

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 13x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f071cbt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Figure 2. Clock tree

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.

DocID025451 Rev 6

	Number of capacitive sensing channels			
Analog I/O group	STM32F071Vx	STM32F071Rx	STM32F071Cx	
G1	3	3	3	
G2	3	3	3	
G3	3	3	2	
G4	3	3	3	
G5	3	3	3	
G6	3	3	3	
G7	3	0	0	
G8	3	0	0	
Number of capacitive sensing channels	24	18	17	

Table 6. Number of capacitive sensing channels available
on STM32F071x8/xB devices

3.14 Timers and watchdogs

The STM32F071x8/xB devices include up to six general-purpose timers, two basic timers and an advanced control timer.

Table 7 compares the features of the different timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	3
	TIM2	32-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
	TIM3	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
General purpose	TIM14	16-bit	Up	integer from 1 to 65536	No	1	-
	TIM15	16-bit	Up	integer from 1 to 65536	Yes	2	1
	TIM16 TIM17	16-bit	Up	integer from 1 to 65536	Yes	1	1
Basic	TIM6 TIM7	16-bit	Up	integer from 1 to 65536	Yes	-	-

Table 7. Timer feature comparison

The RTC is an independent BCD timer/counter. Its main features are the following:

- calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format
- automatic correction for 28, 29 (leap year), 30, and 31 day of the month
- programmable alarm with wake up from Stop and Standby mode capability
- Periodic wakeup unit with programmable resolution and period.
- on-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize the RTC with a master clock
- digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy
- Three anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection
- timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection
- reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision

The RTC clock sources can be:

- a 32.768 kHz external crystal
- a resonator or oscillator
- the internal low-power RC oscillator (typical frequency of 40 kHz)
- the high-speed external clock divided by 32

3.16 Inter-integrated circuit interface (I²C)

Up to two I²C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive on most of the associated I/Os.

Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). They also include programmable analog and digital noise filters.

Aspect	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2Cx peripheral clocks
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements Stable length
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.

In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts

verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C peripherals can be served by the DMA controller.

Refer to *Table 9* for the differences between I2C1 and I2C2.

Table 9. S	TM32F071x8/xB	I ² C im	plementation

I ² C features ⁽¹⁾	I2C1	I2C2
7-bit addressing mode	Х	Х
10-bit addressing mode	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х
Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive I/Os	Х	Х
Independent clock	Х	-
SMBus	Х	-
Wakeup from STOP	Х	-

1. X = supported.

3.17 Universal synchronous/asynchronous receiver/transmitter (USART)

The device embeds four universal synchronous/asynchronous receivers/transmitters (USART1, USART2, USART3, USART4) which communicate at speeds of up to 6 Mbit/s.

They provide hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 and USART2 support also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and have a clock domain independent of the CPU clock, allowing to wake up the MCU from Stop mode.

The USART interfaces can be served by the DMA controller.

USART modes/features ⁽¹⁾	USART1 and USART2	USART3 and USART4
Hardware flow control for modem	Х	Х
Continuous communication using DMA	х	х
Multiprocessor communication	Х	Х
Synchronous mode	Х	Х
Smartcard mode	х	-
Single-wire half-duplex communication	Х	Х

Na	me	Abbreviation	Definition		
Pin r	name	Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name			
		S	Supply pin		
Pin	type	I	Input-only pin		
		I/O	Input / output pin		
		FT	5 V-tolerant I/O		
		FTf	FTf 5 V-tolerant I/O, FM+ capable		
I/O atr	uoturo	TTa	3.3 V-tolerant I/O directly connected to ADC		
i/O structure		TC	Standard 3.3 V I/O		
		В	Dedicated BOOT0 pin		
		RST	Bidirectional reset pin with embedded weak pull-up resistor		
Notes Unless otherwise specified by a note, all I/Os are set as floati reset.		specified by a note, all I/Os are set as floating inputs during and after			
Pin	Alternate functions	Functions selected through GPIOx_AFR registers			
functions Additional functions		Functions directly selected/enabled through peripheral registers			

Table 12.	Legend/abbreviations used in the page of t	pinout table

Table 13. STM32F071x8/xB pin definitions

	Pin	numt	pers						Pin functions			
UFBGA100	LQFP100	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions		
B2	1	-	-	-	PE2	I/O	FT	-	TSC_G7_IO1, TIM3_ETR	-		
A1	2	-	-	-	PE3	I/O	FT	-	TSC_G7_IO2, TIM3_CH1	-		
B1	3	-	-	-	PE4	I/O	FT	-	TSC_G7_IO3, TIM3_CH2	-		
C2	4	-	-	-	PE5	I/O	FT	-	TSC_G7_IO4, TIM3_CH3	-		
D2	5	-	-	-	PE6	I/O	FT	-	TIM3_CH4	WKUP3, RTC_TAMP3		
E2	6	1	1	B7	VBAT	S	-	-	Backup power s	upply		
C1	7	2	2	D5	PC13	I/O	тс	(1) (2)	-	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT		

•	Iable 15. Alternate functions selected through GPIOB_AFR registers for port B										
Pin name	AF0	AF1	AF2	AF3	AF4	AF5					
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N	TSC_G3_IO2	USART3_CK	-					
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	TSC_G3_IO3	USART3_RTS	-					
PB2	-	-	-	TSC_G3_IO4	-	-					
PB3	SPI1_SCK, I2S1_CK	EVENTOUT	TIM2_CH2	TSC_G5_IO1	-	-					
PB4	SPI1_MISO, I2S1_MCK	TIM3_CH1	EVENTOUT	TSC_G5_IO2	-	TIM17_BKIN					
PB5	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM16_BKIN	I2C1_SMBA	-	-					
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N	TSC_G5_IO3	-	-					
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N	TSC_G5_IO4	USART4_CTS	-					
PB8	CEC	I2C1_SCL	TIM16_CH1	TSC_SYNC		-					
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT		SPI2_NSS, I2S2_WS					
PB10	CEC	I2C2_SCL	TIM2_CH3	TSC_SYNC	USART3_TX	SPI2_SCK, I2S2_CK					
PB11	EVENTOUT	I2C2_SDA	TIM2_CH4	TSC_G6_IO1	USART3_RX	-					
PB12	SPI2_NSS, I2S2_WS	EVENTOUT	TIM1_BKIN	TSC_G6_IO2	USART3_CK	TIM15_BKIN					
PB13	SPI2_SCK, I2S2_CK	-	TIM1_CH1N	TSC_G6_IO3	USART3_CTS	I2C2_SCL					
PB14	SPI2_MISO, I2S2_MCK	TIM15_CH1	TIM1_CH2N	TSC_G6_IO4	USART3_RTS	I2C2_SDA					
PB15	SPI2_MOSI, I2S2_SD	TIM15_CH2	TIM1_CH3N	TIM15_CH1N	-	-					

_ - -. . - -- -_ - ----_ . _

40/122

5

Pin name	AF0	AF1
PE0	TIM16_CH1	EVENTOUT
PE1	TIM17_CH1	EVENTOUT
PE2	TIM3_ETR	TSC_G7_IO1
PE3	TIM3_CH1	TSC_G7_IO2
PE4	TIM3_CH2	TSC_G7_IO3
PE5	TIM3_CH3	TSC_G7_IO4
PE6	TIM3_CH4	-
PE7	TIM1_ETR	-
PE8	TIM1_CH1N	-
PE9	TIM1_CH1	-
PE10	TIM1_CH2N	-
PE11	TIM1_CH2	-
PE12	TIM1_CH3N	SPI1_NSS, I2S1_WS
PE13	TIM1_CH3	SPI1_SCK, I2S1_CK
PE14	TIM1_CH4	SPI1_MISO, I2S1_MCK
PE15	TIM1_BKIN	SPI1_MOSI, I2S1_SD

Table 18. Alternate functions selected through GPIOE AFR registers	s for port E

Table 19. Alternate functions available on port F

	•
Pin name	AF
PF0	CRS_SYNC
PF1	-
PF2	EVENTOUT
PF3	EVENTOUT
PF6	-
PF9	TIM15_CH1
PF10	TIM15_CH2

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 21: Voltage characteristics*, *Table 22: Current characteristics* and *Table 23: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit	
$V_{DD} - V_{SS}$	External main supply voltage	- 0.3	4.0	V	
V _{DDIO2} -V _{SS}	External I/O supply voltage	- 0.3	4.0	V	
$V_{DDA} - V_{SS}$	External analog supply voltage	- 0.3	4.0	V	
V _{DD} -V _{DDA}	Allowed voltage difference for $V_{DD} > V_{DDA}$	-	0.4	V	
$V_{BAT} - V_{SS}$	External backup supply voltage	- 0.3	4.0	V	
V _{BAT} -V _{SS} V _{IN} ⁽²⁾	Input voltage on FT and FTf pins	V _{SS} - 0.3	V _{DDIOx} + 4.0 ⁽³⁾	V	
	Input voltage on TTa pins	V _{SS} - 0.3	4.0	V	
VIN Ý	BOOT0	0	9.0	V	
	Input voltage on any other pin	V _{SS} - 0.3	Max 4.0 4.0 4.0 0.4 4.0 VDDIOx + 4.0 ⁽³⁾ 4.0 9.0 4.0 50 50 12: Electrical cteristics	V	
ΔV _{DDx}	Variations between different V_{DD} power pins	-	50	mV	
V _{SSx} - V _{SS}	Variations between all the different ground pins	-	50	mV	
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6.3.12: Electrical sensitivity characteristics			

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 22: Current characteristics* for the maximum allowed injected current values.

3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is enabled, the maximum limit is 4 V.

C. m	Doro			Typ $@V_{DD} (V_{DD} = V_{DDA})$										
bol	meter		Conditions	2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
I _{DD}	Supply current in	Reg mod osc	gulator in run de, all illators OFF	15.4	15.5	15.6	15.7	15.8	15.9	23 ⁽²⁾	49	68 ⁽²⁾		
	Stop mode	Regulator in low- power mode, all oscillators OFF		3.2	3.3	3.4	3.5	3.6	3.7	8 ⁽²⁾	33	51 ⁽²⁾		
	Supply current in	LSI ON	ON and IWDG	0.8	1.0	1.1	1.2	1.3	1.4	-	-	-		
	Standby mode	LSI OFI	OFF and IWDG =	0.6	0.7	0.9	0.9	1.0	1.1	2.1 ⁽²⁾	2.6	3.1 ⁽²⁾		
	Supply	Supply	z	Regulator in run mode, all oscillators OFF	2.1	2.2	2.3	2.5	2.6	2.8	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾	
	Stop mode	_A monitoring O	Regulator in low-power mode, all oscillators OFF	2.1	2.2	2.3	2.5	2.6	2.8	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾	μA	
	Supply current in	n 10 n	LSI ON and IWDG ON	2.5	2.7	2.8	3.0	3.2	3.5	-	-	-		
	Standby mode		LSI OFF and IWDG OFF	1.9	2.1	2.2	2.3	2.5	2.6	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾		
JDDA	Supply current in Stop mode	Supply	H.	Regulator in run mode, all oscillators OFF	1.3	1.3	1.4	1.4	1.5	1.5	-	-	-	
		A monitoring OI	Regulator in low-power mode, all oscillators OFF	1.3	1.3	1.4	1.4	1.5	1.5	-	-	-		
	Supply current in	V _{DD}	LSI ON and IWDG ON	1.7	1.8	1.9	2.0	2.1	2.2	-	-	-		
	Standby mode	andby ode	LSI OFF and IWDG OFF	1.2	1.2	1.2	1.3	1.3	1.4	-	-	-		

Table 31. Typical and maximum consumption in Stop and Standby modes

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 39*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
I _{DD}		During startup ⁽³⁾	-	-	8.5	
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 10 pF@8 MHz	-	0.4	-	
		V _{DD} = 3.3 V, Rm = 45 Ω, CL = 10 pF@8 MHz	- 0.5		-	
	HSE current consumption	V _{DD} = 3.3 V, Rm = 30 Ω, CL = 5 pF@32 MHz	-	0.8	-	mA
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 10 pF@32 MHz	-	1	-	
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 20 pF@32 MHz	-	1.5	-	
9 _m	Oscillator transconductance	Startup	10	-	-	mA/V
$t_{SU(HSE)}^{(4)}$	Startup time	V_{DD} is stabilized	-	2	-	ms

Table 39.	HSE	oscillator	characteristics
	-		

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by design, not tested in production.

3. This consumption level occurs during the first 2/3 of the $t_{\mbox{SU(HSE)}}$ startup time

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 16*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

DocID025451 Rev 6

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.8 Internal clock source characteristics

The parameters given in *Table 41* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*. The provided curves are characterization results, not tested in production.

High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI14}	Frequency	-	-	14	-	MHz
TRIM	HSI14 user-trimming step	-	-	-	1 ⁽²⁾	%
DuCy _(HSI14)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
		$T_A = -40$ to 105 °C	-4.2 ⁽³⁾	-	5.1 ⁽³⁾	%
ACC	Accuracy of the HSI14 oscillator (factory calibrated)	T _A = −10 to 85 °C	-3.2 ⁽³⁾	-	3.1 ⁽³⁾	%
ACC _{HSI14}		$T_A = 0$ to 70 °C	-2.5 ⁽³⁾	-	2.3 ⁽³⁾	%
		T _A = 25 °C	-1	-	1	%
t _{su(HSI14)}	HSI14 oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs
I _{DDA(HSI14)}	HSI14 oscillator power consumption	-	-	100	150 ⁽²⁾	μA

Table 42. HSI14 oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

Figure 19. HSI14 oscillator accuracy characterization results

High-speed internal 48 MHz (HSI48) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI48}	Frequency	-	-	48	-	MHz
TRIM	HSI48 user-trimming step	-	0.09 ⁽²⁾	0.14	0.2 ⁽²⁾	%
DuCy _(HSI48)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
		T _A = -40 to 105 °C	-4.9 ⁽³⁾	-	4.7 ⁽³⁾	%
ACC	Accuracy of the HSI48 oscillator (factory calibrated)	T _A = −10 to 85 °C	-4.1 ⁽³⁾	-	3.7 ⁽³⁾	%
ACC _{HSI48}		T _A = 0 to 70 °C	-3.8 ⁽³⁾	-	3.4 ⁽³⁾	%
		T _A = 25 °C	-2.8	-	2.9	%
t _{su(HSI48)}	HSI48 oscillator startup time	-	-	-	6 ⁽²⁾	μs
I _{DDA(HSI48)}	HSI48 oscillator power consumption	-	-	312	350 ⁽²⁾	μA

Table 43. HSI48 oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = –40 to 105 $^\circ\text{C}$ unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

Figure 20. HSI48 oscillator accuracy characterization results

6.3.18 Comparator characteristics

Symbol	Parameter	Conditions		Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V _{DDA}	Analog supply voltage	-		V_{DD}	-	3.6	V
V _{IN}	Comparator input voltage range	-		0	-	V _{DDA}	-
V _{SC}	V _{REFINT} scaler offset voltage	-		-	±5	±10	mV
ts sc	V _{REFINT} scaler startup	First V _{REFINT} scaler activation after device power on		-	-	1000 (2)	ms
	time from power down	Next activations		-	-	0.2	
t _{START}	Comparator startup time	Startup time to reach propagation delay specification		-	-	60	μs
	Ultra-low power mode		-	2	4.5		
	Propagation delay for 200 mV step with 100 mV overdrive	Low power mode		-	0.7	1.5	μs
		Medium power mode		-	0.3	0.6	
		High speed mode	V _{DDA} ≥ 2.7 V	-	50	100	- ns
t_			V _{DDA} < 2.7 V	-	100	240	
۲D	Propagation delay for full range step with 100 mV overdrive	Ultra-low power mode		-	2	7	μs
		Low power mode		-	0.7	2.1	
		Medium power mode		-	0.3	1.2	
		High speed mode	V _{DDA} ≥ 2.7 V	-	90	180	- ns
			V _{DDA} < 2.7 V	-	110	300	
V _{offset}	Comparator offset error	-		-	±4	±10	mV
dV _{offset} /dT	Offset error temperature coefficient	-		-	18	-	µV/°C
IDD(COMP)	COMP current consumption	Ultra-low power mode		-	1.2	1.5	- μΑ
		Low power mode		-	3	5	
		Medium power mode		-	10	15	
		High speed mode		-	75	100	

Table 61. Comparator characteristics

Symbol	Parameter	Conditio	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
V _{hys}		No hysteresis (COMPxHYST[1:0]=00)	-	-	0	-	mV
		Low hysteresis (COMPxHYST[1:0]=01)	High speed mode	3	8	13	
			All other power modes	5		10	
	Comparator hysteresis	Medium hysteresis (COMPxHYST[1:0]=10) High hysteresis (COMPxHYST[1:0]=11)	High speed mode	7	15 31	26	
			All other power modes	9		19	
			High speed mode	18		49	
			All other power modes	19		40	

1. Data based on characterization results, not tested in production.

2. For more details and conditions see Figure 28: Maximum V_{REFINT} scaler startup time from power down.

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit			
/4	0	0.1	409.6				
/8	1	0.2	819.2				
/16	2	0.4	1638.4				
/32	3	0.8	3276.8	ms			
/64	4	1.6	6553.6				
/128	5	3.2	13107.2				
/256	6 or 7	6.4	26214.4				

Table 65. IWDG min/max timeout period at 40 kHz (LSI)⁽¹⁾

1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0.0853	5.4613	
2	1	0.1706	10.9226	me
4	2	0.3413	21.8453	1115
8	3	0.6826	43.6906	

Table 66. WWDG min/max timeout value at 48 MHz (PCLK)

6.3.22 Communication interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I²C timings requirements are guaranteed by design when the I2Cx peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DDIOx} is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I²C I/Os characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Symbol	Parameter	Conditions	Min	Мах	Unit
t _{su(SD_MR)}	Data input setup time	Master receiver	6	-	
t _{su(SD_SR)}		Slave receiver	2	-	
t _{h(SD_MR)} ⁽²⁾	Data input hold time	Master receiver	4	-	
t _{h(SD_SR)} ⁽²⁾		Slave receiver	0.5	-	ne
t _{v(SD_MT)} ⁽²⁾	Data output valid time	Master transmitter	-	4	115
t _{v(SD_ST)} ⁽²⁾		Slave transmitter	-	20	
t _{h(SD_MT)}	Data output hold time	Master transmitter	0	-	
t _{h(SD_ST)}		Slave transmitter	13	-	

Table 69. I²S characteristics⁽¹⁾ (continued)

1. Data based on design simulation and/or characterization results, not tested in production.

2. Depends on f_{PCLK} . For example, if f_{PCLK} = 8 MHz, then T_{PCLK} = 1/ f_{PLCLK} = 125 ns.

Figure 32. I²S slave timing diagram (Philips protocol)

1. Measurement points are done at CMOS levels: 0.3 × V_{DDIOx} and 0.7 × V_{DDIOx}

2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 36. UFBGA100 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 47. LQFP48 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 50. UFQFPN48 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

