF'FFFF _H	256 Bytes	
Reserved	F0'0000 _H	FF'FEFF _H	< 1 Mbyte	Minus IMB registers
Reserved for EPSRAM	E8'4000 _H	EF'FFFF _H	496 Kbytes	Mirrors EPSRAM
Emulated PSRAM	E8'0000 _H	E8'3FFF _H	up to 16 Kbytes	With Flash timing
Reserved for PSRAM	E0'4000 _H	E7'FFFF _H	496 Kbytes	Mirrors PSRAM
PSRAM	E0'0000 _H	E0'3FFF _H	up to 16 Kbytes	Program SRAM
Reserved for Flash	C5'0000 _H	DF'FFFF _H	1,728 Kbytes	
Flash 1	C4'0000 _H	C4'FFFF _H	64 Kbytes	
Flash 0	C0'0000 _H	C3'FFFF _H	256 Kbytes ³⁾	Minus res. seg.
External memory area	40'0000 _H	BF'FFFF _H	8 Mbytes	
External IO area ⁴⁾	21'0000 _H	3F'FFFF _H	1,984 Kbytes	
Reserved	20'BC00 _H	20'FFFF _H	17 Kbytes	
USIC0–2 alternate regs.	20'B000 _H	20'BBFF _H	3 Kbytes	Accessed via EBC
MultiCAN alternate regs.	20'8000 _H	20'AFFF _H	12 Kbytes	Accessed via EBC
Reserved	20'5800 _H	20'7FFF _H	10 Kbytes	
USIC0–2 registers	20'4000 _H	20'57FF _H	6 Kbytes	Accessed via EBC
Reserved	20'6800 _H	20'7FFF _H	6 Kbytes	
MultiCAN registers	20'0000 _H	20'3FFF _H	16 Kbytes	Accessed via EBC
External memory area	01'0000 _H	1F'FFFF _H	1984 Kbytes	
SFR area	00'FE00 _H	00'FFFF _H	0.5 Kbytes	
Dualport RAM (DPRAM)	00'F600 _H	00'FDFF _H	2 Kbytes	
Reserved for DPRAM	00'F200 _H	00'F5FF _H	1 Kbytes	
ESFR area	00'F000 _H	00'F1FF _H	0.5 Kbytes	
XSFR area	00'E000 _H	00'EFFF _H	4 Kbytes	
Data SRAM (DSRAM)	00'A000 _H	00'DFFF _H	16 Kbytes	

Table 8 XC2336B Memory Map ¹⁾

to a dedicated vector table location). The occurrence of a hardware trap is also indicated by a single bit in the trap flag register (TFR). Unless another higher-priority trap service is in progress, a hardware trap will interrupt any ongoing program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

Depending on the package option up to 3 External Service Request (ESR) pins are provided. The ESR unit processes their input values and allows to implement user controlled trap functions (System Requests SR0 and SR1). In this way reset, wakeup and power control can be efficiently realized.

Software interrupts are supported by the 'TRAP' instruction in combination with an individual trap (interrupt) number. Alternatively to emulate an interrupt by software a program can trigger interrupt requests by writing the Interrupt Request (IR) bit of an interrupt control register.

3.6 On-Chip Debug Support (OCDS)

The On-Chip Debug Support system built into the XC2336B provides a broad range of debug and emulation features. User software running on the XC2336B can be debugged within the target system environment.

The OCDS is controlled by an external debugging device via the debug interface. This either consists of the 2-pin Device Access Port (DAP) or of the JTAG port conforming to IEEE-1149. The debug interface can be completed with an optional break interface.

The debugger controls the OCDS with a set of dedicated registers accessible via the debug interface (DAP or JTAG). In addition the OCDS system can be controlled by the CPU, e.g. by a monitor program. An injection interface allows the execution of OCDS-generated instructions by the CPU.

Multiple breakpoints can be triggered by on-chip hardware, by software, or by an external trigger input. Single stepping is supported, as is the injection of arbitrary instructions and read/write access to the complete internal address space. A breakpoint trigger can be answered with a CPU halt, a monitor call, a data transfer, or/and the activation of an external signal.

Tracing of data can be obtained via the debug interface, or via the external bus interface for increased performance.

Tracing of program execution is supported by the XC2000 Family emulation device. With this device the DAP can operate on clock rates of up to 20 MHz.

The DAP interface uses two interface signals, the JTAG interface uses four interface signals, to communicate with external circuitry. The debug interface can be amended with two optional break lines.

3.12 Universal Serial Interface Channel Modules (USIC)

The XC2336B features the USIC modules USIC0, USIC1. Each module provides two serial communication channels.

The Universal Serial Interface Channel (USIC) module is based on a generic data shift and data storage structure which is identical for all supported serial communication protocols. Each channel supports complete full-duplex operation with a basic data buffer structure (one transmit buffer and two receive buffer stages). In addition, the data handling software can use FIFOs.

The protocol part (generation of shift clock/data/control signals) is independent of the general part and is handled by protocol-specific preprocessors (PPPs).

The USIC's input/output lines are connected to pins by a pin routing unit. The inputs and outputs of each USIC channel can be assigned to different interface pins, providing great flexibility to the application software. All assignments can be made during runtime.

Figure 11 General Structure of a USIC Module

The regular structure of the USIC module brings the following advantages:

- Higher flexibility through configuration with same look-and-feel for data management
- Reduced complexity for low-level drivers serving different protocols
- Wide range of protocols with improved performances (baud rate, buffer handling)

Target Protocols

Each USIC channel can receive and transmit data frames with a selectable data word width from 1 to 16 bits in each of the following protocols:

- UART (asynchronous serial channel)
 - module capability: maximum baud rate = f_{SYS} / 4
 - data frame length programmable from 1 to 63 bits
 - MSB or LSB first
- LIN Support (Local Interconnect Network)
 - module capability: maximum baud rate = f_{SYS} / 16
 - checksum generation under software control
 - baud rate detection possible by built-in capture event of baud rate generator
- SSC/SPI (synchronous serial channel with or without data buffer)
 - module capability: maximum baud rate = f_{SYS} / 2, limited by loop delay
 - number of data bits programmable from 1 to 63, more with explicit stop condition
 - MSB or LSB first
 - optional control of slave select signals
- IIC (Inter-IC Bus)
 - supports baud rates of 100 kbit/s and 400 kbit/s
- IIS (Inter-IC Sound Bus)
 - module capability: maximum baud rate = f_{SYS} / 2
- Note: Depending on the selected functions (such as digital filters, input synchronization stages, sample point adjustment, etc.), the maximum achievable baud rate can be limited. Please note that there may be additional delays, such as internal or external propagation delays and driver delays (e.g. for collision detection in UART mode, for IIC, etc.).

3.17 Parallel Ports

The XC2336B provides up to 40 I/O lines which are organized into 4 input/output ports and 2 input ports. All port lines are bit-addressable, and all input/output lines can be individually (bit-wise) configured via port control registers. This configuration selects the direction (input/output), push/pull or open-drain operation, activation of pull devices, and edge characteristics (shape) and driver characteristics (output current) of the port drivers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. During the internal reset, all port pins are configured as inputs without pull devices active.

All port lines have alternate input or output functions associated with them. These alternate functions can be programmed to be assigned to various port pins to support the best utilization for a given application. For this reason, certain functions appear several times in **Table 10**.

All port lines that are not used for alternate functions may be used as general purpose I/O lines.

Port	Width	I/O	Connected Modules
P2	11	I/O	CAN, CC2, GPT12E, USIC, DAP/JTAG
P5	7	I	Analog Inputs, CCU6, DAP/JTAG, GPT12E, CAN
P6	2	I/O	ADC, CAN, GPT12E
P7	1	I/O	CAN, GPT12E, SCU, DAP/JTAG, USIC
P10	16	I/O	CCU6, USIC, DAP/JTAG, CAN
P15	2	I	Analog Inputs, GPT12E

Table 10Summary of the XC2336B's Ports

Table 13 Operating Conditions (cont'd)

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Overload current coupling factor for digital I/O pins	K _{OVD} CC	_	1.0 x 10 ⁻²	3.0 x 10 ⁻²	-	<i>I</i> _{OV} < 0 mA; not subject to production test
		_	1.0 x 10 ⁻⁴	5.0 x 10 ⁻³	-	<i>I</i> _{OV} > 0 mA; not subject to production test
Absolute sum of overload currents	$\Sigma I_{OV} $ SR	-	-	50	mA	not subject to production test
Digital core supply voltage for domain M ⁸⁾	V _{DDIM} CC	-	1.5	_		
Digital core supply voltage for domain 1 ⁸⁾	V _{DDI1} CC	-	1.5	-		
Digital supply voltage for IO pads and voltage regulators	$V_{DDP}SR$	3.0	-	5.5	V	
Digital ground voltage	$V_{\rm SS}{\rm SR}$	-	0	-	V	

 To ensure the stability of the voltage regulators the EVRs must be buffered with ceramic capacitors. Separate buffer capacitors with the recomended values shall be connected as close as possible to each V_{DDIM} and V_{DDI1} pin to keep the resistance of the board tracks below 2 Ohm. Connect all V_{DDI1} pins together. The minimum capacitance value is required for proper operation under all conditions (e.g. temperature). Higher values slightly increase the startup time.

- 2) Use one Capacitor for each pin.
- This is the reference load. For bigger capacitive loads, use the derating factors listed in the pad properties section.
- 4) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (C_L).
- 5) The operating frequency range may be reduced for specific device types. This is indicated in the device designation (...FxxL). 80 MHz devices are marked ...F80L.
- 6) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range: V_{OV} > V_{IHmax} (I_{OV} > 0) or V_{OV} < V_{ILmin} ((I_{OV} < 0). The absolute sum of input overload currents on all pins may not exceed 50 mA. The supply voltages must remain within the specified limits. Proper operation under overload conditions depends on the application. Overload conditions must not occur on pin XTAL1 (powered by V_{DDIM}).

- 7) An overload current (I_{OV}) through a pin injects a certain error current (I_{INJ}) into the adjacent pins. This error current adds to the respective pins leakage current (I_{OZ}) . The amount of error current depends on the overload current and is defined by the overload coupling factor K_{OV} . The polarity of the injected error current is inverse compared to the polarity of the overload current that produces it. The total current through a pin is $|I_{TOT}| = |I_{OZ}| + (|I_{OV}| K_{OV})$. The additional error current may distort the input voltage on analog inputs.
- 8) Value is controlled by on-chip regulator

4.2 Voltage Range definitions

The XC2336B timing depends on the supply voltage. If such a dependency exists the timing values are given for 2 voltage areas commonly used. The voltage areas are defined in the following tables.

Table 14 Upper Voltage Range Definition

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{ m SR}$	4.5	5	5.5	V	

Table 15	Lower	Voltage	Range	Definition
----------	-------	---------	-------	------------

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{ m SR}$	3.0	3.3	4.5	V	

4.2.1 Parameter Interpretation

The parameters listed in the following include both the characteristics of the XC2336B and its demands on the system. To aid in correctly interpreting the parameters when evaluating them for a design, they are marked accordingly in the column "Symbol":

CC (Controller Characteristics):

The logic of the XC2336B provides signals with the specified characteristics.

SR (System Requirement):

The external system must provide signals with the specified characteristics to the XC2336B.

4.4 Analog/Digital Converter Parameters

These parameters describe the conditions for optimum ADC performance. *Note: Operating Conditions apply.*

Table 20 ADC Parameters

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Switched capacitance at an analog input	C _{AINSW} CC	-	-	4	pF	not subject to production test
Total capacitance at an analog input	C _{AINT} CC	_	-	10	pF	not subject to production test
Switched capacitance at the reference input	C _{AREFSW} CC	_	-	7	pF	not subject to production test
Total capacitance at the reference input	C _{AREFT} CC	-	-	15	pF	not subject to production test
Differential Non-Linearity Error	EA _{DNL} CC	-	0.8	1	LSB	
Gain Error	EA _{GAIN} CC	-	0.4	0.8	LSB	
Integral Non-Linearity	EA _{INL} CC	-	0.8	1.2	LSB	
Offset Error	EA _{OFF} CC	-	0.5	0.8	LSB	
Analog clock frequency	$f_{\rm ADCI}{\rm SR}$	0.5	-	16.5	MHz	voltage_range= lower
		0.5	-	20	MHz	voltage_range= upper
Input resistance of the selected analog channel	R _{AIN} CC	-	-	2	kOh m	not subject to production test
Input resistance of the reference input	R _{AREF} CC	_	_	2	kOh m	not subject to production test

- This parameter is tested for the fastest and the slowest selection. The medium selections are not subject to production test - verified by design/characterization
- 3) f_{WU} in MHz
- 4) This value includes a hysteresis of approximately 50 mV for rising voltage.
- 5) V_{LV} = selected SWD voltage level
- 6) The limit V_{LV} 0.10 V is valid for the OK1 level. The limit for the OK2 level is V_{LV} 0.15 V.

Conditions for t_{SPO} Timing Measurement

The time required for the transition from **Power-on** to **Base** mode is called t_{SPO} . It is measured under the following conditions:

Precondition: The pad supply is valid, i.e. V_{DDPB} is above 3.0V and remains above 3.0V even though the XC2336B is starting up. No debugger is attached.

Start condition: Power-on reset is removed ($\overline{PORST} = 1$).

End condition: External pin toggle caused by first user instruction executed from FLASH after startup.

Conditions for t_{SSO} Timing Measurement

The time required for the transition from **Stopover** to **Stopover Waked-Up** mode is called t_{SSO} . It is measured under the following conditions:

Precondition: The **Stopover** mode has been entered using the procedure defined in the Programmer's Guide.

Start condition: Pin toggle on ESR pin triggering the startup sequence.

End condition: External pin toggle caused by first user instruction executed from PSRAM after startup.

4.7.2 Definition of Internal Timing

The internal operation of the XC2336B is controlled by the internal system clock f_{SYS} .

Because the system clock signal $f_{\rm SYS}$ can be generated from a number of internal and external sources using different mechanisms, the duration of the system clock periods (TCSs) and their variation (as well as the derived external timing) depend on the mechanism used to generate $f_{\rm SYS}$. This must be considered when calculating the timing for the XC2336B.

Figure 19 Generation Mechanisms for the System Clock

Note: The example of PLL operation shown in **Figure 19** uses a PLL factor of 1:4; the example of prescaler operation uses a divider factor of 2:1.

The specification of the external timing (AC Characteristics) depends on the period of the system clock (TCS).

4.7.3 External Clock Input Parameters

These parameters specify the external clock generation for the XC2336B. The clock can be generated in two ways:

- By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2.
- By supplying an external clock signal
 - This clock signal can be supplied either to pin XTAL1 (core voltage domain) or to pin CLKIN1 (IO voltage domain).

If connected to CLKIN1, the input signal must reach the defined input levels $V_{\rm IL}$ and $V_{\rm IH}$. If connected to XTAL1, a minimum amplitude $V_{\rm AX1}$ (peak-to-peak voltage) is sufficient for the operation of the on-chip oscillator.

Note: The given clock timing parameters $(t_1 \dots t_4)$ are only valid for an external clock input signal.

Note: Operating Conditions apply.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Oscillator frequency	$f_{\rm OSC}{ m SR}$	4	-	40	MHz	Input= Clock Signal
		4	-	16	MHz	Input= Crystal or Ceramic Resonator
XTAL1 input current absolute value	$ I_{\rm IL} $ CC	-	-	20	μA	
Input clock high time	t ₁ SR	6	-	-	ns	
Input clock low time	t_2 SR	6	-	-	ns	
Input clock rise time	t ₃ SR	-	8	8	ns	
Input clock fall time	t_4 SR	-	8	8	ns	
Input voltage amplitude on XTAL1 ¹⁾	V _{AX1} SR	$0.3 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	$f_{\rm OSC} \ge 4 \; {\rm MHz};$ $f_{\rm OSC} < 16 \; {\rm MHz}$
		$0.4 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	f _{OSC} ≥ 16 MHz; f _{OSC} < 25 MHz
		$0.5 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	$f_{\text{OSC}} \ge 25 \text{ MHz};$ $f_{\text{OSC}} \le 40 \text{ MHz}$
Input voltage range limits for signal on XTAL1	$V_{\rm IX1}$ SR	-1.7 + V _{DDIM}	-	1.7	V	2)

Table 27 External Clock Input Characteristics

4.7.5 Synchronous Serial Interface Timing

The following parameters are applicable for a USIC channel operated in SSC mode.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 30 is valid under the following conditions: $C_L = 20 \text{ pF}$; *SSC* = master ; voltage_range= upper

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	4	Test Condition
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	t _{SYS} - 8 ¹⁾	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	t _{SYS} - 6 ¹⁾	-	-	ns	
Data output DOUT valid time	t ₃ CC	-6	-	9	ns	
Receive data input setup time to SCLKOUT receive edge	t ₄ SR	31	-	-	ns	
Data input DX0 hold time from SCLKOUT receive edge	t ₅ SR	-4	-	_	ns	

Table 30 USIC SSC Master Mode Timing for Upper Voltage Range

1) $t_{SYS} = 1 / f_{SYS}$

Table 31 is valid under the following conditions: $C_L = 20 \text{ pF}$; *SSC*= master; voltage_range= lower

4.7.6 Debug Interface Timing

The debugger can communicate with the XC2336B either via the 2-pin DAP interface or via the standard JTAG interface.

Debug via DAP

The following parameters are applicable for communication through the DAP debug interface.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 34 is valid under the following conditions: $C_1 = 20 \text{ pF}$; voltage_range= upper

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
DAP0 clock period ¹⁾	<i>t</i> ₁₁ SR	25	-	-	ns	
DAP0 high time	t ₁₂ SR	8	-	-	ns	
DAP0 low time ¹⁾	t ₁₃ SR	8	-	-	ns	
DAP0 clock rise time	<i>t</i> ₁₄ SR	-	-	4	ns	
DAP0 clock fall time	t ₁₅ SR	-	-	4	ns	
DAP1 setup to DAP0 rising edge	<i>t</i> ₁₆ SR	6	-	-	ns	
DAP1 hold after DAP0 rising edge	<i>t</i> ₁₇ SR	6	-	-	ns	
DAP1 valid per DAP0 clock period ²⁾	<i>t</i> ₁₉ CC	17	20	_	ns	

 Table 34
 DAP Interface Timing for Upper Voltage Range

1) See the DAP chapter for clock rate restrictions in the Active::IDLE protocol state.

2) The Host has to find a suitable sampling point by analyzing the sync telegram response.

Table 35 is valid under the following conditions: C_{L} = 20 pF; voltage_range= lower