

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 13x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f071cbt7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The STM32F071x8/xB microcontrollers incorporate the high-performance ARM[®] Cortex[®]-M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories (up to 128 Kbytes of Flash memory and 16 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (two I²Cs, two SPI/one I²S, one HDMI CEC and four USARTs), one 12-bit ADC, one 12-bit DAC with two channels, seven 16-bit timers, one 32-bit timer and an advanced-control PWM timer.

The STM32F071x8/xB microcontrollers operate in the -40 to +85 °C and -40 to +105 °C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

The STM32F071x8/xB microcontrollers include devices in six different packages ranging from 48 pins to 100 pins with a die form also available upon request. Depending on the device chosen, different sets of peripherals are included.

These features make the STM32F071x8/xB microcontrollers suitable for a wide range of applications such as application control and user interfaces, hand-held equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.

Perip	oheral	STM32	F071Cx	STM32F071RB	STM32F071Vx					
Flash mem	nory (Kbyte)	64	128	128	64	128				
SRAM	(Kbyte)			16						
	Advanced control			1 (16-bit)	1 (16-bit)					
Timers	General purpose		5 (16-bit) 1 (32-bit)							
	Basic		2 (16-bit)							
	SPI [I ² S] ⁽¹⁾			2 [2]						
Comm. interfaces	l ² C			2						
	USART		4							
	CEC		1							
12-bi (number o	t ADC f channels)	1 1 (10 ext. + 3 int.) (16 ext. + 3 int.)								
12-bi (number o	t DAC f channels)	1 (2)								
Analog co	omparator	2								
GP	PIOs	3	7	51	8	7				
Capacitiv char	re sensing nnels	1	17 18		2	4				
Max. CPU	frequency	48 MHz								
Operatin	ig voltage	2.0 to 3.6 V								
Operating temperature		ļ	Ambient operating temperature: -40°C to 85°C / -40°C to 105°C Junction temperature: -40°C to 105°C / -40°C to 125°C							
Pack	ages	LQF UFQF WLC	P48 PN48 SP49	LQFP64	LQF UFBG	P100 GA100				

Table 2. STM32F071x8/xB family device features and peripheral counts

1. The SPI interface can be used either in SPI mode or in I^2S audio mode.

back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Figure 2. Clock tree

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.

DocID025451 Rev 6

	Number of capacitive sensing channels							
Analog I/O group	STM32F071Vx	STM32F071Rx	STM32F071Cx					
G1	3	3	3					
G2	3	3	3					
G3	3	3	2					
G4	3	3	3					
G5	3	3	3					
G6	3	3	3					
G7	3	0	0					
G8	3	0	0					
Number of capacitive sensing channels	24	18	17					

Table 6. Number of capacitive sensing channels available
on STM32F071x8/xB devices

3.14 Timers and watchdogs

The STM32F071x8/xB devices include up to six general-purpose timers, two basic timers and an advanced control timer.

Table 7 compares the features of the different timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	3
	TIM2	32-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
	TIM3	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
General purpose	TIM14	16-bit	Up	integer from 1 to 65536	No	1	-
	TIM15	16-bit	Up	integer from 1 to 65536	Yes	2	1
	TIM16 TIM17	16-bit	Up	integer from 1 to 65536	Yes	1	1
Basic	TIM6 TIM7	16-bit	Up	integer from 1 to 65536	Yes	-	-

Table 7. Timer feature comparison

3.14.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for:

- input capture
- output compare
- PWM generation (edge or center-aligned modes)
- one-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining.

3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17)

There are six synchronizable general-purpose timers embedded in the STM32F071x8/xB devices (see *Table 7* for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base.

TIM2, TIM3

STM32F071x8/xB devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advancedcontrol timer via the Timer Link feature for synchronization or event chaining.

TIM2 and TIM3 both have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

TIM14

This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.

Its counter can be frozen in debug mode.

TIM15, TIM16 and TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

Bus	Boundary address	Size	Peripheral
	0x4000 7C00 - 0x4000 7FFF	1 KB	Reserved
	0x4000 7800 - 0x4000 7BFF	1 KB	CEC
	0x4000 7400 - 0x4000 77FF	1 KB	DAC
	0x4000 7000 - 0x4000 73FF	1 KB	PWR
	0x4000 6C00 - 0x4000 6FFF	1 KB	CRS
	0x4000 5C00 - 0x4000 6BFF	4 KB	Reserved
	0x4000 5800 - 0x4000 5BFF	1 KB	I2C2
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1
	0x4000 5000 - 0x4000 53FF	1 KB	Reserved
	0x4000 4C00 - 0x4000 4FFF	1 KB	USART4
	0x4000 4800 - 0x4000 4BFF	1 KB	USART3
	0x4000 4400 - 0x4000 47FF	1 KB	USART2
	0x4000 3C00 - 0x4000 43FF	2 KB	Reserved
	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
APB	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
	0x4000 2400 - 0x4000 27FF	1 KB	Reserved
	0x4000 2000 - 0x4000 23FF	1 KB	TIM14
	0x4000 1800 - 0x4000 1FFF	2 KB	Reserved
	0x4000 1400 - 0x4000 17FF	1 KB	TIM7
	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
	0x4000 0800 - 0x4000 0FFF	2 KB	Reserved
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

Table 20. STM32F071x8/xB peripheral registe	r boundary ac	ddresses (continued)

6.1.6 Power supply scheme

Figure 12. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

Symbol	Parameter	Conditions	Min	Max	Unit					
t	V _{DD} rise time rate		0	8						
۷DD	V _{DD} fall time rate	-	20	8	uc//					
+	V _{DDA} rise time rate		0	8	μ5/ ν					
۷DDA	V _{DDA} fall time rate	-	20	8						

 Table 25. Operating conditions at power-up / power-down

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 26* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

 Table 26. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{\text{DOD}(\text{DDD}}(1)$	Power on/power down	Falling edge ⁽²⁾	1.80	1.88	1.96 ⁽³⁾	V
* POR/PDR	reset threshold	Rising edge	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
V _{PDRhyst}	PDR hysteresis	-	-	40	-	mV
t _{RSTTEMPO} ⁽⁴⁾	Reset temporization	-	1.50	2.50	4.50	ms

1. The PDR detector monitors V_{DD} and also V_{DDA} (if kept enabled in the option bytes). The POR detector monitors only $V_{DD}.$

2. The product behavior is guaranteed by design down to the minimum $V_{\text{POR/PDR}}$ value.

3. Data based on characterization results, not tested in production.

4. Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	D\/D throshold 0	Rising edge	2.1	Typ Max Unit 2.18 2.26 V 2.08 2.16 V 2.28 2.37 V 2.18 2.27 V 2.38 2.48 V 2.28 2.38 V 2.38 2.48 V 2.38 2.48 V 2.38 2.58 V 2.38 2.48 V 2.38 2.58 V 2.38 2.48 V 2.48 2.58 V 2.38 2.48 V 2.38 2.48 V 2.38 2.48 V 2.38 2.48 V 2.58 2.69 V 2.48 2.59 V 2.68 2.79 V		
V PVD0		Falling edge	2	2.08	2.16	V
Veve	D\/D threehold 1	Rising edge	2.19	2.28	2.37	V
VPVD1		Falling edge	2.09	TypMaxUnit2.182.26V2.082.16V2.282.37V2.182.27V2.382.48V2.282.38V2.482.58V2.382.48V2.482.58V2.582.69V2.682.79V2.582.69V		
V	D\/D threehold 2	Rising edge	2.28	2.38	2.48	V
VPVD2		Falling edge	2.18	2.28	2.38	V
V	D\/D threehold 2	Rising edge	2.38	2.48	2.58	V
VPVD3		Conditions Min Typ Max Unit Rising edge 2.1 2.18 2.26 V Falling edge 2 2.08 2.16 V Rising edge 2.19 2.28 2.37 V Falling edge 2.09 2.18 2.27 V Falling edge 2.28 2.38 2.48 V Falling edge 2.18 2.28 2.38 V Falling edge 2.38 2.48 V Falling edge 2.38 2.48 V Falling edge 2.28 2.38 2.48 V Falling edge 2.47 2.58 2.69 V Falling edge 2.57 2.68 2.79 V Falling edge 2.47 2.58	V			
V	D\/D threehold 4	Rising edge	2.47	2.58	2.69	V
VPVD4		Falling edge	2.37	2.48	2.59	V
M	D\/D threehold 5	Rising edge	2.57	2.68	2.79	V
VPVD5		Falling edge	2.47	2.58	2.69	V

 Table 27. Programmable voltage detector characteristics

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled f_{PCLK} = f_{HCLK}

The parameters given in to *Table 31* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

				All peripherals enabled				All peripherals disabled				
Symbol	ameto	Conditions	f _{HCLK}		N	lax @ T ₄	(1)		м	ax @ T _A	(1)	Unit
	Para			Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
		HSI48	48 MHz	24.3	26.9	27.2	27.9	13.1	14.8	14.9	15.5	
ory	ory		48 MHz	24.1	26.8	27.0	27.7	13.0	14.6	14.8	15.4	
	ode, nem	HSE bypass, PLL on	32 MHz	16.0	18.3	18.6	19.2	8.76	9.56	9.73	10.6	
	n n ash r		24 MHz	12.3	13.7	14.3	14.7	7.36	7.94	8.37	8.81	
	n Rl	HSE bypass, PLL off	8 MHz	4.52	5.25	5.28	5.61	2.89	3.17	3.26	3.34	
I _{DD}	ent i I fror		1 MHz	1.25	1.39	1.58	1.87	0.93	1.06	1.15	1.34	mA
	curr uting		48 MHz	24.1	27.1	27.6	27.8	12.9	14.7	14.9	15.5	
Supply de exect	ŭ HSI clock, × PL on	32 MHz	16.1	18.2	18.9	19.3	8.82	9.69	9.83	10.7		
	_	24 MHz	12.4	14.0	14.4	14.8	7.31	7.92	8.34	8.75		
	00	HSI clock, PLL off	8 MHz	4.52	5.25	5.35	5.61	2.87	3.16	3.25	3.33	

C. m	Doro	Conditions		Typ $@V_{DD} (V_{DD} = V_{DDA})$						Max ⁽¹⁾				
bol	meter			2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
I _{DD}	Supply current in	Regulator in run mode, all oscillators OFF		15.4	15.5	15.6	15.7	15.8	15.9	23 ⁽²⁾	49	68 ⁽²⁾		
	Stop mode	Reg pow osc	Regulator in low- power mode, all oscillators OFF		3.3	3.4	3.5	3.6	3.7	8 ⁽²⁾	33	51 ⁽²⁾		
	Supply current in	LSI ON	ON and IWDG	0.8	1.0	1.1	1.2	1.3	1.4	-	-	-		
	Standby mode	LSI OFF and IWDG OFF		0.6	0.7	0.9	0.9	1.0	1.1	2.1 ⁽²⁾	2.6	3.1 ⁽²⁾		
	Supply current in Stop mode	Supply	z	Regulator in run mode, all oscillators OFF	2.1	2.2	2.3	2.5	2.6	2.8	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾	
		pde do 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Regulator in low-power mode, all oscillators OFF	2.1	2.2	2.3	2.5	2.6	2.8	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾	μA	
	Supply current in Standby mode	ply > ent in hdby	LSI ON and IWDG ON	2.5	2.7	2.8	3.0	3.2	3.5	-	-	-		
			LSI OFF and IWDG OFF	1.9	2.1	2.2	2.3	2.5	2.6	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾		
IDDA	Supply current in Stop mode	Supply L	H.	Regulator in run mode, all oscillators OFF	1.3	1.3	1.4	1.4	1.5	1.5	-	-	-	
		A monitoring Ol	Regulator in low-power mode, all oscillators OFF	1.3	1.3	1.4	1.4	1.5	1.5	-	-	-		
	Supply current in	V _{DD}	LSI ON and IWDG ON	1.7	1.8	1.9	2.0	2.1	2.2	-	-	-		
	Standby mode		LSI OFF and IWDG OFF	1.2	1.2	1.2	1.3	1.3	1.4	-	-	-		

Table 31. Typical and maximum consumption in Stop and Standby modes

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI14}	Frequency	-	-	14	-	MHz
TRIM	HSI14 user-trimming step	-	-	-	1 ⁽²⁾	%
DuCy _(HSI14)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
ACC _{HSI14}		T _A = -40 to 105 °C		-	5.1 ⁽³⁾	%
	Accuracy of the HSI14 oscillator (factory calibrated)	T _A = −10 to 85 °C	-3.2 ⁽³⁾	-	3.1 ⁽³⁾	%
		T _A = 0 to 70 °C	-2.5 ⁽³⁾	-	2.3 ⁽³⁾	%
		T _A = 25 °C	-1	-	1	%
t _{su(HSI14)}	HSI14 oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs
I _{DDA(HSI14)}	HSI14 oscillator power consumption	-	-	100	150 ⁽²⁾	μA

Table 42. HSI14 oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

Figure 19. HSI14 oscillator accuracy characterization results

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 23* and *Table 55*, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz	
×0	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} ≥ 2 V	-	125	ne	
	t _{r(IO)out}	Output rise time		-	125	115	
×0	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	1	MHz	
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} < 2 V	-	125	ns	
	t _{r(IO)out}	Output rise time		-	125		
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	10	MHz	
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} ≥ 2 V	-	25	ns	
01	t _{r(IO)out}	Output rise time		-	25		
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	4	MHz	
	t _{f(IO)out}	Output fall time	C_L = 50 pF, V_{DDIOx} < 2 V	-	62.5	ns	
	t _{r(IO)out}	Output rise time		-	62.5		
	f _{max(IO)out}		C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	50	МН-7	
		Maximum frequency ⁽³⁾	C_L = 50 pF, $V_{DDIOx} \ge 2.7 V$	-	30		
			C_{L} = 50 pF, 2 V ≤ V_{DDIOx} < 2.7 V	20			
			C _L = 50 pF, V _{DDIOx} < 2 V	-	10		
			C _L = 30 pF, V _{DDIOx} ≥ 2.7 V	5			
11	+	Output fall time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8	-	
11	۲f(IO)out		C_L = 50 pF, 2 V ≤ V_{DDIOx} < 2.7 V	-	12		
			C_L = 50 pF, V_{DDIOx} < 2 V	-	25	ns	
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	5		
	+	Output riss time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	_ = 50 pF, V _{DDIOx} ≥ 2.7 V - 8			
	۲(IO)out		C_{L} = 50 pF, 2 V ≤ V_{DDIOx} < 2.7 V	-	12		
			C _L = 50 pF, V _{DDIOx} < 2 V	-	25		

Table 55. I/O AC characteristics⁽¹⁾⁽²⁾

6.3.17 DAC electrical specifications

Symbol	Parameter	Min	Тур	Max	Unit	Comments
V _{DDA}	Analog supply voltage for DAC ON	2.4	-	3.6	V	-
D (1)	Resistive load with buffer	5	-	-	kΩ	Load connected to V _{SSA}
►LOAD` ′	ON	25	-	-	kΩ	Load connected to V _{DDA}
R _O ⁽¹⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V _{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	$V_{DDA} = 3.6 V \text{ and } (0x155) \text{ and}$ (0xEAB) at $V_{DDA} = 2.4 V$
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	I	-	V _{DDA} – 1LSB	V	excursion of the DAC.
I (1)	DAC DC current	-	-	600	μA	With no load, middle code (0x800) on the input
'DDA'	mode ⁽²⁾	I	-	700	μA	With no load, worst code (0xF1C) on the input
DNL ⁽³⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration
	Integral non linearity (difference between	-	-	±1	LSB	Given for the DAC in 10-bit configuration
INL ⁽³⁾	measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration
	Offset error	-	-	±10	mV	-
Offset ⁽³⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at V _{DDA} = 3.6 V
	(0x800) and the ideal value = V _{DDA} /2)	-	-	±12	LSB	Given for the DAC in 12-bit at $V_{DDA} = 3.6 V$

Table	60.	DAC	characteristics
Table	00.	DAO	character istics

			-	(1)				
Symbol		millimeters		inches ⁽¹⁾				
	Min	Тур	Мах	Min	Тур	Мах		
E3	-	7.500	-	-	0.2953	-		
е	-	0.500	-	-	0.0197	-		
К	0°	3.5°	7°	0°	3.5°	7°		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	-	1.000	-	-	0.0394	-		
CCC	-	-	0.080	-	-	0.0031		

Table 73. LQFP64 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.4 WLCSP49 package information

WLCSP49 is a 49-ball, 3.277 x 3.109 mm, 0.4 mm pitch wafer-level chip-scale package.

Figure 43. WLCSP49 package outline

1. Drawing is not to scale.

Symbol		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
D	6.900	7.000	7.100	0.2717	0.2756	0.2795	
E	6.900	7.000	7.100	0.2717	0.2756	0.2795	
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
Т	-	0.152	-	-	0.0060	-	
b	0.200	0.250	0.300	0.0079	0.0098	0.0118	
е	-	0.500	-	-	0.0197	-	
ddd	-	-	0.080	-	-	0.0031	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 49. Recommended footprint for UFQFPN48 package

1. Dimensions are expressed in millimeters.

This is above the range of the suffix 6 version parts (–40 < T_J < 105 °C).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Section 8: Ordering information*) unless we reduce the power dissipation in order to be able to use suffix 6 parts.

Refer to *Figure 51* to select the required temperature range (suffix 6 or 7) according to your temperature or power requirements.

9 Revision history

Date	Revision	Changes
13-Jan-2014	1	Initial draft
21-Feb-2014	2	Added part number STM32F071V8. Changed status of document from "Preliminary data" to "Production data". Updated "Reset and power management" data in <i>Features</i> . Updated t _{S_vrefint} in <i>Table: Embedded internal reference</i> <i>voltage</i> . Updated V _{HSEH} and V _{HSEL} in <i>Table: High-speed external user</i> <i>clock characteristics</i> . Updated V _{LSEH} and V _{LSEL} in <i>Table: Low-speed external user</i> <i>clock characteristics</i> . Updated t _{S_temp} in <i>Table: TS characteristics</i> . Updated t _{S_vbat} in <i>Table: VBAT monitoring characteristics</i> . Updated <i>Figure: UFBGA100 package top view</i> and <i>Figure:</i> <i>WLCSP49 package top view</i> . Modified value of t _{S_sc} and removed row V _{BG} in <i>Table:</i> <i>Comparator characteristics</i> .
17-Dec-2015	3	 Cover page: part numbers moved to title and table of part numbers removed generic product name in the whole document changed to STM32F071x8/xB Section 2: Description: Figure 1: Block diagram updated Section 3: Functional overview: Figure 2: Clock tree updated Section 3.5.4: Low-power modes - added USART2 to comm. peripherals configurable to operate with HSI Section 4: Pinouts and pin descriptions: Package pinout figures updated (look and feel) Figure 8: WLCSP49 package pinout - now presented in top view Figure 3: UFBGA100 package pinout - names of PC14, PC15, PF0, PF1 complemented Table 13: STM32F071x8/xB pin definitions - pin types corrected for PF0 and PF1 Section 5: Memory mapping: Figure 9: added information on STM32F071V8 difference versus STM32F071xB map

Table 79. Document revision history

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

DocID025451 Rev 6

