

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 13x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f071cbt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 49.	Recommended footprint for UFQFPN48 package	113
Figure 50.	UFQFPN48 package marking example	114
Figure 51.	LQFP64 P _D max versus T _A	117

Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL input source. This oscillator can be automatically fine-trimmed by the means of the CRS peripheral using the external synchronization.

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.

The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.8 Direct memory access controller (DMA)

The 7-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers.

The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers (except TIM14), DAC and ADC.

3.9 Interrupts and events

3.9.1 Nested vectored interrupt controller (NVIC)

The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of $Cortex^{\mathbb{R}}$ -M0) and 4 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.14.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for:

- input capture
- output compare
- PWM generation (edge or center-aligned modes)
- one-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining.

3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17)

There are six synchronizable general-purpose timers embedded in the STM32F071x8/xB devices (see *Table 7* for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base.

TIM2, TIM3

STM32F071x8/xB devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advancedcontrol timer via the Timer Link feature for synchronization or event chaining.

TIM2 and TIM3 both have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

TIM14

This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.

Its counter can be frozen in debug mode.

TIM15, TIM16 and TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C peripherals can be served by the DMA controller.

Refer to *Table 9* for the differences between I2C1 and I2C2.

Table 9. S	TM32F071x8/xB	I ² C im	plementation

I ² C features ⁽¹⁾	I2C1	I2C2
7-bit addressing mode	Х	Х
10-bit addressing mode	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х
Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive I/Os	Х	Х
Independent clock	Х	-
SMBus	Х	-
Wakeup from STOP	Х	-

1. X = supported.

3.17 Universal synchronous/asynchronous receiver/transmitter (USART)

The device embeds four universal synchronous/asynchronous receivers/transmitters (USART1, USART2, USART3, USART4) which communicate at speeds of up to 6 Mbit/s.

They provide hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 and USART2 support also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and have a clock domain independent of the CPU clock, allowing to wake up the MCU from Stop mode.

The USART interfaces can be served by the DMA controller.

USART modes/features ⁽¹⁾	USART1 and USART2	USART3 and USART4
Hardware flow control for modem	Х	Х
Continuous communication using DMA	х	х
Multiprocessor communication	Х	Х
Synchronous mode	Х	Х
Smartcard mode	х	-
Single-wire half-duplex communication	Х	Х

Figure 8. WLCSP49 package pinout

1. The above figure shows the package in top view, changing from bottom view in the previous document versions.

	Pin	numb	pers				_		Pin functions		
UFBGA100	LQFP100	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
К3	25	16	12	E5	PA2	I/O	ТТа	-	USART2_TX, TIM2_CH3, TIM15_CH1, TSC_G1_IO3	ADC_IN2, COMP2_OUT, COMP2_INM6, WKUP4	
L3	26	17	13	E4	PA3	I/O	TTa	-	USART2_RX,TIM2_CH4, TIM15_CH2, TSC_G1_IO4	ADC_IN3, COMP2_INP	
D3	27	18	-	-	VSS	S	-	-	Ground		
H3	28	19	-	-	VDD	S	-	-	Digital power su	upply	
М3	29	20	14	G6	PA4	I/O	ТТа	-	SPI1_NSS, I2S1_WS, TIM14_CH1, TSC_G2_IO1, USART2_CK	COMP1_INM4, COMP2_INM4, ADC_IN4, DAC_OUT1	
K4	30	21	15	F5	PA5	I/O	ТТа	-	SPI1_SCK, I2S1_CK, CEC, TIM2_CH1_ETR, TSC_G2_IO2	COMP1_INM5, COMP2_INM5, ADC_IN5, DAC_OUT2	
L4	31	22	16	F4	PA6	I/O	ТТа	-	SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, COMP1_OUT, TSC_G2_IO3, EVENTOUT, USART3_CTS	ADC_IN6	
M4	32	23	17	F3	PA7	I/O	ТТа	-	SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, COMP2_OUT, TSC_G2_IO4, EVENTOUT	ADC_IN7	
K5	33	24	-	-	PC4	I/O	TTa	-	EVENTOUT, USART3_TX	ADC_IN14	
L5	34	25	-	-	PC5	I/O	ТТа	-	TSC_G3_IO1, USART3_RX	ADC_IN15, WKUP5	
M5	35	26	18	G5	PB0	I/O	ТТа	-	TIM3_CH3, TIM1_CH2N, TSC_G3_IO2, EVENTOUT, USART3_CK	ADC_IN8	
M6	36	27	19	G4	PB1	I/O	ТТа	-	TIM3_CH4, USART3_RTS, TIM14_CH1, TIM1_CH3N, TSC_G3_IO3	ADC_IN9	
L6	37	28	20	G3	PB2	I/O	FT		TSC_G3_IO4	-	

Table 13. STM32F071x8/xE	B pin definitions	(continued)
--------------------------	-------------------	-------------

5 Memory mapping

To the difference of STM32F071xB memory map in *Figure 9*, the two bottom code memory spaces of STM32F071x8 end at 0x0000 FFFF and 0x0800 FFFF, respectively.

Figure 9. STM32F071xB memory map

DocID025451 Rev 6

Symbol	Ratings	Max.	Unit
ΣI _{VDD}	Total current into sum of all VDD power lines (source) ⁽¹⁾	120	
ΣI _{VSS}	Total current out of sum of all VSS ground lines (sink) ⁽¹⁾	-120	
I _{VDD(PIN)}	Maximum current into each VDD power pin (source) ⁽¹⁾	100	
I _{VSS(PIN)}	Maximum current out of each VSS ground pin (sink) ⁽¹⁾	-100	
1	Output current sunk by any I/O and control pin	25	
IO(PIN)	Output current source by any I/O and control pin	-25	
	Total output current sunk by sum of all I/Os and control pins ⁽²⁾	80	
ΣI _{IO(PIN)}	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	-80	mA
	Total output current sourced by sum of all I/Os supplied by VDDIO2	-40	
I _{INJ(PIN)} ⁽³⁾	Injected current on B, FT and FTf pins	-5/+0 ⁽⁴⁾	
	Injected current on TC and RST pin	± 5	
	Injected current on TTa pins ⁽⁵⁾	± 5	
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	

Table 22. Current characteristics

1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.

3. A positive injection is induced by $V_{IN} > V_{DDIOx}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 21: Voltage characteristics* for the maximum allowed input voltage values.

4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

5. On these I/Os, a positive injection is induced by $V_{IN} > V_{DDA}$. Negative injection disturbs the analog performance of the device. See note ⁽²⁾ below *Table 59: ADC accuracy*.

6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 23. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

Symbol	Parameter	Conditions	Min	Max	Unit		
t _{VDD}	V _{DD} rise time rate		0	8			
	V _{DD} fall time rate	-	20	8	uc//		
	V _{DDA} rise time rate		0	8	μ5/ ν		
	V _{DDA} fall time rate	-	20	8			

 Table 25. Operating conditions at power-up / power-down

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 26* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

 Table 26. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{POR/PDR} ⁽¹⁾	Power on/power down	Falling edge ⁽²⁾	1.80	1.88	1.96 ⁽³⁾	V
	reset threshold	Rising edge	1.84 ⁽³⁾	1.92	2.00	V
V _{PDRhyst}	PDR hysteresis	-	-	40	-	mV
t _{RSTTEMPO} ⁽⁴⁾	Reset temporization	-	1.50	2.50	4.50	ms

1. The PDR detector monitors V_{DD} and also V_{DDA} (if kept enabled in the option bytes). The POR detector monitors only $V_{DD}.$

2. The product behavior is guaranteed by design down to the minimum $V_{\text{POR/PDR}}$ value.

3. Data based on characterization results, not tested in production.

4. Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{PVD0}	D\/D throshold 0	Rising edge	2.1	2.18	2.26	V
		Falling edge	2	2.08	2.16	V
V _{PVD1}	D\/D threehold 1	Rising edge	2.19	2.28	2.37	V
		Falling edge	2.09	2.18	2.27	V
V _{PVD2}	PVD threshold 2	Rising edge	2.28	2.38	2.48	V
		Falling edge	2.18	2.28	2.38	V
V	PVD threshold 3	Rising edge	2.38	2.48	2.58	V
VPVD3		Falling edge	2.28	2.38	2.48	V
V	D\/D threehold 4	Rising edge	2.47	2.58	2.69	V
V _{PVD4}	PVD threshold 4	Falling edge	2.37	2.48	2.59	V
M	D\/D threehold 5	Rising edge	2.57	2.68	2.79	V
VPVD5	PVD threshold 5	Falling edge	2.47	2.58	2.69	V

 Table 27. Programmable voltage detector characteristics

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled f_{PCLK} = f_{HCLK}

The parameters given in to *Table 31* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

_ 5				A	ll periphe	rals ena	bled	All peripherals disabled				
lodm'	ameto	Conditions	f _{HCLK}		N	lax @ T ₄	(1)		м	ax @ T _A	(1)	Unit
Sy Para			Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C		
		HSI48	48 MHz	24.3	26.9	27.2	27.9	13.1	14.8	14.9	15.5	
	ory		48 MHz	24.1	26.8	27.0	27.7	13.0	14.6	14.8	15.4	
	ode, nem	HSE bypass, PLL on	32 MHz	16.0	18.3	18.6	19.2	8.76	9.56	9.73	10.6	
	n n ash r		24 MHz	12.3	13.7	14.3	14.7	7.36	7.94	8.37	8.81	
	n Rl	HSE bypass, PLL off	8 MHz	4.52	5.25	5.28	5.61	2.89	3.17	3.26	3.34	
I _{DD}	ent i I fror		1 MHz	1.25	1.39	1.58	1.87	0.93	1.06	1.15	1.34	mA
	curr uting		48 MHz	24.1	27.1	27.6	27.8	12.9	14.7	14.9	15.5	
Supply code exect	pply exect	HSI clock, PLL on	32 MHz	16.1	18.2	18.9	19.3	8.82	9.69	9.83	10.7	
	_	24 MHz	12.4	14.0	14.4	14.8	7.31	7.92	8.34	8.75		
	HSI clock, PLL off	8 MHz	4.52	5.25	5.35	5.61	2.87	3.16	3.25	3.33		

	ŗ			Α	ll periphe	rals ena	bled	All peripherals disabled				
Iodm	amete	Conditions	f _{HCLK}		N	lax @ T _A	(1)		Max @ T _A ⁽¹⁾			Unit
Sy			Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C		
		HSI48	48 MHz	23.1	25.4	25.8	26.6	12.8	13.5	13.7	13.9	
			48 MHz	23.0	25.3 ⁽²⁾	25.7	26.5 ⁽²⁾	12.6	13.3 ⁽²⁾	13.5	13.8 ⁽²⁾	
	ode, AM	HSE bypass, PLL on	32 MHz	15.4	17.3	17.8	18.3	7.96	8.92	9.17	9.73	
	E E		24 MHz	11.4	12.9	13.5	13.7	6.48	8.04	8.23	8.41	
	n Ru g fro	HSE bypass,	8 MHz	4.21	4.6	4.89	5.25	2.07	2.3	2.35	2.94	
	ent i uting	PLL off	1 MHz	0.78	0.9	0.92	1.15	0.36	0.48	0.59	0.82	
	curr	HSI clock, PLL on	48 MHz	23.1	24.5	25.0	25.2	12.6	13.7	13.9	14.0	
	pply ode		32 MHz	15.4	17.4	17.7	18.2	8.05	8.85	9.16	9.94	
	Su		24 MHz	11.5	13.0	13.6	13.9	6.49	8.06	8.21	8.47	
		HSI clock, PLL off	8 MHz	4.34	4.75	5.03	5.41	2.11	2.36	2.38	2.98	m۸
DD		HSI48	48 MHz	15.1	16.6	16.8	17.5	3.08	3.43	3.56	3.61	
	0		48 MHz	15.0	16.5 ⁽²⁾	16.7	17.3 ⁽²⁾	2.93	3.28 ⁽²⁾	3.41	3.46 ⁽²⁾	
	pode	HSE bypass, PLL on	32 MHz	9.9	11.4	11.6	11.9	2.0	2.24	2.32	2.49	
	sep r		24 MHz	7.43	8.17	8.71	8.82	1.63	1.82	1.88	1.9	
	N Sle	HSE bypass,	8 MHz	2.83	3.09	3.26	3.66	0.76	0.88	0.91	0.93	
	ent ir	PLL off	1 MHz	0.42	0.54	0.55	0.67	0.28	0.39	0.41	0.43	
	curre		48 MHz	15.0	17.2	17.3	17.9	3.04	3.37	3.41	3.46	
	ply	HSI clock, PLL on	32 MHz	9.93	11.3	11.6	11.7	2.11	2.35	2.44	2.65	
	Sup		24 MHz	7.53	8.45	8.87	8.95	1.64	1.83	1.9	1.93	
		HSI clock, PLL off	8 MHz	2.95	3.24	3.41	3.8	0.8	0.92	0.94	0.97	

Table 29. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6 V (continued)

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

Sum Bara				Typ @V _{DD} (V _{DD} = V _{DDA})					Max ⁽¹⁾					
bol	meter	Conditions		2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
I _{DD}	Supply current in	Regulator in run mode, all oscillators OFF		15.4	15.5	15.6	15.7	15.8	15.9	23 ⁽²⁾	49	68 ⁽²⁾		
	Stop mode	Reg pow osc	gulator in low- ver mode, all illators OFF	3.2	3.3	3.4	3.5	3.6	3.7	8 ⁽²⁾	33	51 ⁽²⁾		
	Supply current in	LSI ON	ON and IWDG	0.8	1.0	1.1	1.2	1.3	1.4	-	-	-		
	Standby mode	LSI OFI	OFF and IWDG =	0.6	0.7	0.9	0.9	1.0	1.1	2.1 ⁽²⁾	2.6	3.1 ⁽²⁾		
Sup curr Stop mod	Supply current in Stop mode	z	Regulator in run mode, all oscillators OFF	2.1	2.2	2.3	2.5	2.6	2.8	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾		
		_A monitoring O	Regulator in low-power mode, all oscillators OFF	2.1	2.2	2.3	2.5	2.6	2.8	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾	μA	
	Supply current in	V _{DC}	LSI ON and IWDG ON	2.5	2.7	2.8	3.0	3.2	3.5	-	-	-		
	Standby mode		LSI OFF and IWDG OFF	1.9	2.1	2.2	2.3	2.5	2.6	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾		
JUDA	Supply	Ц.	Regulator in run mode, all oscillators OFF	1.3	1.3	1.4	1.4	1.5	1.5	-	-	-		
	Stop mode	Stop Billing	A monitoring OF	Regulator in low-power mode, all oscillators OFF	1.3	1.3	1.4	1.4	1.5	1.5	-	-	-	
	Supply current in	V _{DD}	LSI ON and IWDG ON	1.7	1.8	1.9	2.0	2.1	2.2	-	-	-		
	Standby mode		LSI OFF and IWDG OFF	1.2	1.2	1.2	1.3	1.3	1.4	-	-	-		

Table 31. Typical and maximum consumption in Stop and Standby modes

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

STM32F071x8 STM32F071xB

Symbol	Parameter	Conditions ⁽¹⁾	I/O toggling frequency (f _{SW})	Тур	Unit
			4 MHz	0.07	
			8 MHz	0.15	
		$C = C_{INT}$	16 MHz	0.31	
			24 MHz	0.53	
			48 MHz	0.92	
			4 MHz	0.18	
		V _{DDIOx} = 3.3 V	8 MHz	0.37	
		C _{EXT} = 0 pF	16 MHz	0.76	
		$C = C_{INT} + C_{EXT} + C_S$	24 MHz	1.39	
			48 MHz	2.188	
	I/O current		4 MHz	0.32	
		V _{DDIOx} = 3.3 V	8 MHz	0.64	
		C _{EXT} = 10 pF	16 MHz	1.25	
		$C = C_{INT} + C_{EXT} + C_S$	24 MHz	2.23	
low			48 MHz	4.442	mΑ
.200	consumption		4 MHz	0.49	
		$V_{DDIOx} = 3.3 V$ $C_{EXT} = 22 pF$ $C = C_{INT} + C_{EXT} + C_S$	8 MHz	0.94	
			16 MHz	2.38	
			24 MHz	3.99	
			4 MHz	0.64	
		$V_{\text{DDIOX}} = 3.3 \text{ V}$	8 MHz	1.25	
		$C = C_{INT} + C_{EXT} + C_S$	16 MHz	3.24	
			24 MHz	5.02	
		V _{DDIOx} = 3.3 V	4 MHz	0.81	
		$C_{EXT} = 47 \text{ pF}$	8 MHz	1.7	
		$C = C_{INT} + C_{EXT} + C_{S}$ $C = C_{int}$	16 MHz	3.67	
		V _{DDIOx} = 2.4 V	4 MHz	0.66	
		$C_{EXT} = 47 \text{ pF}$	8 MHz	1.43	
		$C = C_{INT} + C_{EXT} + C_{S}$	16 MHz	2.45	
		$C = C_{int}$	24 MHz	4.97	

Table 34. Switching output I/O current consumption

1. C_S = 7 pF (estimated value).

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 39*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	8.5	
	HSE current consumption	V _{DD} = 3.3 V, Rm = 30 Ω, CL = 10 pF@8 MHz	-	0.4	-	
I _{DD}		V _{DD} = 3.3 V, Rm = 45 Ω, CL = 10 pF@8 MHz	-	0.5	-	
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 5 pF@32 MHz	-	0.8	-	mA
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 10 pF@32 MHz	-	1	-	
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 20 pF@32 MHz	-	1.5	-	
9 _m	Oscillator transconductance	Startup	10	-	-	mA/V
$t_{SU(HSE)}^{(4)}$	Startup time	V_{DD} is stabilized	-	2	-	ms

Table 39.	HSE	oscillator	characteristics
	-		

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by design, not tested in production.

3. This consumption level occurs during the first 2/3 of the $t_{\mbox{SU(HSE)}}$ startup time

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 16*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

DocID025451 Rev 6

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.8 Internal clock source characteristics

The parameters given in *Table 41* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*. The provided curves are characterization results, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
l _{lkg}	Input leakage current ⁽²⁾	TC, FT and FTf I/O TTa in digital mode V _{SS} ≤ V _{IN} ≤ V _{DDIOx}	-	-	± 0.1	
		TTa in digital mode V _{DDIOx} ≤ V _{IN} ≤ V _{DDA}	-	-	1	μA
		TTa in analog mode V _{SS} ≤ V _{IN} ≤ V _{DDA}	-	-	± 0.2	
		FT and FTf I/O V _{DDIOx} ≤ V _{IN} ≤ 5 V	-	-	10	
R _{PU}	Weak pull-up equivalent resistor (3)	V _{IN} = V _{SS}	25	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽³⁾	V _{IN} = - V _{DDIOx}	25	40	55	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 53. I/O static	characteristics ((continued)
----------------------	-------------------	-------------

1. Data based on design simulation only. Not tested in production.

2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to *Table 52: I/O current injection susceptibility*.

 Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 21* for standard I/Os, and in *Figure 22* for 5 V-tolerant I/Os. The following curves are design simulation results, not tested in production.

Figure 29. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}

Figure 33. I²S master timing diagram (Philips protocol)

- 1. Data based on characterization results, not tested in production.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

7.7 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 24: General operating conditions*.

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $\mathsf{P}_{I\!/\!O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma \; ((\mathsf{V}_{\mathsf{DDIOx}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient UFBGA100 - 7 × 7 mm	55	
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm	42	
0	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	44	°C/M
OJA	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm	54	C/VV
	Thermal resistance junction-ambient UFQFPN48 - 7 × 7 mm	32	
	Thermal resistance junction-ambient WLCSP49 - 0.4 mm pitch	49	

Table 77. Package thermal characteristics

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.7.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Ordering information*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

DocID025451 Rev 6

8 Ordering information

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

Example:	STM32	F	071	R	В	T	6 x
Device family							
STM32 = ARM-based 32-bit microcontroller							
Product type							
F = General-purpose							
Sub-family							
071 = STM32F071xx]				
Pin count							
C = 48/49 pins							
R = 64 pins							
V = 100 pins							
User code memory size							
8 = 64 Kbyte							
B = 128 Kbyte							
Package							
H = UFBGA							
Y = WLCSP							
Temperature range							
6 = -40 to 85 °C							
7 = –40 to 105 °C							
Options							
xxx = code ID of programmed parts (includes parts)	acking type)						

xxx = code ID of programmed parts (includes packing type)TR = tape and reel packingblank = tray packing

